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PREFACE 

The California Energy Commission’s (CEC) Energy Research and Development Division 

supports energy research and development programs to spur innovation in energy efficiency, 

renewable energy and advanced clean generation, energy-related environmental protection, 

energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 

Public Utilities Commission to fund public investments in research to create and advance new 

energy solutions, foster regional innovation and bring ideas from the lab to the marketplace. 

The CEC and the state’s three largest investor-owned utilities — Pacific Gas and Electric 

Company, San Diego Gas & Electric Company and Southern California Edison Company — 

were selected to administer the EPIC funds and advance novel technologies, tools, and 

strategies that provide benefits to their electric ratepayers. 

The CEC is committed to ensuring public participation in its research and development 

programs that promote greater reliability, lower costs, and increase safety for the California 

electric ratepayer and include: 

• Providing societal benefits.

• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost.

• Supporting California’s loading order to meet energy needs first with energy efficiency

and demand response, next with renewable energy (distributed generation and utility

scale), and finally with clean, conventional electricity supply.

• Supporting low-emission vehicles and transportation.

• Providing economic development.

• Using ratepayer funds efficiently.

Developing a Comprehensive, System-Wide Forecast to Support High-Penetration Solar is the 

final report for the Developing a Comprehensive, System-Wide Forecast to Support High-

Penetration Solar project (EPC-17-003) conducted by Clean Power Research. The information 

from this project contributes to the Energy Research and Development Division’s EPIC 

Program. 

For more information about the Energy Research and Development Division, please visit the 

CEC’s research website (www.energy.ca.gov/research/) or contact the CEC at 916-327-1551. 

http://www.energy.ca.gov/research/
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ABSTRACT 

A broad range of new methods has improved the accuracy of solar photovoltaic fleet 

forecasting for California’s electric grid. This improved accuracy ensures that new solar 

photovoltaic generation can be effectively integrated into the state’s existing electric 

distribution and transmission grid. California ratepayers benefit from this improved accuracy by 

avoiding the costs of unnecessary fossil-fueled generation that would otherwise be required to 

make up for forecast uncertainties. This project developed methods for improved irradiance 

forecasts for California’s coastal marine layer, including an innovative approach that models 

elevation-related dissipation. It quantifies improved regional- and site-specific blends of 

forecasts from alternate sources as part of its forecast horizon and addresses fleet variability 

by enhancing a previously developed method for probabilistic forecasting. To improve these 

planning tools, this project used as its foundation a publicly accessible database of production 

profiles of 504 actual solar photovoltaic systems located across California. The resulting 

distributed-energy-resource production database can be used for load studies that are scaled 

appropriately, based upon study requirements. New valuation metrics were developed and 

demonstrated to estimate savings from the project’s improved forecasting methods. Finally, 

the project developed advanced regression methods that enable energy-resource planners to 

estimate future customer solar photovoltaic-generated capacity. These methods may be used 

by utilities to estimate future solar photovoltaic capacity, its technical load, and its financial 

impacts. 

Keywords: Solar forecast, high-penetration solar, probabilistic forecasting, DER forecasting, 

forecast error, solar penetration, solar photovoltaic forecast. 

Please use the following citation for this report: 

Norris, Benjamin, et.al. 2020. Developing a Comprehensive, System-Wide Forecast to Support 
High-Penetration Solar. California Energy Commission. Publication Number: 

CEC-500-2020-060. 
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EXECUTIVE SUMMARY  

Background 
The California Legislature passed, and then-Governor Jerry Brown signed into law, Senate Bill 

(SB) 100 (De Leon, Chapter 312, Statutes of 2018). The 2018 landmark law mandates that 

renewable energy and zero-carbon resources supply 100 percent of electric retail sales to end-

use customers by the end of 2045. It further requires the California Energy Commission, the 

California Public Utilities Commission, and the California Air Resources Board to prepare a 

report on the law’s progress. Achievement of this ambitious goal depends upon speedy 

development of renewable resource generation and efficient ways to incorporate that 

generation into California’s existing electric distribution and transmission grid. Renewable solar 

photovoltaic generation is a key component of that renewable energy mix. 

Solar forecasting is essential to the multifaceted operation of California’s electric grid. 

Forecasts of solar-generated energy are key to accurately scheduling supplemental resources 

so that supply and demand are balanced, and so demand is met in the most cost-effective 

manner. Forecasts are developed in the short term, up to a few hours ahead, and in the 

longer term: up to days, weeks, or even years.  

Solar photovoltaic forecasting is performed for large, centralized facilities and small behind-

the-meter resources on the periphery of the grid. While the methods themselves are similar 

for large and small solar photovoltaic resources, they are typically performed separately. This 

is because, from the operational point of view of the California Independent System Operator, 

large, central solar photovoltaic facilities are monitored directly while small, behind-the-meter 

generation is embedded within total load so that only net load is visible at the wholesale level. 

Behind-the-meter solar photovoltaic systems present unique forecasting challenges. They 

represent a wide diversity of sizes, orientations, shading patterns, and equipment designs. 

They are located in all of California’s diverse microclimates, including the coast with its 

episodic fog-like marine layer. The electricity generated by these many individual systems is 

not metered directly; generation from these behind-the-meter solar photovoltaic projects is 

instead a small, undifferentiated component of total load that does not pass through any 

meter, invisible to the utilities and grid operators. At the metering point, power flows to the 

customer and to the utility. 

Given these challenges, present research focuses on behind-the-meter solar forecasting and 

how to more effectively integrate that power into net load forecasts. 

Project Purpose 
This project’s goal was to improve upon existing solar forecasting methods and develop new 

ones with greater accuracy. Improved accuracy helps ensure that new solar photovoltaic 

capacity can be effectively brought online and seamlessly integrated into the state’s electric 

grid. California ratepayers benefit by avoiding the cost of unneeded fossil-fueled generation 

that would otherwise be required in anticipation of forecast uncertainties. The methods 

developed in this research project will result in greater forecast accuracy, improved electric 

reliability, and grid integration of increasing amounts of solar photovoltaic capacity.  
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The California Independent System Operator must manage both forecast uncertainty and the 

related issue of solar photovoltaic energy production variability. Moving clouds can make solar 

energy production highly variable, especially in the fall when small, patchy clouds alternately 

shade and expose solar panels. The research and methods developed in this project address 

this variability by advancing a previously developed method that accounts for fleet variability 

through probabilistic forecasting. 

Grid planning with high-solar photovoltaic penetration is further complicated by California’s 

diverse microclimates and many variations in solar system designs, roof orientations, and 

shading patterns. Solar photovoltaic hourly output patterns depend upon these highly location-

specific factors. This project helped address this issue by improving a publicly accessible 

database of production profiles of 504 actual solar photovoltaic systems located across the 

state. This distributed energy resource database can be accessed for load studies and 

appropriately scaled to study requirements. 

This project also quantified the benefits of improved forecasting. Economic benefits to the 

California Independent System Operator — and, by extension, California ratepayers — depend 

upon the availability of metrics to evaluate forecast errors. New valuation metrics were 

developed and demonstrated that estimate savings from improved forecast methods. 

Finally, future-year solar forecasting cannot be based solely on the existing fleet of solar 

photovoltaic resources; it also requires estimates for future capacity not yet installed in the 

state. This project therefore also developed advanced regression methods that enable 

planners to estimate future solar photovoltaic capacities. California’s electric utilities can use 

these new methods to estimate future solar generation, its technical load, and its financial 

impact. 

Project Approach 
The project team consisted of Clean Power Research, University of California at San Diego, 

State University of New York, Itron, and consultant and former California Independent System 

Operator short-term forecast manager Jim Blatchford.  

The University of California at San Diego developed a new forecasting method for tracking 

morning coastal fog. This method anticipates when and where fog dissipates in midmorning, 

exposing solar resources. The State University of New York advanced methods for blending 

alternative forecasts and developing region-specific forecasts. These methods proved to be 

more accurate than a single, general-purpose forecast. Itron developed methods for 

integrating behind-the-meter forecasts into net load forecasts. This research evaluated 

improvements to the neural networks used for net load forecasting. Jim Blatchford reviewed 

results, collaborated with the California Independent System Operator, and managed the 

technical advisory committee. Clean Power Research demonstrated methods of probabilistic 

forecasting in variable solar photovoltaic production, developed metrics for evaluating forecast 

errors, improved a database of behind-the-meter solar production, and developed methods for 

forecasting future customer adoption of behind-the-meter solar capacity.  

The technical advisory committee included staff from the California Independent System 

Operator, Pacific Gas and Electric Company, Southern California Edison, and San Diego Gas & 
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Electric. The committee reviewed overall progress and provided the research team with 

valuable guidance in the project’s developmental phase.  

Project Results 
The project team developed a broad spectrum of forecast-related improvements, described 

here.  

University of California at San Diego Forecast Improvements 

The University of California at San Diego developed a marine fog “line forecast” method that 

shows higher forecast accuracy in coastal Southern California than in either Central California 

or Northern California. Coastal topography likely plays a role in this discrepancy. For example, 

the simple topographic elevation distribution in San Diego favors the line forecast since it has 

more consistent weather across the forecast area. The lack of forecast accuracy at the 

immediate coast and the sharp gradient of cloud dissipation time within a few kilometers of 

the coast suggest that, at the immediate coast, local processes are important in determining 

when clouds dissipate. While the satellite cloud-motion forecast performs best at the 

immediate coast because of the frequency of days when clouds last all day, it is less accurate 

when clouds dissipate.  

State University of New York Forecast Improvements 

The State University of New York’s new site-independent models (several related versions, 

designated v4x) shows systematic performance improvements at all locations and time 

horizons when compared with the current operational model (v4). About half of the 

performance gain is from a better model-blending fit with ground-location ensembles (v4 was 

fitted to a three-location subset). The other half of the performance gain came from adding 

predicted sunlight exposure levels for more accurate model blending. This improved site-

independent model fully retains the user-ready applicability of the v4 version tested by the 

Electric Power Research Institute.  

Location-specific forecasts exhibit additional performance improvements. Forecast skill exceeds 

45 percent across all time horizons. For this site-specific model, much of the gain in 

performance is attributable to its use of site-specific parameters.  

Probabilistic Forecasting 

Clean Power Research’s probabilistic forecasts were very promising because predicted and 

measured fleet output from a small solar photovoltaic fleet coordinated effectively with 

previously collected solar photovoltaic data. The probabilistic model accurately predicts fleet 

power variability in small geographic regions, even on days when fast-moving clouds cause 

high variability. 

In some results there was a discrepancy between predicted and measured data. This is most 

likely because of the quality of available cloud-speed data. Further testing and data collection 

will be required to better understand this effect. 

Distributed Energy Resource Production Database 

Clean Power Research successfully demonstrated how physical system attributes can 

accurately infer measured solar photovoltaic output, developing inferred physical attribute 



 

4 

specifications that yielded excellent overall results. Clean Power Research modeled system 

outputs using both inferred system specifications and specifications reported by system 

installers. Median hourly error over a test year in simulations using inferred specifications was 

only 10.1 percent, while simulations from reported specifications had a median error of 16.7 

percent.  

Short-Term Load Forecasts 

This study demonstrated improved accuracy for existing reconstituted load models by 

replacing unadjusted generation data with statistically adjusted data. Statistical adjustments 

allowed the measured load impact of solar photovoltaic generation to vary by load zone, time 

of day, temperature, and weekdays instead of by weekend days (that is, adjustments for the 

five weekdays are handled separately from the two weekend days). Alternative approaches 

were examined for implementing statistically adjusted solar photovoltaic generation values in 

reconstituted load models.  

This study also provided evidence that weather-related impact on forecasting has evolved 

since 2013. To capture this change, time trends were introduced into reconstituted load model 

specifications that allow weather responses to evolve over model-estimation periods.  

The day-ahead forecasts of morning- and evening-hour loads saw accuracy gains of 

approximately 10 to 20 percent in mean absolute percentage error, which is a measure of 

forecast accuracy. Midday and afternoon day-ahead load forecasts had modest improvements 

of 3 percent. Dawn hours had accuracy gains of 8 percent.  

Valuation of Forecast Error 

Three models of forecast error were developed and evaluated. Note that these three models 

are not directly comparable as they seek to quantify error in three different contexts. 

• Resource adequacy. Solar forecast improvements developed in this project were 

quantified. If new gas generation were built expressly to comprise 90 percent of the 3-

hour-ahead forecast errors across the 6.3-gigawatt behind-the-meter photovoltaic fleet 

in California, this metric indicates potential energy savings of up to $176 million over 

the next 30 years in terms of avoided new variability mitigation build-outs. Resource 

adequacy as defined in this work is a metric for evaluating the “long term” costs of 

building new generation assets to mitigate solar PV forecast errors.    

• Real-time market correction. This metric is the most complex of the methods described 

in this report because it requires time-correlated market data. Because it requires this 

use of familiar data, however, it could ultimately prove more acceptable to grid 

operators and other utility stakeholders. Real-time market correction is a metric for 

value in the “short run,” that is, in a time frame in which only the existing resources are 

employed. 

• Perfect forecast. This metric penalizes the most extreme cumulative over-prediction 

events. It forces consideration of not only instantaneous power but also of energy 

across more extended periods. This is important because renewable energy is plentiful 

but doesn’t share the ”ramp-up on demand” characteristics of conventional forms of 

generation. This method also quantifies the incremental cost of storage if it is required 

to guarantee photovoltaic forecast accuracy. The perfect forecast is a long-run metric 



 

5 

assuming a scenario in which energy storage (not natural gas) is used to eliminate all 
forecast uncertainty. 

Distributed Energy Resource Capacity Forecasting 

Clean Power Research trained a regression model using historical customer data for 2014 and 

created a forecast for 2015. Predictor variables were cost-effectiveness, adoption density, and 

market segment. All three predictors were statistically significant. The forecast error was 

calculated as -1.8 percent, a strong confirmation that the model accurately predicts overall 

distributed energy resource adoption by residential customers. 

Technology/Knowledge/Market Transfer Activities  

Clean Power Research and its partners (Itron; the University of California at San Diego; Jim 

Blatchford; and the State University of New York) presented project results at several industry 

conferences, such as an American Meteorological Society meeting, the World Conference on 

Photovoltaic Energy Conversion and Institute of Electrical and Electronics Engineers 

Photovoltaic Specialist Conference, and Energy Systems Integration Group Meetings. 

Additional activities follow.  

• One journal article has been published by the University of California at San Diego in 

the journal Solar Energy.  

• Websites: The data set created under the distributed energy resource production 

database is available for public download on the California Distributed Generation 

Statistics website.  

• The task report on Short-Term Load Forecasting was sent to several independent 

system operators and regional transmission organizations in the United States and in 

other countries. Other system operators and utility contacts presented project results. 

• The publication of this report will provide additional project exposure to the industry. 

• Clean Power Research and its partners held periodic technical advisory committee 

meetings with CAISO and the three IOUs. In addition, a separate meeting with CAISO 

early on in the project led to the inclusion of the real-time market correction metric in 

the project. The short-term load methods have been used by the load forecaster, and 

CAISO has reviewed project results. 

Benefits to California  

Lower Costs 

Improved solar photovoltaic production forecasts will decrease net load forecast uncertainty. 

The cost of procuring both spinning and non-spinning reserves will also decrease. Clean Power 

Research is creating and implementing forecast-error-valuation methodologies that will allow 

users to estimate the costs of improvements in forecast accuracy. These methods are also 

being applied to forecast improvements developed in this project. This will lower energy costs 

by reducing the amount of stand-by generation required to mitigate forecast load uncertainty. 

Using the resource adequacy method, Clean Power Research estimates that the forecasting 

methods developed in this project will save California $176 million over the next 30 years. 
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Greater Reliability 

The project team worked with the California Independent System Operator on an improved 

solar photovoltaic forecast that could be integrated into its operations with the twin goals of 

providing greater transparency for behind-the-meter solar photovoltaic systems and 

contributing to system reliability. The uncertainty of photovoltaic power generation adds to 

utility customer energy bills since additional reserves must be carried to accommodate this 

uncertainty. Based on the resource-adequacy method, which is designed to eliminate 90 

percent of forecast uncertainty, the expected savings in the 3-hour forecast will be $28 per 

kilowatt of installed photovoltaics, or about 3 percent of the cost of utility-scale solar. This 

project quantified specific reductions in reserve requirements; for example, the required 

reserves reduce from about 95 Watts per kilowatt of installed solar photovoltaics to about 70 

Watts per kilowatt in the 3-hour ahead market when using a site-specific forecast rather than 

the baseline forecast. Project results will also provide valuable knowledge to grid operators 

and California decision-makers who help the state plan for increased distributed energy 

resource grid integration while maintaining reliability.  

Environmental Benefits 

Project results will improve California’s environmental footprint by decreasing fossil-fuel-based 

reserves required by the grid operator to accommodate solar photovoltaic forecast inaccuracy. 

By improving forecast accuracy, fewer resources will be required to meet net load uncertainty.  



 

7 

CHAPTER 1:  
Introduction 

Overview 
California’s electric grid is integrating ever-greater amounts of solar photovoltaic (PV) 

generation into its distribution and transmission systems. This renewable generation includes 

both large, centralized, and small, behind-the-meter (BTM) solar resources.  

Traditional generation and market design rely upon dispatchable resources that are technically 

able to generate electricity on demand. Market factors including the cost of individual 

generation, its location, and electricity demand determine the actual dispatch of these units. 

Scheduling these units depends upon these factors and load forecasts. California’s dispatch 

process is managed by the California Independent System Operator (California ISO).  

Solar PV generation changes this market design in fundamental ways. First, the California ISO 

must forecast net load, or the remaining load after metered, non-dispatchable renewable 

resources are accounted for. These are the large, central solar PV and wind facilities that 

generate wholesale electricity for utilities and are typically connected to the high-voltage 

transmission grid. 

Secondly, the load changes with the integration of solar PV and other BTM resources (with 

rooftop solar PV being the most common in California). In order to forecast the final dispatch 

of conventional generation, the load must first be forecasted, followed by a BTM generation 

forecast. The difference is the net load delivered to electric utilities. Finally, wholesale 

renewable resource generation must be accounted for, which leaves the remaining load that 

must be served through the competitive marketplace of dispatchable units. 

Forecasts are developed in the short term (up to a few hours ahead), as well as in the longer 

terms of days, weeks, or even years. While forecasting methods are similar for both large and 

small resources, they are typically performed separately. This is because BTM solar PV 

generation presents unique forecasting challenges.  

As opposed to large, multi-megawatt central solar PV resources, BTM solar PV resources 

represent a broad diversity of sizes, orientations, shading patterns, and equipment designs. 

They are located in all of California’s diverse microclimates, including the coast with its elusive 

fog-like marine layer. A portion of the energy generated by these resources is not metered 

directly, but rather contributes to load reduction without passing through a meter, technically 

invisible to both utilities and system operators. At the metering point, power flows in either 

direction. 

Given these challenges, much present research focuses on BTM solar PV forecasting and how 

to most effectively integrate this generation into net load forecasts usable by the California 

ISO. 
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Project Purpose 
This research set out to improve existing solar forecasting methods and develop new ones 

with greater accuracy. Improved accuracy helps ensure new solar PV capacity is effectively 

integrated into the state’s existing electric grid. California ratepayers benefit by avoiding the 

cost of unneeded generation from fossil fuels that would otherwise be required to 

accommodate forecasting uncertainties. These methods together result in greater forecast 

accuracy, improved electric reliability, and greater integration of lowest-cost solar PV capacity. 

Most importantly, they also ultimately contribute to California’s ambitious mandated timetable 

for reducing dependence upon fossil-fueled electricity generation.  

As the state’s grid operator, the California ISO must manage both forecast uncertainty and the 

related issue of solar energy variability. With transient clouds, solar PV generation can be 

highly variable, especially in the fall when small, patchy clouds alternately shade and expose 

solar PV panels. This project addresses that hurdle by enhancing a previously developed 

method to incorporate that variability into probabilistic forecasting. 

Grid planning with high solar PV penetration is complicated by California’s diverse 

microclimates and variations in solar PV system designs, roof orientations, and shading 

patterns. Solar PV resources generate very different hourly outputs depending upon these 

highly location-specific factors. One way the project addresses this issue is by improving a 

publicly accessible database of solar PV production profiles of 504 solar PV systems across the 

state. This distributed energy resource (DER) production database can be used for load studies 

and scaled to study requirements. 

The project also quantified the benefits of improved forecasts. Economic benefits to the 

California ISO — and, by extension, California ratepayers — depend upon the availability of 

metrics to evaluate forecast error. The project team developed and demonstrated new 

valuation metrics that estimate savings from improved forecasting methods. 

Finally, future solar forecasting cannot be based solely upon the existing fleet of solar PV 

resources; it also requires estimates of future solar PV capacity not yet installed. This project 

developed advanced regression methods that enable planners to estimate future growth of 

solar PV-generated capacity. These methods can be used by electric utilities to estimate future 

capacity, technical load, and financial impacts. 

Project Approach 
The present work covers a broad range of activities that support the unique requirements of 

net load forecasting.  

• University of California at San Diego Forecast Improvements: The University of 

California at San Diego (UCSD) focused its efforts on the difficulties inherent in 

forecasting the behavior of stratocumulus clouds — the coastal marine layer — that do 

not follow the predictable patterns of inland clouds. Coastal fog may be present at 

sunrise and before “burning off” during the morning hours, exposing higher-elevation 

regions to sunlight earlier than lower-elevation regions. UCSD developed and tested an 

innovative line forecast model that accounts for this coastal phenomenon.  

• The State University of New York Forecast Improvements: The State University of New 

York (SUNY) at Albany advanced several methods for the real-time net load forecast 
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system used by the California ISO. These included maximizing the blend of forecasts 

available from a variety of sources, including Clean Power Research’s (CPR) own cloud-

motion vector method for tracking cloud movements. In this project, SUNY investigated 

custom forecast blends based on region- and site-specific characteristics. 

• Probabilistic Forecasting: CPR advanced existing methods for quantifying the variability 

of aggregate solar PV output across the state. While raw irradiance data is available 

from satellites on a 30-minute basis, fleet variability could now be determined at 5-

minute intervals. This new method is based upon the relationship between cloud speed, 

the distance between resources, and time intervals.  

• Distributed Energy Resource Production Database: Roof orientation and shading 

patterns at customer sites are extremely important for modeling and forecasting solar 

PV generation output. However, these are generally unknown at the individual system 

level. In this research project CPR perfected a new method for detecting design 

specifications and other modeling-related attributes using metered interval data like 

those in smart meter installations. These methods produced greater accuracy than 

specifications recorded by system installers. The method was put to use to fill in missing 

data from 504 solar PV systems across the state, and the resulting Distributed Energy 

Resource (DER) Production Database was made available to the public on the California 

Distributed Generation Statistics website.1 

• Short-Term Load Forecasting: This study revisited a previously developed model called 

the Reconstituted Load Model, to correct systematic day-ahead forecast errors that 

arose partially from misspecification of the impacts of BTM solar PV generation. To 

determine specific model refinements, two initiatives were undertaken: the first by 

testing the assumption that 1 kilowatt-hour (kWh) of BTM solar PV generation reduces 

measured load by 1 kWh under all calendar and weather conditions, the second by 

determining whether the measured-load response to weather variations has evolved 

along with the growing penetration of BTM solar PV installations. A series of statistical 

models was used to estimate the weather-response function for the years between 

2013 and 2015 and between 2016 and 2018. Several weather-response approaches 

were compared in this project. These approaches included adjustments to observed 

errors, where solar PV generation was added to net load to produce a reconstituted 

load, and another where the BTM solar PV forecast was fed directly into the net load 

network as an independent variable. Comparisons then determined whether overall 

weather response has evolved over the last five years. 

• Valuation of Forecast Error: There is no industry-recognized method for quantifying the 

cost of solar forecast error. Such a method would, however, provide the basis for both 

determining the benefits of improved forecasts and evaluating alternative forecasts. 

CPR developed three methods for this purpose. 

1. Resource adequacy method, which reduces forecast error by calculating the cost 

of gas turbine capacity.  

 
1 “CSI 15-Minute Interval Data,” https://www.californiadgstats.ca.gov/downloads/#_csi_15_id 
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2. Real-time market correction method, which calculates the cost of forecast error 

from historical pricing in California ISO markets.  

3. Perfect forecast method, which estimates the cost of eliminating all forecast 

uncertainty through energy storage. 

• DER Capacity Forecasting: This research project developed machine learning (a subset 

of artificial intelligence) methods that forecast future customer adoption of DER 

technologies, including solar PV. The model incorporates predictive variables such as 

payback period, proximity to other adopters, and customer market segment. These 

variables are indicators of adoption probability along with training on historical data 

sets, which further ensures proper model calibration.  
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CHAPTER 2: 
University of California, San Diego Forecast 
Improvements 

Introduction 
With annual mean coverage of 22 percent for the ocean surface and 12 percent for the land 

surface, stratocumulus (Sc) clouds are the most common clouds on Earth. These clouds 

strongly reflect incoming solar radiation, and due to their low cloud height, they emit outgoing 

longwave radiation similar to that on Earth’s surface. Sc clouds therefore have a strong net 

radiative-inhibiting effect on Earth’s overall radiative balance. Sc clouds form in a shallow 

planetary boundary layer capped by a strong temperature inversion. The inversion limits the 

vertical mixing of warm dry air above and cool moist air beneath, which together prevents 

cloud evaporation. Geographically, the highest Sc cloud land coverage is in the mid-latitude 

coastal region next to eastern boundary currents where the temperature inversion is part of 

the warm dry descending branch of the Hadley cell (an atmospheric convection where air rises 

at the equator and sinks at medium latitudes). 

Coastal California is an area of high Sc cloud coverage during the late spring and summer 

months when the semi-permanent North Pacific High is most intense. Sc clouds greatly 

influence the weather, water, and energy of Earth’s ecosystem and have, for many years, 

been a topic of extensive research. In recent years, an aggressive renewable resource energy 

mandate in the State of California has attracted more than a half million BTM solar PV 

installations. As solar PV becomes an increasingly important source of generation for the 

electric grid, it is critical that utilities and system operators maintain reliable service while 

maximizing solar PV generation integration. With a majority of BTM solar PV sited along the 

densely-populated California coast, an accurate forecast of Sc clouds during the spring and 

summer months is important because those clouds substantially reduce solar irradiance.  

Two types of methods are traditionally applied to solar irradiance forecasting, depending on 

forecasting horizons. Imagery-based cloud advection is used for short-term forecasting, such 

as ground-based sky-imager systems which determine intra-hour forecasting; while satellite 

cloud motion vectors (CMV) are used for forecasting up to five hours ahead. Traditional image-

based cloud advection assumes that frozen clouds move in the direction of the regional wind 

field. While this assumption is generally true for a few hours, it loses validity for longer-term 

forecasts. For longer-term solar forecasting, ranging from hours-ahead to days-ahead, physics-

based numerical weather prediction (NWP) is used. NWP uses current weather observations to 

solve a set of primitive equations that numerically integrate future weather. Forecast accuracy 

varies considerably depending upon time, location, and weather condition. Perez et al. (2010) 

found that hourly averaged satellite CMV forecast mean bias error (MBE) and root mean 

square error (RMSE), on an annual basis range from: 0.2 Watts per meter squared (W/m2) and 

104 W/m2 in an arid region like Desert Rock, Nevada; to 30 W/m2 and 159 W/m2 in a semi-arid 

elevated place like Boulder, Colorado. Mathiesen and Kleissl (2011) found that NWP models 

generally under-predict cloudy conditions, causing over-prediction of solar irradiance. Recent 

studies have combined satellite images and NWP to better improve short-term solar 
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forecasting. For example, in addition to using traditional CMV techniques, researchers Arbizu-

Barrena (Arbizu-Barrena et al., 2017) use a NWP to allow both advection and diffusion to the 

cloud index derived from Meteosat Second Generation.2 This technique outperforms traditional 

CMV in areas with low topographic complexity but is less accurate in areas where cloud 

patterns are influenced by the terrain, as they are in coastal California. 

NWP forecasts of Sc clouds in coastal California have been improved through better cloud 

initialization and by modifying inversion base heights in NWP. Imagery-based cloud advection 

forecasts have received less attention. Traditional satellite CMV forecasts do not accurately 

predict how Sc clouds move or dissipate over time, largely because Sc clouds do not typically 

follow widespread synoptic wind directions. An example of false Sc cloud advection by 

traditional satellite CMV forecast was recently reported in Miller et al., 2017. Sc clouds over 

land often form at night and reach maximum coverage before sunrise. During the day, Sc 

clouds dissipate because of solar heating at the surface (and the resulting surface sensible 

heat flux3), the cloud’s solar heating, and entrainment of drier warmer air from above. When 

dissipation of Sc clouds is not considered, frozen cloud advection in satellite CMV often under-

predicts solar irradiance. 

The objective of this work was to improve solar irradiance forecasting during Sc cloud days, 

primarily through quantifying the clouds’ dissipation times. A proposed Sc cloud-edge forecast 

(line forecast) using the Geostationary Operational Environmental Satellite (GOES) will improve 

solar irradiance forecasting by factoring in this cloud dissipation. The forecast tracks the inland 

edges of Sc clouds. The novelty of this method is that it tracks the evolution (dissipation) of 

stationary clouds, while standard cloud-motion approaches consider only the advection of 

fixed-shape clouds. This method combines physical insights into lower atmospheric cloud-top 

heights under a strong inversion with statistical methods. While applied here to Sc cloud 

forecasting in California, the research team expects cloud-edge tracking to be equally valid for 

other overcast stationary clouds such as coastal Sc cloud forecasts elsewhere, and inland fog 

forecasts. For example, fog and low stratus in Germany pose a challenge for transmission 

system operators. In addition to the low-stratus risk forecast system, designed for day-ahead 

warnings, line forecasts for short-term forecasting could also help inform decision makers.  

Approach 

Cloud Edge Line Forecast – Conceptual Motivation and Assumptions 

In coastal California, the Sc cloud inland boundary edge elevation is typically at its maximum 

during the early morning. Clouds thicken and spread at night from longwave cooling but begin 

to thin when longwave radiative cooling is balanced by solar heating shortly after sunrise. In 

Southern California, the terrain rises nearly monotonically, (meaning it does not decrease) and 

 
2 

http://www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/Meteosat/Meteosat_Second_Gener

ation3 

3 Sensible heat flux quantifies the rate of heat exchanged between the Earth's surface and the atmosphere and 

how that impacts the temperature that we sense (for example a hot surface tends to heat the air to increase air 

temperature (daytime), or hotter air tends to heat the surface to cool the air (nighttime). 

http://www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/Meteosat/Meteosat_Second_Generation3
http://www.esa.int/Applications/Observing_the_Earth/Meteorological_missions/Meteosat/Meteosat_Second_Generation3
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peaks at about 1.5 kilometers (km) elevation 40 to 80 km inland. The eastern boundary of Sc 

clouds usually follows isolines of land elevation. Sc clouds extend inland up to where the land 

elevation reaches the inversion base height, and the inversion base height equals the cloud 

top height. Sc cloud dissipation occurs after sunrise as the air mass heats and becomes cloud-

free with increasing elevation.  

The line forecast correlates between land elevation and the Sc cloud’s eastern boundary by 

extrapolating from the cloud edge elevation to predict the future cloud edge’s location.  

Cloud Dissipation Time 

The GOES visible channel captures a new image every 15 minutes. At each satellite image 

time stamp, a visible reflectance cloud test was performed, and the eastern boundary of Sc 

clouds and land elevation determined. The median land elevation of all the points over the 

boundary represents the elevation at each time step. The time step of the line forecast model 

is also every 15 minutes. An example of the Sc cloud inland boundary moving towards lower 

land elevation is shown in Figure 1 at a one-hour time step. 

Figure 1: Geostationary Operational Environmental Satellite Visible Images,  

June 14, 2016 

 

Sc cloud inland boundary highlighted in blue. Raw images are post-processed such that pixels within 

15.5 percent of their clear sky reflectance are plotted as dark (clear), while pixels with larger than 15.5 

percent difference are plotted in grey scales (cloudy). The position of the boundary advances towards the 

coast from 0700 to 1000 PST. 

Source: Clean Power Research 

Figure 2 shows the step-by-step approach used to issue a Sc cloud line forecast for this day. 

The accuracy of the line forecast is limited by the number of available images. While the 

forecast issued at 0800 Pacific Standard Time (PST) is accurate for this day, at 0700 PST the 

line forecast was unable to accurately predict the cloud dissipation; only two elevation points 

were available by 0700 PST, and the extrapolation of those median land elevations would have 

shown clouds persisting for the whole day. 
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Figure 2: Steps to Issue Line Forecast at 0800 Pacific Standard Time for Escondido 

 

Steps include: (a) Extract Sc cloud inland boundary in consecutive GOES images up to 0800 PST and 

record the median land elevation under the colored lines (between 32.5⁰N and 34.5⁰N). (b) Extrapolate the 

median land elevation in time using a best fit line through 0645 to 0800 PST. Cloud dissipation time is 

when the forecasted elevation intercepts with the station elevation (here approximately at 1030 PST). (c) 

Interpolate between current 𝒌𝒕 at 0800 PST and clear sky 𝒌𝒕 at cloud dissipation time using the 

exponential function. The green line in (c) is the line forecast issued at 0800 PST with a 15-minute time 

resolution. 

Source: Clean Power Research 

To predict when Sc clouds will dissipate at a given location, a linear regression was performed 

on a time series of points corresponding to the Sc cloud eastern boundary land elevation, and 

extrapolated in time to the elevation for the given location. 

Cloud Thickness Evolution 

To describe the cloud thickness evolution between forecast issue time and dissipation time, 

the clear-sky index (𝑘𝑡) is interpolated using an exponential function between forecast issue 

and dissipation times. When the sun angle is low (early morning), not much heat is received at 

the surface and the thickness of the clouds is approximately constant. As the day progresses, 

solar heating increases drastically, and the cloud thickness decreases more quickly. An 

exponential function was therefore chosen. 
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Results 

Validation Against Satellite Observations 

Southern California 

Time series of hourly-averaged global horizontal irradiance (GHI) are shown in Figure 3 for 

forecasts issued from 0700 to 1000 PST. While the line forecast was computed for 19 days in 

June, this figure is the average of 5-15 June 2016 because of the availability of satellite CMV 

forecasts. Forecasts issued after 1100 PST are not of interest since clouds have already 

dissipated on most days and the line forecast would coincide with a persistence forecast with a 

clear sky index of 1. SolarAnywhere GHI shows that Sc clouds tend to stay longer at the 

coastal site where land elevation is lower. This is consistent with the assumption that the Sc 

cloud’s eastern boundary moves toward the coast during the day as the average land elevation 

decreases.
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Figure 3: Hourly Average of Forecasted and Satellite Observed  
Global Horizontal Irradiance 

 

Hourly average of forecasted and satellite observed GHI for 5-15 June 2016 at Solana Beach, Rancho Santa Fe, Escondido, and Lake Wohlford. Each 

column represents a different forecast issue time. Note that each circle indicates the irradiance instantaneously at the hour, with the first circle 

corresponding to the real-time measured data, the second circle being the 1-hour ahead forecast, and the sixth circle being the 5-hours ahead forecast.  

Source: Clean Power Research 
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MBE, MAE (mean absolute error), and FS (forecast skill) are shown in Figure 4. The line 

forecast consistently performed better than satellite CMV and smart persistence for all forecast 

horizon (1 to 5 hours ahead) and issue times at Rancho Santa Fe, Escondido, and Lake 

Wohlford. For Solana Beach, the line forecast was superior to the persistence forecast but 

slightly worse than satellite CMV. The line forecast had the lowest forecast skill for forecasts 

issued at 0700 PST. This is likely because only three visible GOES images were available at the 

time of the forecast issuance. In addition, dissipation often happens several hours after 

sunrise. 

Figure 4: Error Metrics 

 

Averaged MBE, MAE, and FS for forecast horizons between 1 hour to 5 hours ahead for 5-15 June 2016 at 

Solana Beach, Rancho Santa Fe, Escondido, and Lake Wohlford. 

Source: Clean Power Research 

Geographical Error Distribution  

To exhaustively quantify the usefulness of the line forecast, hourly SolarAnywhere GHI data at 

a horizontal resolution of 2 km were analyzed. Figure 5 is a spatial map of the line FS 

averaged over all forecasts issued at 0800 PST in Southern California, averaged across all 

forecast horizons, and Figure 6 shows all forecasts issued at 0800 PST in Central and Northern 

California. Note that FS has a maximum of 1, and that a positive value of FS represents an 

improvement over persistence forecasts. A time series of the boundary median elevation is 

shown in Figure 5. 
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Figure 5: Forecast Skill, Southern California 

 

Left: Forecast skill of line forecasts issued at 8 am PST, averaged more than 1 hour to 5 hours ahead for 

19 days in June 2016 for Southern California. Right: Satellite derived 𝒌𝒕 averaged between 7 to 10 PST for 

the same 19 days. 

Source: Clean Power Research 
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Figure 6: Forecast Skill, Northern California 

 

Forecast skill of line forecasts issued at 8 PST, averaged over 1 hour to 5 hours ahead for 25 days in 

August 2016 for Central and Northern California. Right: Satellite derived 𝒌𝒕 averaged between 7 and 10 

PST for 25 days in August 2016. 

Source: Clean Power Research 

Conclusions and Recommendations 
For the two regions studied in this report, the line forecast shows higher forecast skills in 

Southern California than it does in Central and Northern California. The coastal topography 

likely plays an important role in this discrepancy. For example, the simple topographic 

elevation distribution in San Diego favors the line forecast since it has more consistent 

meteorological conditions across the forecast domain. The lack of forecast skill at the 

immediate coast and the sharp gradient of dissipation time within a few kilometers of the 

coast suggest that at the immediate coast local processes are important in determining when 

the clouds dissipate. While the satellite CMV forecast performed the best at the immediate 

coast because of the frequency of days when clouds persisted for the whole day, it was 

inaccurate on days when clouds did dissipate.  

Improved Sc cloud forecasting is important because Sc cloud presence critically influences a 

broad array of solar applications. The novel Sc cloud forecast approach presented here may 

contribute to, among other applications, better management of utility electric grids and better 

planning for aviation. Future research will focus on greater understanding of factors that 

control whether Sc clouds persist during the day at the immediate coast.  
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CHAPTER 3: 
State University of New York Forecast 
Improvements 

Introduction 

Pre-Sunrise Cloud Motion Vector 

CPR’s current CMV algorithm relies upon visible-band satellite images to both identify clouds 

and forecast their locations, based upon previous images. Unfortunately, there are no visible-

band satellite images available before sunrise so forecasting using CMV is impossible in the 

early hours of the day. For this approach, CPR turned to infrared channels to identify clouds 

and forecast their formations.  

Site- and Condition-Specific Tuning 

The existing operational SUNY forecast model (Version 4, or v4) is based upon an optimized 

mix of models including a satellite-based CMV and global/regional solar- and cloud-cover NWP 

models. 

Coupled with a PV simulation engine, v4 is readily used on any geographical scale, from single 

solar PV facilities to dispersed PV fleets, without requiring model training. It applies anywhere 

the underlying NWP and cloud motion models are available, basically anywhere on the planet. 

Current operational coverage is North America, with planned expansions in Asia and South 

America. 

Out-of-the-box application without localized training is a key attribute for distributed fleets 

where PV system specs exist but quality training data are seldom available. However, it is 

important to stress that this key attribute does not rule out in-situ training when possible. 

v4 was recently evaluated by the Electric Power Research Institute (EPRI) at test locations in 

North Carolina and California. It was the most accurate operational model among 13 US-based 

models from various providers. Several of the models were evaluated (for example, via deep 

machine learning) using measured solar PV plants data made available by EPRI.  

CPR presented and evaluated a new model, SolarAnywhere Version (v4x), that retains the 

same philosophy (that is, readily deployable without system data training) but pushes 

operational accuracy further with better exploitation of operational model input data and 

utilization of SolarAnywhere historical data. 

Approach 

Site-Independent Enhancement 

The existing operational v4 is derived from an optimized blend of a CMV model and four well-

known NWP models: European Centre Mesoscale weather forecasts (ECMWF), Global Forecast 

System (GFS), National Digital Forecast Database (NDFD), and High Resolution Rapid Refresh 

(HRRR). The blend is a function of time horizon and time of day. The new version adds 
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predicted solar conditions as an additional input. The new optimum blend is determined 

empirically from 10 months of measured data at 7 Surface Radiation Budget Network 

(SURFRAD) locations. These locations sample a diversity of climatic environments in the 

contiguous United States. 

Location-Specific Improvements 

Historical satellite-derived irradiances are effective ground measurements to benchmark 

forecast models, produce comparable error metrics across climatically distinct locations, and 

forecast time horizons (Figure 7). CPR took advantage of this data to regionalize inputs and 

remove condition-specific biases. Historical SolarAnywhere data are available for long-time 

spans over entire continents and can be applied to locally optimize forecasts blends and biases 

in any region or location. This assumes, of course, that historical SolarAnywhere data are 

accurate enough and fully representative of a considered region or location. A growing body of 

evidence indicates that this is the case.  

Figure 7: Root Mean Square Error Statistics 

 

Comparing satellite and ground benchmarked forecast root mean square error statistics across all time 

horizons at multiple locations. 

Source: Clean Power Research 

Probabilistic Functionality 

In addition to deterministic performance improvements, v4x also produces probabilistic 

information. The benefit of historical satellite irradiance data is the applicability for probabilistic 

forecasting without requiring ground-based measurements. Each deterministic forecast 

produces a probabilistic envelope from which operational probability quantiles can be readily 

deduced. The probabilistic envelopes are experience based, meaning that they are derived 

empirically from multi-site validations using either ground measurements or historical satellite 

data. CPR uses the same 10-month, seven-SURFRAD site sample as in the above blend to 

derive probabilistic envelopes.  

Experimental Data 

The data assembled for this study span from July 2015 to April 2016 and included:  



 

22 

• Hourly ground measurements for the SURFRAD sites of Bondville, Illinois; Boulder, 

Colorado; Desert Rock, Nevada; Fort Peck, Montana; Goodwin Creek, Minnesota; Penn 

State, Pennsylvania; and Sioux Falls, South Dakota.  

• Historical intermediate-resolution SolarAnywhere Version 3 (SAV3) satellite-derived 

irradiances at arbitrary North America locations (hourly, 10-kilometer resolution). 

• Satellite-derived CMV forecasts at arbitrary North America locations, with 1-5 hour time 

horizons. 

• ECMWF, GFS, NDFD and HRRR NWP forecasts at arbitrary North America locations, with 

1-48 hour time horizons except for HRRR (1-16 hours only). 

Results 
In Figure 8, CPR reports relative root mean square error (RMSE) for all models as a function of 

time horizons (1-48 hours ahead) across all measurement locations. The models include 

previous, current, and new versions of the SUNY/SolarAnywhere models as well as their 

underlying model components and smart persistence. The historical satellite model is also 

plotted as a visual baseline reference. Smart persistence follows the definition of the 

International Energy Agency (IEA) Task 36,4 that is, accounting for both solar geometry 

detrending and increasing the integration time of the reference measurement commensurate 

with the forecast horizon. This definition is considerably more stringent (hence model taxing) 

than the commonly used, and often mislabeled, smart persistence that accounts only for solar 

geometry.  

Figure 8: Relative Forecast Error 

 

Relative forecast RMSE as a function of time horizon for the ensemble of seven SURFRAD locations. 

Source: Clean Power Research 

 
4 https://iea-pvps.org/wp-

content/uploads/2013/10/Photovoltaic_and_Solar_Forecasting_State_of_the_Art_REPORT_PVPS__T14_01_2013.

pdf 

https://iea-pvps.org/wp-content/uploads/2013/10/Photovoltaic_and_Solar_Forecasting_State_of_the_Art_REPORT_PVPS__T14_01_2013.pdf
https://iea-pvps.org/wp-content/uploads/2013/10/Photovoltaic_and_Solar_Forecasting_State_of_the_Art_REPORT_PVPS__T14_01_2013.pdf
https://iea-pvps.org/wp-content/uploads/2013/10/Photovoltaic_and_Solar_Forecasting_State_of_the_Art_REPORT_PVPS__T14_01_2013.pdf
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Existing SUNY/SolarAnywhere forecast model versions include the original v2.4 and the 

currently operational v4 model. The new versions include a site-independent model (v4x), a 

location-specific model locally trained with ground measurements (v4x site-specific), and a 

location-specific model trained with satellite-derived irradiances (v4x site-specific-satellite). In 

Figure 9, CPR compares the skill of all versions at the operationally important 3-hour and 24-

hour forecast time horizons. Skill is calculated in reference to IEA smart persistence. 

Site-Independent Versus Location-Specific v4x Forecasts 

The new site-independent model (v4x) shows systematic performance improvement at all 

locations and time horizons compared with the current operational model (v4). About half of 

the gain in performance originates from a better model blending fit with the ensemble of 

ground locations (v4 had been fitted to a three-location subset). The other half of performance 

gain derives from adding predicted insolation conditions as an input to optimum model 

blending. This improved site-independent model fully retains the out-of-the-box applicability of 

the v4 version tested by EPRI. 

Figure 9: Forecast Skill 

 

Forecast skill benchmarked to IEA smart persistence 

Source: Clean Power Research 

The location-specific version delivered further performance improvements. Forecast skill 

exceeded 45 percent across all time horizons. For this site-specific model, much of the gain in 

performance is attributable to its parameterization, which accounts for predicted insolation 

conditions. In Figure 10, CPR compares this performance improvement relative to v4: the light 

blue bars correspond to the site-independent model and the darker blue bars correspond to 

site-fitted models. The bars on the left represent model versions identical to v4 but fitted to all 

individual SURFRAD sites. The bars at right represent v4x models that optimize underlying 

model blends as a function of predicted insolation conditions. While insolation parameterization 
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increases performance steadily for the site-independent model, its impact is considerably 

stronger for the site-specific model where the model blend reflects the conditions-dependent 

strengths and weaknesses of its underlying CMV and NWP components for specific locations. 

Figure 10: Impact of Isolation Condition 

 

Comparing the impact of insolation condition parameterization for site-independent and location-specific 

models. 

Source: Clean Power Research 

Operationally, the location-dependent forecast model performance represents a model that 

would be optimized locally from, for example, measured irradiances or PV plant output data. 

This localized performance improvement could be even further improved with real-time 

feedback techniques─for example, using machine learning or other techniques not addressed 

in this report.  

Satellite-Derived Site-Specific Model 

The key question here is how much of the site-specific performance enhancement discussed 

here can be captured without access to local measurements. SolarAnywhere historical data, 

however, is a validated proxy for local measurements.  

CPR finds that using SolarAnywhere historical data to locally optimize model configuration 

captures some, but not all, of localized performance improvement potential. As shown in 

Figure 10, while the skill of the SolarAnywhere-trained site-specific model is markedly higher 

than both the existing v4 model and the new site-independent v4x model, it does not reach 

the performance level of the ground-derived site-specific model — particularly for shorter time 

horizons. This is likely because the CMV model is a direct by-product of the historical satellite 

model, which could bias model blending in favor of CMV for short durations. Nevertheless, 

systematic site-specific improvements were notable when achieved from the use of 

SolarAnywhere historical data (available locally throughout entire continents).  
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Application to regional forecast model optimization: CPR provided an example of site and 

regional model optimization for the State of California. CPR undertook this regional 

optimization work to develop operational forecasts for the climatic regions in California, shown 

in Figure 11. 

Figure 11: California Energy Commission Climate Zones of California 

 

Source: Clean Power Research 

This investigation augments the observations that (1) historical satellite irradiances are as 

effective as measurements for model validation, and (2) that satellite-based forecast training is 

an effective proxy for ground-based training.  

CPR presents preliminary results for four climatically distinct California regions in this report.  

• Region 1 - Northern Coastal Strip 

• Region 9 - Los Angeles Hills 

• Region 11 - Northern Sacramento Valley 

• Region 15 - Imperial Valley Desert 

Figure 12 contrasts the (relative RMSE-benchmarked) performance of the current and new 

model versions across a sample of locations in these four regions. Relative to the current v4 

version, the locally optimized model exhibits a performance improvement comparable with the 

site-specific results presented here. Models fitted from other California regions retain some of 

the performance gain, though when fitting based on other regions, there is little to no 

improvement and even in some cases some performance degradation. 
  



 

26 

Figure 12: Forecast Errors 

 

Resulting percent RMSEs for existing and locally fitted versions of the model across all forecast horizons 

(1-48 hours) for four California climatic regions 

Source: Clean Power Research 

Conclusions and Recommendations 
CPR presented three versions of the operational SolarAnywhere forecast engine: a site-

independent model readily deployable anywhere in North America, a locally trained model 

from historical ground measurements, and a locally trained model from historical satellite-

derived measurements. All three versions showed measurable performance improvements 

over the current version.  

Finally, CPR showed that model training using SolarAnywhere irradiances could capture 

substantial performance improvements with ground measurement training. 

CPR recommends that future forecasts implement these model improvements. Implementation 

could include a locally trained model from either historical or ongoing ground measurements or 

from a locally trained model from satellite-derived measurements. Any of these options will 

both improve forecasts and reduce uncertainty. 
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CHAPTER 4: 
Probabilistic Forecasting 

Introduction 
Electric grid operators increasingly rely upon solar PV generation forecasts when dispatching 

available energy resources. Solar PV forecasts include both large, utility-scale solar plants, and 

thousands of small BTM resources. In either case, the variability of solar PV energy output 

creates forecast uncertainties because of transient cloud cover. This is similar in some ways to 

the uncertainty of forecasting electric loads in general: the forecast can be considered a mean 

value, and its variability a measure of upper and lower bands of uncertainty. 

Given these constraints for solar forecasters, this chapter describes a new way to quantify this 

variability. This method could, for example, deliver grid operators (such as the California ISO) 

a set of statistics to improve their operational decisions: the forecasted power output (mean 

output), the variance of power output (from which upper and lower bounds are derived), and 

the variance of power output (ramp rate). The ramp rate could apply to fast-acting ramping 

units. 

Fleet variability is the variability from the aggregation of many systems. Fleet variability is low 

when systems operate independently, as when they are geographically apart with no output 

correlation, and operate as independent, uncorrelated systems. Fleet variability is more 

pronounced when systems are in close proximity, such as on the same distribution feeder. 

This characteristic suggests that load-serving entities could also use these probabilistic 

methods which could, for example, be used to better anticipate distribution-line fluctuations 

with increasingly high penetration of rooftop and community solar PV. 

Approach 
CPR provides SolarAnywhere® FleetView® to simulate and forecast average production for 

solar PV fleets. These simulations are typically based on satellite irradiance data that has a 1 

km2 spatial resolution and a 30-minute time resolution. FleetView estimates fleet output by 

simulating production for each distributed solar PV resource and aggregating its output. This 

means that PV systems within the same satellite data pixel (that is, the same 1 km2 data point 

from the satellite image) use the same irradiance data to simulate energy production. 

An important implication of FleetView’s current design is that two identical PV systems (same 

rating, tilt, azimuth, shading, and so on) will have identical production profiles. This may be 

true when calculating the 30-minute average production for small, 1 km2 pixels because short-

term (such as 1-minute) PV power fluctuations are likely to average out over 30 minutes.  

Simulating PV production using irradiance data that either has a much larger geographic 

resolution or a much smaller time resolution than 30 minutes may result in inaccuracies when 

performed for multiple resources sharing the same irradiance input data. Furthermore, 

producing variability statistics and probabilistic results may also be inaccurate since they 

require shorter-term data for variability calculations. 
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Inaccuracies are especially likely when simulating 1-minute solar PV production. FleetView 

produced identical 1-minute PV production profiles for two identical PV systems using the 

same irradiance data illustrated in Figure 13. Systems separated at a distance of less than 1 

km, however, are unlikely to have the same 1-minute production under partly cloudy 

conditions, as illustrated in Figure 14. This type of data is used to calculate variability 

information. 

Figure 13: Simulated Fleet Power from Non-Time Shifted Irradiance 

 

Hypothetical fleet power production of four systems, using identical irradiance data 

Source: Clean Power Research 

Figure 14: Simulated Fleet Power from Time Shifted Irradiance 

 

Hypothetical fleet power production of four systems, using individual irradiance data 

Source: Clean Power Research 
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This issue is important because CPR produces a 1 km2 spatial, 1-minute time resolution 

irradiance product. FleetView can use this product to simulate 1-minute PV energy production 

and from that simulation calculate the 1-minute variance of output over a 30-minute interval. 

There are, however, probable inaccuracies when simulating production using this data set. 

FleetView is likely to overestimate short-term variability in this instance for the reasons just 

described.  

CPR has previously developed and patented a method designed to address this issue. This 

report describes a software implementation that employs the method and describes the 

processing steps involved when calculating probabilistic fleet forecast output. It also reviews 

the evaluation methods and presents their results. 

While the method may be applied using spatial and temporal resolutions and averaging 

intervals other than those presented here, this project illustrates a method using 

SolarAnywhere FleetView capabilities. Spatial resolution is therefore approximately 1 km2 (the 

resolution of the satellite imagery available to SolarAnywhere), and the temporal resolution is 

1 minute (the temporal data resolution produced using CPR’s cloud motion vector method). 

The averaging interval — the interval over which average power output and variance are 

calculated — of 15 minutes was selected for demonstration purposes. In other words, the 

power output “variance” represents the variance of 15 sampled data points. 

Results 

Dataset 

CPR collected 10-second resolution irradiance data in small regions using 25 solar data loggers 

in November 2010 near Napa, California. These data loggers consisted of a small PV module 

attached to a device that measured and recorded voltage across a resistor. The voltage 

measurements were stored on USB drives and later converted to GHI.  

CPR collected two sets of data. The first set placed the 25 data loggers within a 0.25 km2 area. 

The second dispersed the 25 data loggers across a 25 km2 area. The scaled and filtered data 

for each of the two data sets appears in Figure 15 and Figure 16. Both show 1-minute data for 

the 0.25 km2 region and the 25 km2 region after filtering the sites and scaling results using 

Clear Sky GHI from SolarAnywhere. 
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Figure 15: Time Series for Small Network 

 

One-minute time series data for each site in 0.25 km2 network and Clear Sky GHI (11/7/2010) 

Source: Clean Power Research 

Figure 16: Time Series for Large Network 

 

One-minute time series data for each site in 25 km2 network and Clear Sky GHI (11/20/2010)  

Source: Clean Power Research 

Figure 17 shows the key inputs required to calculate fleet power variability for the two 

networks. The left column corresponds to the 0.25 km2 network and the right column 

corresponds to the 25 km2 network. The first row is the Clear Sky Power, the second row the 

Kt Variance,5 and the third row is the Correlation Matrix. 

  

 
5 Kt is the ratio of irradiance to clear-sky irradiance, that is, the irradiance that would be observed if clouds were 

not present. The values ranges from zero to one.  
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Figure 17: Required Inputs 

 

Inputs required to calculate power variability 

Source: Clean Power Research 

Evaluation 

Evaluation results for each of the two datasets appear here. The days were selected based on 

high variability and minimal bad or otherwise invalid data. Three charts compare predicted 

output to measured output for each of the two datasets: Fleet Power, Standard Deviation of 

Fleet Power, and Standard Deviation of the Change in Fleet Power. 

Figure 18, Figure 19 and Figure 20 correspond to results for the 0.25 km2 region on November 

7, 2010. Figure 21, Figure 22, and Figure 23 correspond to results for the 25 km2 region on 

November 20, 2010. 

Fleet Power 

Figure 18 and Figure 21 compare measured fleet power with predicted mean fleet power. The 

figures include predicted upper and lower bounds (POE[5] and POE[95]),6 and results indicate 

 
6 POE[N] is the probability of exceedance of the specified value N. 
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that measured fleet power almost always falls within the predicted upper and lower bounds. 

This is a good indicator that the probabilistic model is correctly predicting variability. 

Standard Deviation of Fleet Power  

Figure 19 and Figure 22 present standard deviation of fleet power throughout the day, broken 

into 15-minute time intervals. Results indicate that predicted standard deviation tracks very 

closely with measured standard deviation. This is another good indicator that the probabilistic 

model is correctly predicting variability. However, there are some periods where the predicted 

variability does not track as closely with measured variability. This is discussed in the 

Conclusions section of this chapter. 

Standard Deviation of Change in Fleet Power  

Figure 20 and Figure 23 present standard deviation of minute-to-minute changes in fleet 

power throughout the day, broken into 15-minute time intervals. Results indicate that 

predicted standard deviation tracks closely with measured standard deviation. 

Figure 18: Small Network – Production 

 

Production and variability statistics for 0.25 km2 network of sites on variable day (11/7/2010) 

Source: Clean Power Research 

Figure 19: Small Network – Standard Deviation of Production 

 

Standard deviation of power for 0.25 km2 network of sites on variable day (11/7/2010) 

Source: Clean Power Research 

  



 

33 

Figure 20: Small Network – Standard Deviation of Change in Power 

 

Standard deviation of change in power for 0.25 km2 network of sites on variable day (11/7/2010) 

Source: Clean Power Research 

Figure 21: Large Network – Production 

 

Production and variability statistics for 25 km2 network of sites on variable day (11/20/2010) 

Source: Clean Power Research 

Figure 22: Large Network – Standard Deviation of Production 

 

Standard deviation of power for 25 km2 network of sites on variable day (11/20/2010) 

Source: Clean Power Research 
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Figure 23: Large Network – Standard Deviation of Change in Power 

 

Standard deviation of change in power for 25 km2 network of sites on variable day (11/20/2010) 

Source: Clean Power Research 

Conclusions and Recommendations 
The results of these evaluation tests are very promising. The probabilistic model accurately 

predicted fleet power variability in small geographic regions even on days where fast-moving 

clouds created high variability. 

There were, however, some periods where predicted results did not match measured results 

as closely as others. In particular, those periods occurred during the middle of the day for the 

25 km2 site network. It is difficult to determine the cause of this discrepancy due to the small 

data sample size. The most likely cause was the quality of cloud speed data available in 

November 2010. This is something that could be narrowed down and potentially improved 

with further data evaluation. It is also possible that the probabilistic model is over-predicting 

variability, especially when dealing with sites that are further apart, as in the 25 km2 network 

of sites.  

Next steps include: 

• Software Enhancements. The most important task accomplished in this project was to 

convert equations in a patent-to-prototype software code. More work could be done 

improve the software implementation. The following tasks include potential work that 

could improve software performance. 

• Improve SolarAnywhere Response Time. A few changes could be made to 

SolarAnywhere that would make response times faster, specifically for the types of data 

requests required for the probabilistic fleet forecasting model. In the general-use case 

for this model, a fleet would consist of many PV systems located closely together. 

SolarAnywhere irradiance data is represented at a 1 km2 spatial resolution, which 

means the research team could potentially make optimizations by retrieving irradiance 

data just once per 1 km2 pixel (rather than once per PV system). This would improve 

the general performance of the probabilistic model by speeding up the time it takes to 

retrieve irradiance data. 

• Improve Overall Efficiency. In its current state, the software is not as efficient as it 

could be when performing some processing steps. For example, some of the fleet 

configuration information is calculated from scratch every time the program runs. 

Software could be designed to just look up the necessary information instead of 

devoting resources to calculate it. 



 

35 

• Use a Machine Learning Approach to Obtain Irradiance Statistics. Currently, the 

probabilistic forecasting algorithm uses input variability statistics based on 1-minute 

SolarAnywhere irradiance data. It is feasible, however, to apply a machine learning 

approach to generate 1-minute variability statistics based on 30-minute irradiance data 

and other variables (cloud speed, temperature, time of year, and so on). This way, the 

algorithm would not be limited by the restriction to generate 1-minute irradiance data. 

• Integrate the Probabilistic Model into SolarAnywhere. Make the option to generate 

probabilistic fleet output available through the SolarAnywhere application program 

interface. This way, running the probabilistic model for fleet output will be both more 

convenient for users and standardized with other SolarAnywhere application program 

interface methods. 

• Further Evaluation. A clear benefit of the probabilistic model is predicting power 

variability for a fleet with solar PV systems that are close together on high-variability 

days. An ideal evaluation dataset would include 50-100 residential PV systems located 

on a distribution feeder within 1 mile of each other. 

• Examine Alternative Data Sources. As stated previously, the Napa, California, dataset 

was collected in 2010. The present evaluation therefore relied upon cloud-speed data 

generated from a legacy SolarAnywhere cloud motion code from 2010. A next step 

would be to generate cloud-speed data using the up-to-date SolarAnywhere cloud 

motion code for this time range. Cloud speed plays an important role in the probabilistic 

fleet output so it would be interesting to see how the results may or may not change 

using more accurate cloud-speed data. 
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CHAPTER 5: 
Distributed Energy Resource Production Database 

Introduction 
CPR performed a broad study of solar PV forecasting methods while both developing a library 

of DER production data and refining DER growth projections in distributed resource plans 

(DRPs) developed in 2015 by California’s three investor-owned utilities (IOUs).  

The DER production database covers the target period from January 1, 2011, through 

December 31, 2016, and contains production data at 15-minute intervals for each zip code. 

The library is built on measured historical production data from 414 of 504 systems monitored 

under the California Solar Initiative (CSI) program. The remaining 90 of 504 systems were 

discarded because of technical data issues. CPR collected, processed, and analyzed the 

measured data, analyzed the error in modeled versus measured data, improved the measured 

data by combining it with modeled production data, then aggregated the data by zip code.  

CPR also used the solar PV net energy metering Currently Interconnected Data Set (CIDS) to 

evaluate historic DER capacity growth and compared it with capacity growth estimations in the 

DRP prepared by each of California’s three IOUs: PG&E, SCE, and SDG&E.  

Approach 

Overview 

To create the database for DER production, CPR first collected, analyzed, and processed 

existing PV production data from CSI. As expected from a collection of this type, CPR found 

large amounts of missing or erroneous data. Therefore, to provide a complete data set for the 

target period CPR had to fill in the missing data with simulated (modeled) data. CPR 

performed simulations using both its SolarAnywhere® database of historical irradiance and 

temperatures from the locations and time periods considered.  

CPR obtained design specifications for each system (system attributes required for modeling 

output) from two alternate sources: specifications reported by installers through the CSI 

program, and specifications inferred from periods of measured data. This inference of system 

specifications was one of the major efforts of this task. 

CPR used these specifications (from either source, depending upon relative quality) to model 

PV production, then compared the accuracy of that modeled production data with the 

measured data. Finally, CPR combined the measured and simulated production data and 

aggregated it by zip code to create the final database. 

Data Collection, Preprocessing, and Analysis 

In 2010, CSI authorized its program contractor, Itron, Inc., to install production meters on 504 

CSI systems. CPR acquired 15-minute-interval data for these systems from the California 

Distributed Generation Statistics web site. This measured PV production data formed the 

foundation of the DER production database.  
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Inferring Specifications From Measured Production Data 

CPR developed a method to infer system specifications using measured production data prior 

to this project. This method determines the specifications which, when used to simulate 

production, resulted in lower hourly error levels when compared with the reference measured 

time series. The method was developed using a spreadsheet format for a single system. For 

this current research project, a one-by-one use of the spreadsheet was impractical for 504 

systems, so CPR encoded the method in custom software for batch processing. 

CPR’s method employs the golden-section search (a technique for finding the minimum or 

maximum of a function inside a specified interval) to identify, one PV system at a time, values 

that minimize error. The method works through the attributes in a specific order by initially 

selecting a coarse approximation before refining some of its values in a second iteration. For 

example, in the initial modeling, CPR used a “constant horizon” (solar obstructions at the same 

elevation angle for every azimuth) to approximate both diffuse and direct losses from 

obstructions. Elevation angles for azimuth-specific obstructions were not selected until the 

values for other attributes had already been determined.  

This method also stores results of previous simulations to avoid modeling the same 

specifications multiple times. Using this approach, CPR modeled a maximum of 431 different 

candidate specifications for each system for the period covered by the measured data and 

inferred specifications for 414 of the 504 systems. Using a combination of automated filters 

and manual inspection, CPR eliminated 90 systems because of bad or missing data. 

Results 

Modeling Photovoltaic Production 

Two alternative sets of system specifications were available to model missing periods: 

specifications reported by installers, and specifications inferred using the method just 

described. CPR modeled every system over the target period of January 1, 2011 through 

December 31, 2016, using both sets of specifications.  

SolarAnywhere simulations use a power model that calculates both direct and diffuse 

irradiance as it strikes the tilted plane of a PV system’s modules, taking into account any solar 

obstructions, module efficiency changes from temperature and other DC losses, and the 

inverter’s maximum power rating and varying efficiency at different power levels. The model 

can simulate both fixed, single-axis tracking, and dual-axis tracking systems, as well as 

systems with multiple arrays with different orientations and DC-to-AC ratios. However, the 

code that inferred specifications from measured data did not attempt to determine whether a 

system had multiple arrays with different orientations. Therefore, the inferred specifications 

were always single-array systems, with output that best approximated the measured data. 

Comparing Results From Inferred and Reported System Specifications 

After filtering the measured data, CPR calculated the hourly relative mean absolute error 

(rMAE) of the measured production data compared with data modeled using reported 

specifications and data modeled using inferred specifications. The rMAE for data from inferred 

specifications ranged from 6.3% to 50.8% with a median rMAE of 10.1%, while the rMAE for 

data from reported specifications ranged from 7.2% to 127.6% with a median rMAE of 16.7%.  
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For 96 percent of the time where the research team had both inferred and reported 

specifications, the modeled energy production data using inferred specifications resulted in a 

lower error rate (when compared with measured data) than the production data modeled 

using reported specs. Only 17 systems had lower error using reported instead of inferred 

specifications.  

Figure 24 compares the distribution of error (as measured using rMAE) for production data 

modeled using both inferred and reported specifications. 

Figure 24: Inferred Specification Error  

 

Source: Clean Power Research 

Overall, inferred specifications yielded excellent results. Although production data using 

reported specs resulted in higher error most of the time, the results were still acceptable. 

There were, however, systems for which simulated data did not provide a close match with 

measured data. Figure 25 and Figure 27 show results for the systems with the lowest error 

using inferred and reported specs, respectively. Figure 26 and Figure 28 show results from 

systems using inferred and reported specs, respectively, which resulted in typical (median) 

error. In some cases, errors can reflect problems with either the measured data or the physical 

system itself. Degradation and soiling on some systems caused an increase in error, and 

although CPR worked to identify system degradation rates and soiling patterns, more research 

is still required before that work can lead to error reduction. 
  



 

39 

Figure 25: Inferred Specifications With Lowest Error 

 

Inferred specs with lowest error (PGE-CSI-24017 at 6.3% hourly rMAE) 

Source: Clean Power Research 

Figure 26: Inferred Specifications With Median Error 

 

Inferred specs with median error (SCE-CSI-13299 at 10.1% hourly rMAE) 

Source: Clean Power Research 

Figure 27: Reported Specifications With Lowest Error 

 

Reported specs with lowest error (SCE-CSI-09966 at 7.2% hourly rMAE) 

Source: Clean Power Research 
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Figure 28: Reported Specifications With Median Error 

 

Reported specs with median error (SCE-CSI-06793 at 16.7% hourly rMAE) 

Source: Clean Power Research 

Conclusions and Recommendations 
Although the results from the inferred system specifications can be quite good, particularly 

with good sets of measured data for inference, there remain several questions that deserve 

further exploration. For example, how much of the error in the data from the reported 

specifications was due to either the assumed 90 percent general derate or the lack of good 

data on solar obstructions? Would a blended approach, where inferred solar obstructions are 

used in conjunction with reported orientation, yield a much lower error? What is the effect on 

error of using a constant horizon with reported specifications instead of azimuth-specific solar 

obstructions? What techniques could be implemented to more effectively identify invalid 

measured data? 

The DER production database, in its current form, is limited to only a single technology, solar 

PV, and based on only a limited sample of systems (typically one or two) within a given zip 

code. Because not all zip codes were included, analysis use cases were limited to those zip 

codes where measured data were available. 

This begs the question: For the future, how can the research team design a DER production 

database that would broadly represent DER production profiles with other DER technologies?  

To design such a database, it is useful to first consider how the database would be used. CPR 

proposes the following use cases for a future database: 

• Developing California energy goals. Developing statewide energy goals requires an 

understanding of grid impacts. For example, in setting targets for electric vehicle 

adoption or 100-percent renewable sourcing, the database could be used to predict 

what the hourly load profile would look like. 

• Examining differential-growth rate scenarios. Suppose load grows at a 1-percent 

constant rate, PV capacity grows using the logistic functions just described, and EV 

grows at 5 percent. The database should be able to support a study using these input 

assumptions. 

• Defining technology requirements to meet energy objectives. Suppose that a study 

sought to determine how much energy storage capacity, measured in megawatts (MW) 

and megawatt-hours (MWh), would be needed by 2030 to maintain peak load at a 
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constant level? This question could be answered with appropriately scaled hourly 

production profiles. 

• Designing incentive programs cost-effectively. Incentives could be used to target 

regions, step amounts, and rollout timing based on future growth scenarios; this could 

be supported by the database. 

• Impacts of new technologies. Suppose new technologies, whether supply-side or 

demand-side, came into the mix. The database should be flexible enough to evaluate 

their impact on the electric grid. 

These use cases illustrate the value of such a database, as long as it is designed to support 

these types of analyses. This will require separation of production by technology; for example, 

the PV production time series should be independently scalable from the energy storage 

charge/discharge time series. There should also be customer load data to determine dispatch 

analysis and test energy and peak demand responses. For simplicity, the database should not 

cover multiple years, but rather cover a single, typical year so that individual time series could 

be scaled to represent future-year impacts. Finally, there should be clear mapping between 

the database and the source data used to develop it, namely the CIDS database used to chart 

installations at the customer level and for metered data (similar to the Itron data used for this 

research). 

The resulting dataset could be scaled according to analysis needs. If in year t, 500 electric 

vehicles (EVs) are assumed for a particular zone, then the profile for that zone’s EV time series 

is multiplied by 500. Then, if in year t+1, 550 Evs are assumed, the same base curve is used, 

but the scaling factor of 550 would be used. Scaling factors would be customizable by 

technology, zone, and year, depending on the nature of the study. 
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CHAPTER 6: 
Short-Term Load Forecasts 

Introduction 
Solar PV generation adds greater frequency of load variation than traditional, more slow-

moving statistical load forecasts are able to capture. As a result, explanatory variables for 

estimates of solar PV generation and cloud cover movements are required to compensate for 

more frequent load variations. In an earlier study conducted for the California Energy 

Commission (CEC), Improving Solar and Load Forecasts by Reducing Operational Uncertainty 
(Publication Number CEC-500-2019-023), three alternative modeling approaches were 

evaluated for incorporating BTM solar PV generation into the California ISO load forecast, as 

described.  

• Error Correction. The error correction approach relies on after-the-fact adjustments of 

load forecasts to account for forecasted BTM solar PV. On sunny days, the load forecast 

is adjusted downward, and on cloudy days the load forecast is adjusted upward. The 

key advantage of the error correction approach is that existing load forecast models can 

continue to be used unchanged. All that requires changing is a means of forecasting 

solar PV generation.  

• Reconstituted Loads. Under the reconstituted loads approach, the historical time series 

of measured load is reconstituted by adding back in estimates of BTM solar PV 

generation. The load forecast model is then re-estimated against reconstituted loads. 

The subsequent reconstituted load forecasts are then adjusted after the fact by 

subtracting forecasts of BTM solar PV generation to accurately forecast measured loads. 

The advantage of this approach is that any inherent bias imposed on the estimated 

coefficients of a model of measured loads is controlled by estimating the model 

coefficients against a time series of demand for power, however it is sourced. The 

disadvantage is that a historical time series of BTM solar PV generation must be 

developed and maintained to estimate load forecast model coefficients. This approach 

also assumes that the historical BTM solar PV generation time series is accurate. This 

may not necessarily be true, in which case this approach actually places too much 

weight on BTM solar PV generation values. 

• Direct Model. Under this approach, the weight placed on BTM solar PV generation data 

is estimated directly by including it as an explanatory variable in load forecast models. 

Weight is the estimated coefficient on the BTM solar PV generation variable. In 

principle, by including BTM solar PV generation as an explanatory variable, the 

coefficients on the remaining explanatory variables should not be biased. This approach 

also provides a direct forecast of measured loads that accounts for BTM solar PV 

generation, thus avoiding any after-the-fact processing of the load forecast. Like the 

reconstituted load approach, this approach requires developing and maintaining an 

historical time series of solar PV generation.  

Based on the findings from the CEC study, the California ISO began running the reconstituted 

load approach alongside other production models to further improve day-ahead load 
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forecasting. After incorporating this approach for over a year, the California ISO concluded 

that it requires further refinement. Specifically, the measured load forecasts derived from the 

reconstituted load approach overstated the impact of solar PV generation both during the 

morning hours and when high temperatures created greater load demand from utility 

customer air conditioning.  

This observation emphasizes a key assumption underlying the reconstituted load approach: 

that 1 kWh of BTM solar PV generation reduces measured load by 1 kWh. In effect, the 

estimated coefficient on the BTM solar PV generation variable equals -1.0. There are two 

perspectives to the question of whether this equation is true. From the BTM perspective, it is 

known exactly how much electricity is consumed and how much electricity was generated by 

solar PV panels. From the in-front-of-the-meter perspective, it is unclear whether an increase 

in the measured load is driven by increased consumption, by a reduction in solar PV output, or 

some combination of each. So measured load forecasting is essentially using a single equation 

to solve two unknowns.  

The reconstituted load approach reduces the problem to one equation and one unknown 

(consumption) by assuming that the research team knew (or had a very good estimate) of the 

solar PV generation, and that given this estimate its impact on measured load is -1.0. By 

making this assumption, the problem of forecasting measured load is reduced to building a 

strong predictor of consumption. The California ISO observation that the reconstituted load 

approach appears to overstate the impact of BTM solar PV generation suggests that: some 

combination of: BTM solar PV generation estimates are subject to error; from the in-front-of-

the-meter perspective, the impact of BTM solar PV generation is not equal to -1.0; or the 

consumption estimates are subject to error. This study was designed to control only the first 

two of those factors.  

Approach 
Building on the previous section that suggests that the reconstituted load approach is too 

restrictive, the research team developed a series of alternative model specifications that allow 

the impact of BTM solar PV generation to be estimated rather than imposed. The statistically 

adjusted BTM solar PV generation estimates are then applied to a revised reconstituted load 

approach to assess the forecast performance.  

Four different sets of model specifications were tested. Two of the four model specifications 

allow the non-weather-sensitive loads to vary by day (weekday or weekend) and date range 

(2013 to 2015 and 2016 to 2018). The other two model specifications allow the non-weather-

sensitive loads to vary by day type, date range, and season. All four specifications allow the 

weather-sensitive loads to vary by day type and date range. The regression model 

specifications use temperature curves to capture non-linear weather responses between 

measured loads and temperatures. The neural network model specifications use two sigmoid 

functions to model the non-linear weather response. The non-solar PV generation variables 

common to these four model specifications are described here.  

Non-Seasonal Regression Model Specifications.  

Non-seasonal regression model specifications have the following common set of explanatory 

variables: 
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• A linear time trend that captures long-run trends in load growth (decay). 

• Day type and date range interaction terms that capture potential changes in average 

weekday and weekend loads in 2013-2015 and 2016-2018.  

• Extremely cold and cold heating degree day spline variables with day type and date 

range interactions allow the estimated space-heating response to vary between 

weekdays and weekends and evolve before and after January 1, 2016. 

• Extremely hot and hot cooling degree day spline variables with day type and date range 

allow the estimated space cooling response to vary between weekdays and weekends 

and evolve before and after January 1, 2016. 

Seasonal Regression Model Specifications.  

Seasonal regression model specifications have a common set of explanatory variables, 

including:  

• A linear time trend that captures long-run trends in load growth (decay). 

• Season, day type and date range interaction terms that capture potential changes in 

average weekday and weekend loads by season and by pre-2016 and post-2015. 

• Extremely cold and cold heating degree day spline variables with day type and date 

range terms that allow the estimated space heating response to vary between 

weekdays and weekends and evolve before and after January 1, 2016. 

• Extremely hot and hot cooling degree day spline variables with day type and date range 

interaction that allow the estimated space cooling response to vary between weekdays 

and weekends and evolve before and after January 1, 2016. 

Non-Seasonal Neural Network Model Specifications.  

The non-seasonal neural network model specifications have the following common set of 

explanatory variables: 

• One node with a linear activation function that includes: 

o A linear time trend that captures long-run trends in load growth (decay). 

o Day type and date range interaction terms that capture potential changes in 

average weekday and weekend loads both pre-2016 and post-2015. 

• Two nodes with a sigmoid function that includes average temperature with day type 

and date range interactions that allow the estimated weather response function to vary 

between weekdays and weekends and evolve before and after January 1, 2016. 

Seasonal Neural Network Model Specifications.  

The seasonal neural network model specifications have the following common set of 

explanatory variables: 

• One node with a linear activation function that includes: 

o A linear time trend that captures long-run trends in load growth (decay). 

o Season, day type, and date range interaction terms that capture potential 

changes in average weekday and weekend loads both by season and pre-2016 

and post-2015. 
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• Two nodes with a sigmoid function that include average temperatures with day type 

and date range that allow the estimated weather response function to vary between 

weekdays and weekends and evolve before and after January 1, 2016. 

These base configurations for alternative model specifications build upon the goal of allowing 

BTM solar PV generation to vary by: 

• Day type (weekdays and weekends).  

• Date range (pre-2016 and post-2015). 

• Temperature bin (less than 60°, 60° to 65°, 65° to 75°, and greater than 75°, all in 

degrees Fahrenheit) or (less than 15.6°, 15.6° to 18.3°, 18.3° to 23.9°, and greater 

than 23.9°, all in degrees Celsius) 

• Season (winter, spring, summer, and fall) 

The specific model specifications follow:  

1.  Base-measured load model  

2.  Base-reconstituted load model  

3.  Single variable  

4.  Weekday or weekend 

5.  Pre-2016 or post-2015 

6.  Weekday or weekend, pre-2016 or post-2015 

7.  Temperature bin 

8.  Temperature bin, weekday and weekend 

9.  Temperature bin, pre-2016 and post-2015 

10.  Temperature bin, weekday and weekend, pre-2016 and post-2015 

11.  Season  

12.  Season, weekday and weekend 

13.  Season, pre-2016 and post-2015 

14.  Season, weekday and weekend, pre-2016 and post-2015 

15.  Season, temperature bin 

16.  Season, temperature bin, weekday and weekend 

17.  Season, temperature bin, pre-2016 and post-2015 

18.  Season, temperature bin, weekday and weekend, pre-2016 and post-2015  

Time-of-Day Estimates. Examples in the previous chapter suggest that the impact of errors in 

the BTM solar PV generation can vary by time of day. As a starting point for the model 

analysis, the research team used the 15-minute measured load data to construct loads by time 

of day, follows: 

• Dawn = Maximum load over the time interval of 05:00 through 07:45 
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• Morning = Average load over the time interval of 08:00 through 10:45 

• Midday = Average load over the time interval of 11:00 through 13:45 

• Afternoon = Average load over the time interval of 14:00 through 16:45 

• Evening = Maximum load over the time interval of 17:00 through 19:45 

Maximum load is used for the dawn and evening time periods to allow for the greatest 

possible impact of BTM solar PV generation variables. This is particularly useful during the fall 

and winter seasons when BTM solar PV generation data goes to zero for a number of time 

intervals. The full set of model specifications are estimated separately for each of the five 

time-of-day periods. 

Results 
The perceived impact of BTM solar PV generation on measured load can vary by time of day, 

season, and temperature. The following analysis is for SDG&E. Comparable analyses were also 

done for PG&E and SCE. 

As a starting point for the SDG&E analysis, the 15-minute level measured load data were used 

to construct measured loads by time of day, as follows: 

• Dawn = Maximum load over the time interval of 05:00 through 07:45 

• Morning = Average load over the time interval of 08:00 through 10:45 

• Midday = Average load over the time interval of 11:00 through 13:45 

• Afternoon = Average load over the time interval of 14:00 through 16:45 

• Evening = Maximum load over the time interval of 17:00 through 19:45 

Maximum load is used for the dawn and evening time periods to allow the greatest possible 

impact of the BTM solar PV generation variables. This is particularly useful during the fall and 

winter seasons when the BTM solar PV generation data goes to zero for a number of these 

time intervals.  

Measured Load and Behind-the-Meter Solar Photovoltaic Generation Data 

Measured load, BTM solar PV generation, temperature, dew point, wind speed, and cloud 

cover data are available for January 1, 2013 through May 7, 2018.  

Only midday data and results are shown. The measured load and corresponding BTM solar PV 

generation data for midday intervals appear in Figure 29 and Figure 30. Observations about 

these data include that: 

• BTM solar PV generation has grown steadily over this period. 

• There is a noticeable step-up in the BTM solar PV generation starting near the 

beginning of 2016. This is most noticeable when viewing the dawn BTM solar PV 

generation data.  

• There is a noticeable downward trend in measured loads starting around 2016. This is 

consistent with the increase in BTM solar PV generation. 
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Figure 29: San Diego Gas & Electric Measured Load – Midday 

 

Source: Clean Power Research 

Figure 30: San Diego Gas & Electric Solar Photovoltaic Generation – Midday 

 

Source: Clean Power Research 

Weather Response 

Figure 31 and Figure 32 show the measured load response to changes in temperatures. Again, 

only the midday interval is shown. 

In these charts, pre-2016 weekday loads are blue, pre-2016 weekend day loads are purple, 

post-2015 weekday loads are green, and post-2015 weekend day loads are gold. For each 

time-of-day period, two charts are presented. The first is the observed measured load weather 

response. The second is the estimated measured load weather response. Estimated weather 

response functions are based on a three-node neural network with the following configuration. 

• Node 1 has a linear activation function and includes pre-2016 weekday and weekend 

binary variables and post-2015 weekday and weekend binary variables. 

• Node 2 has a sigmoid function and includes the time-of-day average temperature, the 

pre-2016 weekday and weekend binary variables, and post-2015 weekday and weekend 

binary variables.  
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• Node 3 has a sigmoid function and includes the time-of-day average temperature, the 

pre-2016 weekday and weekend binary variables, and post-2015 weekday and weekend 

binary variables. 

The binary variables on the linear node (Node 1) allow the non-weather sensitive portion of 

measured load to vary across weekdays and weekend days, as well as across the pre-2015 

and post-2016 time periods. 

The two nonlinear nodes (Node 2 and Node 3) work together to approximate the nonlinear 

weather response. The binary variables on the nonlinear nodes (Node 2 and Node 3) allow the 

weather response to differ across weekdays and weekends, as well as across the pre-2015 and 

post-2016 periods. 

Observations about these charts follow.  

• The non-weather sensitive portion of the time-of-period load shows a reduction 

between the pre-2015 and post-2016 periods. The reduction in non-weather sensitive 

loads is most pronounced in the morning, midday, and afternoon periods, which is 

when BTM solar PV generation is highest. This suggests that the penetration of BTM 

solar PV over this time is a factor in the downward trend in loads in the daily graphs of 

time-of-period loads. 

• The reduction in the non-weather sensitive portion of the time-of-period load appears 

to be consistent across weekdays and weekend days. This further supports the idea 

that the penetration of BTM solar PV generation is a factor in the downward trend in 

measured loads. 

• Focusing on the dawn estimated weather response function, there is no noticeable 

change in the weather response over time. The reduction in the response function post-

2015 appears to be at all temperatures. 

• Focusing on the morning estimated weather response function, there is a noticeable 

reduction in the weather response for both weekdays and weekend days post-2015. 

The post-2015 weekday weather response appears to be steeper on the space-heating 

side and flatter on the air-conditioning side. The weekend day air-conditioning response 

appears to be flatter post-2015. 

• Focusing on the midday estimated weather response function, the post-2015 weekday 

weather response is close to the pre-2016 weekend day response. The gap between 

the pre-2016 weekday response and the post-2015 weekday response is greatest when 

temperatures are in the 70s, but reduces quickly as temperatures cool. The gap 

reduces, but not as quickly when temperatures go above 80. The gap between the pre-

2016 weekend day response and the post-2015 weekend day response appears 

constant at all temperatures.  

• Focusing on the afternoon estimated weather response function, the post-2015 

weekday response is close to the pre-2016 weekend day response. The gap between 

the pre-2016 weekday response and the post-2015 weekday response is greatest when 

temperatures are in the 70s but reduces quickly as temperatures either cool or 

increase. In a similar fashion, the gap between the pre-2016 weekend day response 

and the post-2015 weekend day response is greatest when temperatures are in the 70s 

but reduces quickly as temperatures either cool or increase.  
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• Focusing on the evening estimated weather response function, there is a slight change 

in the level of weather response over time. The reduction in the weekday response 

function appears to be at all temperatures. There is a greater reduction in the post-

2015 weekend weather response when temperatures fall below 70 degrees than when 

temperatures rise above 70 degrees. 
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Figure 31: San Diego Gas & Electric Observed Measured Load Weather Response – Midday 

 

Source: Clean Power Research 
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Figure 32: San Diego Gas & Electric Neural Network Estimated Measured Load Weather Response – Midday 

 

Source: Clean Power Research 
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San Diego Gas & Electric Model Result Comparison 

This section presents the results of the alternative BTM solar PV generation model 

specifications just described. The results are presented as a cascade of models; each step in 

the cascade allows the impact of the BTM solar PV generation to vary by day type, date range, 

temperature bin, and season.  

Table 1 presents the estimated aggregate BTM solar PV generation coefficients by model 

specification. For reference, the assumed coefficient of -1.0 is included in this table. The 

columns represent results from the neural network (NNET) and regression (REG) model 

specifications. To ease comparison across the alternative model specifications, only the 

estimated aggregate coefficients are presented. The estimated aggregate coefficients are 

computed as the weighted average of the estimated coefficients across all BTM solar PV 

generation variables included in the model specification. For example, the estimated 

coefficients for the dawn regression model with pre-2016 and post-2015 interactions are: 

• Solar PV generation * pre-2016 = -0.496 

• Solar PV generation * post-2015 = -0.488 

• The in-sample average solar PV generation pre-2016 data = 38.980 

• The in-sample average solar PV generation post-2015 data = 63.842  

The estimated aggregate solar PV generation coefficient is computed as: 

• Aggregate BTM solar PV coefficient = [(-0.496 * 38.980) + (-0.488 * 63.842)]/[38.980 

+ 63.842] 

• Aggregate BTM solar PV coefficient = -0.491 

Observations about the estimated aggregate coefficients appear here.  

• Dawn Hours. The estimated aggregate BTM solar PV adjustment range is between -

0.664 to 0.366. The positive values indicate the difficulty of isolating the impact of BTM 

solar PV generation from other factors that swing measured load. They also reflect the 

model rather than their specifications, especially when all interaction terms are 

included. Focusing on the negative estimated coefficients suggests that the assumption 

of -1.0 is too restrictive in the dawn hours. The average estimated impact without 

seasonal terms is -0.55 and -0.24 with the seasonal terms. Non-seasonal estimates 

suggest almost halving the BTM solar PV generation estimates. The less than -1.0 

coefficient estimates might reflect errors with the BTM solar PV generation estimates, 

which could be driven by the azimuth, tilt, soiling, and shading assumptions underlying 

the estimates. Alternatively, because BTM solar PV generation is small relative to the 

average dawn load it might be difficult for the statistical models to isolate the BTM solar 

PV impact from other factors driving dawn loads. The fact that most of the models lead 

to an estimated negative impact less than -1.0 suggests that adjusting the BTM solar PV 

estimates is warranted. When the season binary variables are introduced to the model 

specification the estimated BTM solar PV impact is reduced. This suggests that some of 

the BTM solar PV generation impact correlates with seasonal load variations. In 

summary, the results suggest using a statistical adjustment factor of around -0.24 for 

dawn hours. 
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• Morning Hours. The estimated aggregate BTM solar PV adjustment range is between -

1.01 to -1.25. The average estimated impact without the seasonal terms is -1.19 and -

1.10 with the seasonal terms. The estimated coefficients suggest that the assumption of 

-1.0 is too restrictive. Using the results from the seasonal model specifications suggests 

a statistical adjustment factor of around -1.10 for the morning hours. 

• Midday Hours. The estimated aggregate BTM solar PV adjustment range is between -

1.28 to -1.55. The average estimated impact without the seasonal terms is -1.38 and -

1.37 with the seasonal terms. The estimated coefficients suggest that the assumption of 

-1.0 is too restrictive. Using the results from the seasonal model specifications suggests 

a statistical adjustment factor of around -1.37 for the midday hours. 

• Afternoon Hours. The estimated aggregate BTM solar PV adjustment range is between 

0.00 to -1.63. The 0.00 estimated coefficient reflects model over specification when all 

interaction terms are included. The average estimated impact without the seasonal 

terms is -1.57, and -1.35 with the seasonal terms. The estimated coefficients suggest 

that the assumption of -1.0 is too restrictive. Using the results from the seasonal model 

specifications suggests a statistical adjustment factor of around -1.35 for the afternoon 

hours.  

• Evening Hours. The estimated aggregate BTM solar PV adjustment range is between -

2.18 to 1.22. These positive values reflect model over specification especially when all 

interaction terms are included. The average estimated impact without the seasonal 

terms is -1.95, and -1.23 with the seasonal terms. The estimated coefficients suggest 

that the assumption of -1.0 is too restrictive. Using the results from the seasonal model 

specifications suggests a statistical adjustment factor of around -1.23 for the evening 

hours.
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 Table 1: Estimated Aggregate Solar Photovoltaic Generation Coefficient  
 Dawn Morning Midday Afternoon Evening 

 NNET REG NNET REG NNET REG NNET REG NNET REG 

Reconstituted Load -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 

Single Variable -0.634 -0.642 -1.133 -1.144 -1.326 -1.368 -1.538 -1.598 -1.782 -1.846 

Week Day/Weekend -0.634 0.342 -1.145 -1.140 -1.323 -1.369 -1.541 -1.603 -1.783 -1.846 

Pre-2016/Post 2015 -0.659 -0.664 -1.180 -1.198 -1.338 -1.395 -1.510 -1.604 -2.042 -2.175 

Week Day/Weekend, Pre-

2016/Post-2015 

-0.657 -0.663 -1.174 -1.195 -1.343 -1.395 -1.513 -1.609 -2.070 -2.174 

Temperature Bin -0.553 -0.551 -1.196 -1.219 -1.345 -1.450 -1.523 -1.621 -1.725 -1.866 

Temperature Bin, Week 

Day/Weekend 

-0.555 -0.552 -1.167 -1.212 -1.357 -1.450 -1.529 -1.626 -1.735 -1.866 

Temperature Bin, Pre-

2016/Post-2015 

-0.599 -0.604 -1.210 -1.253 -1.356 -1.454 -1.498 -1.622 -1.979 -2.186 

Temperature Bin, Pre-

2016/Post-2015, Week 

Day/Weekend 

-0.598 -0.603 -1.205 -1.248 -1.381 -1.452 -1.503 -1.626 -1.980 -2.184 

Season -0.276 -0.265 -1.027 -1.041 -1.282 -1.341 -1.340 -1.497 -1.372 -1.695 

Season, Week 

Day/Weekend 

-0.272 -0.264 -1.010 -1.031 -1.288 -1.340 -1.346 -1.502 -1.415 -1.704 

Season, Pre-2016/Post-

2015 

-0.263 -0.247 -1.053 -1.078 -1.302 -1.405 -1.339 -1.556 -1.509 -1.848 
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 Dawn Morning Midday Afternoon Evening 

 NNET REG NNET REG NNET REG NNET REG NNET REG 

Season, Week 

Day/Weekend, Pre-

2016/Post 2015 

-0.258 -0.246 -1.036 -1.067 -1.301 -1.403 -1.345 -1.561 -1.519 -1.855 

Season, Temperature 

Bin 

-0.283 -0.301 -1.130 -1.138 -1.287 -1.390 -1.315 -1.450 -1.411 -1.678 

Season, Temperature 

Bin, Week Day/Weekend 

-0.286 -0.307 -1.129 -1.129 -1.286 -1.389 -1.326 -1.458 0.499 -1.690 

Season, Temperature 

Bin, Pre-2016/Post 2015 

-0.291 -0.300 -1.177 -1.224 -1.391 -1.510 -1.410 -1.579 1.216 -1.871 

Season, Temperature 

Bin, Week Day/Weekend, 

Pre- 2015/Post 2015 

0.366 -0.304 -1.120 -1.224 -1.550 -1.460 0.000 -1.540 0.000 -1.822 

Source: Clean Power Research 
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To determine the potential for forecast improvements, the statistically adjusted BTM solar PV 

estimates derived from each model specification were used in the reconstituted load approach. 

The resulting in-sample mean absolute percentage errors (MAPEs) in these statistically 

adjusted BTM solar PV generation estimates are then compared with the original reconstituted 

load approach using the unadjusted BTM solar PV generation estimates. For comparison 

purposes, the corresponding direct model results are presented in Table 2 through Table 5. 

The cells highlighted in green represent the best in-sample MAPE for that time period and 

group of model specifications. The cells highlighted in red represent the best in-sample MAPE 

for that time period across all model specifications. Observations about these results follow. 

• In general, the reconstituted load approach is enhanced by using statistically adjusted 

BTM solar PV generation estimates. 

• The direct model approach yields, on average, better in-sample fits than the 

reconstituted load approach.  

• Except for the evening time-of-use period, model specifications allowing the BTM solar 

PV generation impact to vary by temperature bin yield the best in-sample fits. 

• The evening time-of-use period favors a model specification that allows the BTM solar 

PV generation impact to vary between weekdays and weekend days. 

• There is slight evidence that the BTM solar PV generation impact has evolved over the 

estimation range. 

• Focusing on results for the seasonal NNET, the morning hours have the greatest 

improvement over the baseline reconstituted load approach, with a reduction from an 

in-sample MAPE of 5.10 percent to 3.04 percent MAPE. 

• The dawn hours benefit from the statistically adjusted BTM solar PV estimate with an 

improvement in the in-sample MAPE from 2.99 percent to 2.72 percent.  

• The midday hours show marginal improvements, with the in-sample MAPE improving 

from 3.05 percent to 2.93 percent. 

• The afternoon hours show a 14th of 1 percent improvement, with the in-sample MAPE 

reducing from 2.96 percent to 2.82 percent. 

• The evening hours also show improvement, with the in-sample MAPE reducing from 

3.36 percent to 2.82 percent.
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Table 2: Revised Reconstituted Load Versus Direct Model: Non-Seasonal Regression 

 Dawn Morning Mid-Day Afternoon Evening 

Regression 

Model 

Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct 

No 

SolarPVGen 

Treatment 

 3.46%  4.18%  5.02%  5.22%  4.82% 

Reconstitute

d Load with 

100% 

SolarPVGen 

3.28%  3.57%  4.11%  4.40%  4.55%  

Single 

Variable 

3.22% 3.21% 3.56% 3.55% 4.02% 4.00% 4.21% 4.19% 4.13% 4.11% 

Week 

Day/Weeken

d 

3.73% 3.06% 3.56% 3.55% 4.02% 4.00% 4.20% 4.18% 4.13% 4.11% 

Pre-

2016/Post 

2015 

3.21% 3.21% 3.55% 3.54% 4.02% 4.00% 4.21% 4.19% 3.92% 3.90% 

Week 

Day/Weeken

d, Pre-

2016/Post-

2015 

3.20% 3.20% 3.55% 3.54% 4.02% 4.00% 4.20% 4.18% 3.91% 3.89% 

Temperature 

Bin 

3.16% 3.15% 3.53% 3.52% 3.87% 3.85% 4.10% 4.08% 4.10% 4.08% 
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 Dawn Morning Mid-Day Afternoon Evening 

Regression 

Model 

Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct 

Temperature 

Bin, Week 

Day/Weeken

d 

3.15% 3.15% 3.53% 3.52% 3.87% 3.85% 4.09% 4.07% 4.09% 4.08% 

Temperature 

Bin, Pre-

2016/Post-

2015 

3.14% 3.13% 3.52% 3.51% 3.84% 3.82% 4.06% 4.04% 3.88% 3.86% 

Temperature 

Bin, Pre-

2016/Post-

2015, Week 

Day/Weeken

d 

3.12% 3.12% 3.57% 3.50% 3.90% 3.81% 4.04% 4.03% 4.02% 3.85% 

Best MAPE 3.06%  3.50%  3.81%  4.03%  3.85%  

The cells highlighted in green represent the best in-sample MAPE for that time-period and group of model specifications. The cells highlighted in red 

represent the best in-sample MAPE for that time-period across all model specifications.  

Source: Clean Power Research 
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Table 3: Revised Reconstituted Load Versus Direct Model: Seasonal Regression 

 Dawn Morning Midday  Afternoon Evening 

 Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct 

No 

SolarPVGen 

Treatment 

 3.06%  3.42%  3.94%  4.10%  4.10% 

Reconstituted 

Load with 

100% 

SolarPVGen 

3.16%  3.37%  3.98%  4.14%  4.13%  

Single 

Variable 

2.98% 2.97% 3.37% 3.35% 3.92% 3.90% 4.04% 4.03% 3.73% 3.71% 

Season 2.95% 2.95% 3.36% 3.34% 3.92% 3.90% 4.03% 4.02% 3.73% 3.71% 

Week 

Day/Weekend 

2.94% 2.94% 3.35% 3.33% 3.92% 3.90% 4.03% 4.01% 3.73% 3.71% 

Pre-2016/Post 

2015 

2.94% 2.86% 3.34% 3.23% 3.92% 3.66% 4.03% 3.74% 3.69% 3.59% 

Week 

Day/Weekend, 

Pre-

2016/Post-

2015 

2.93% 2.93% 3.33% 3.31% 3.91% 3.89% 4.03% 4.01% 3.68% 3.66% 

Temperature 

Bin 

2.90% 2.90% 3.29% 3.27% 3.75% 3.73% 3.82% 3.80% 3.68% 3.65% 
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 Dawn Morning Midday  Afternoon Evening 

 Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct 

Temperature 

Bin, Week 

Day/Weekend 

2.88% 2.88% 3.27% 3.26% 3.75% 3.73% 3.81% 3.79% 3.66% 3.64% 

Temperature 

Bin, Pre-

2016/Post-

2015 

3.00% 2.86% 3.67% 3.23% 4.30% 3.66% 4.17% 3.74% 3.67% 3.59% 

Temperature 

Bin, Pre-

2016/Post-

2015, Week 

Day/Weekend 

2.83% 2.83% 3.22% 3.20% 3.66% 3.64% 3.73% 3.71% 3.59% 3.57% 

Best MAPE 2.83%  3.20%  3.64%  3.71%  3.57%  

The cells highlighted in Green represent the best in-sample MAPE for that time-period and group of model specifications. The cells highlighted in Red 

represent the best in-sample MAPE for that time-period across all model specifications. 

Source: Clean Power Research 
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Table 4: Revised Reconstituted Load Versus Direct Model: Non-Seasonal Neural Network 
 Dawn Morning Midday  Afternoon Evening 

 Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct 

No 

SolarPVGen 

Treatment 

 3.28%  4.07%  4.34%  4.39%  4.19% 

Reconstitute

d Load with 

100% 

SolarPVGen 

3.12%  3.45%  3.29%  3.39%  3.76%  

Single 

Variable 

3.05% 3.04% 3.44% 3.44% 3.18% 3.17% 3.15% 3.15% 3.20% 3.19% 

Week 

Day/Weeken

d 

3.05% 3.03% 3.44% 3.46% 3.18% 3.17% 3.14% 3.14% 3.20% 3.19% 

Pre-

2016/Post 

2015 

3.05% 3.03% 3.43% 3.43% 3.17% 3.17% 3.16% 3.15% 3.05% 3.05% 

Week 

Day/Weeken

d, Pre-

2016/Post-

2015 

3.04% 3.02% 3.43% 3.43% 3.18% 3.17% 3.15% 3.14% 3.04% 3.04% 

Temperature 

Bin 

3.03% 3.01% 3.43% 3.44% 3.18% 3.17% 3.14% 3.14% 3.20% 3.19% 
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 Dawn Morning Midday  Afternoon Evening 

 Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct Recon-

stituted 

Direct 

Temperature 

Bin, Week 

Day/Weeken

d 

3.01% 3.00% 3.43% 3.43% 3.18% 3.17% 3.14% 3.13% 3.19% 3.17% 

Temperature 

Bin, Pre-

2016/Post-

2015 

3.01% 3.00% 3.42% 3.41% 3.17% 3.16% 3.15% 3.15% 2.97% 2.95% 

Temperature 

Bin, Pre-

2016/Post-

2015, Week 

Day/Weeken

d 

3.13% 2.98% 3.54% 3.40% 3.36% 3.16% 3.19% 3.12% 3.17% 2.94% 

Best MAPE 2.98%  3.40%  3.16%  3.12%  2.94%  

The cells highlighted in green represent the best in-sample MAPE for that time-period and group of model specifications. The cells highlighted in red 

represent the best in-sample MAPE for that time-period across all model specifications 

Source: Clean Power Research 
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Table 5: Revised Reconstituted Load Versus Direct Model: Seasonal Neural Network 

 Dawn Morning Midday  Afternoon Evening 

 
Recon-

stituted 
Direct 

Recon-

stituted 
Direct 

Recon-

stituted 
Direct 

Recon-

stituted 
Direct 

Recon-

stituted 
Direct 

No 

SolarPVGen 

Treatment 

 2.90%  3.24%  3.05%  2.95%  3.17% 

Reconstituted 

Load with 

100% 

SolarPVGen 

2.99%  5.10%  3.05%  2.96%  3.36%  

Single 

Variable 

3.00% 2.80% 3.42% 3.16% 3.41% 2.99% 3.14% 2.89% 3.00% 2.90% 

Season 2.78% 2.78% 3.16% 3.15% 2.97% 2.98% 2.86% 2.87% 2.89% 2.99% 

Week 

Day/Weekend 

2.77% 2.76% 3.15% 3.15% 2.98% 2.97% 2.87% 2.86% 2.89% 2.88% 

Pre-2016/Post 

2015 

2.77% 2.76% 3.14% 3.14% 2.97% 2.97% 2.88% 2.87% 2.85% 2.83% 

Week 

Day/Weekend, 

Pre-

2016/Post-

2015 

2.76% 2.75% 3.13% 3.12% 2.96% 2.95% 2.87% 2.86% 2.84% 2.82% 

Temperature 

Bin 

2.75% 2.74% 3.08% 3.07% 2.96% 2.96% 2.84% 2.84% 2.87% 2.86% 
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 Dawn Morning Midday  Afternoon Evening 

 
Recon-

stituted 
Direct 

Recon-

stituted 
Direct 

Recon-

stituted 
Direct 

Recon-

stituted 
Direct 

Recon-

stituted 
Direct 

Temperature 

Bin, Week 

Day/Weekend 

2.73% 2.72% 3.05% 3.05% 2.95% 2.95% 2.84% 2.83% 13.10% 31.18% 

Temperature 

Bin, Pre-

2016/Post-

2015 

2.82% 2.72% 3.54% 3.04% 3.72% 2.93% 3.30% 2.82% 14.93% 34.93% 

Temperature 

Bin, Pre-

2016/Post-

2015, Week 

Day/Weekend 

12.12% 10.53% 3.14% 3.57% 28.39% 62.20% 43.80% 4.28% 29.72% 6.93% 

Best MAPE 2.72%  3.04%  2.93%  2.82%  2.82%  

The cells highlighted in green represent the best in-sample MAPE for that time-period and group of model specifications. The cells highlighted in red 

represent the best in-sample MAPE for that time-period across all model specifications 

Source: Clean Power Research 
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Conclusions and Recommendations 

Study results suggest that the current reconstituted load approach should be augmented to 

allow the assumed impact of BTM solar PV generation on loads to vary by temperature bin, 

season, weekday versus weekend day, and pre-2016/post-2015. As a practical matter, a 

complete set of season, temperature bin, weekday/weekend and pre-2016/post-2015 

interaction terms leads to model over specification. To control for over specification, the 

research team recommends pulling back from model specifications with season interaction 

terms. This reduces the list of candidate-model specifications to those that allow solar PV 

generation impact to vary by: temperature bin; temperature bin and weekday/weekend; and 

temperature bin, weekday/weekend, and pre-2016/post-2015. 

Conclusions and Recommendations 
This study’s goal was to improve load forecasting accuracy of the California ISO’s existing 

reconstituted load forecast models by undertaking several initiatives.  

Initiative 1. Improve the Existing Reconstituted Load Forecast Framework 

Findings suggest that the assumption that 1 kWh of BTM solar PV generation leads to a 1 kWh 

reduction in measured load is too restrictive. To allow greater accuracy of the reconstituted 

load forecast, results suggest that BTM solar PV impacts should be allowed to vary by utility, 

time-of-day, and temperature range.  

General conclusions about these data include:  

• Dawn. Over the model estimation period the ratio of Dawn solar PV generation to Dawn 

load averaged 5.06% for SDG&E, 3.40% for PG&E, and 3.09% for SCE. The estimated 

coefficients for SDG&E and SCE suggest reducing the impact of BTM solar PV 

generation by about 40%, from -1.0 to -0.55 for SDG&E and -0.57 for SCE. In contrast, 

the positive estimated coefficients for PG&E suggest the penetration of solar PV was not 

enough over the model estimation period to separate the impact from a general swing 

up in loads during the Spring and Summer season. There is some evidence that this will 

change for PG&E as solar PV systems continues to be installed.  

• Morning. Over the model estimation period the ratio of Morning solar PV generation to 

Morning load averaged 9.41% for SDG&E, 6.71% for PG&E, and 5.38% for SCE. For 

SDG&E, the net effect for the Morning hours is to lift apparent impact of the BTM solar 

PV generation estimates by roughly 20%. For SCE, the net effect is to lift apparent 

impact the BTM solar PV generation estimates by about 40%. For PG&E, the net effect 

is to lower the apparent impact of the BTM solar PV generation estimates by about 

30%.  

• Midday. Over the model estimation period the ratio of midday solar PV generation to 

Mid-Day load averaged 12.30% for SDG&E, 9.12% for PG&E, and 6.55% for SCE. For 

SDG&E, the net effect for the midday hours is to lift apparent impact of the BTM solar 

PV generation estimates by roughly 45%. For SCE, the net effect is to lift apparent 

impact the BTM solar PV generation estimates by about 250%. For PG&E, the net effect 

is to life the apparent impact of the BTM solar PV generation estimates by about 50%.  

• Afternoon. Over the model estimation period the ratio of Afternoon solar PV generation 

to Afternoon load averaged 7.31% for SDG&E, 6.02% for PG&E, and 3.96% for SCE. 
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For SDG&E, the net effect for the Afternoon hours is to lift apparent impact of the BTM 

solar PV generation estimates by roughly 60%. For SCE, the net effect is to lift apparent 

impact the BTM solar PV generation estimates by about 300%. For PG&E, the net effect 

is to life the apparent impact of the BTM solar PV generation estimates by about 50%.  

• Evening. Over the model estimation period the ratio of Evening solar PV generation to 

Evening load averaged 2.16% for SDG&E, 2.36% for PG&E, and 1.35% for SCE. For 

SDG&E, the net effect for the Afternoon hours is to lift apparent impact of the BTM 

solar PV generation estimates by roughly 90%. For SCE, the net effect is to lift apparent 

impact the BTM solar PV generation estimates by about 320%. For PG&E, the net effect 

is to lower the apparent impact of the BTM solar PV generation estimates by about 

40%.  

Initiative 2. Improved Estimated Weather Response 

This initiative determined whether the response of measured loads to weather variations has 

evolved with the increasing penetration of BTM solar PV installations. A series of statistical 

models were therefore used to estimate the weather response function for the years before 

2016 and after 2015. A comparison of the estimated weather response functions was used to 

determine whether the overall weather response has evolved over the last five years.  

The findings from this initiative are:  

San Diego Gas & Electric Findings 

• Focusing on the dawn estimated weather response function, there is no noticeable 

change in the weather response over time. The reduction in the response function post-

2015 appears to be at all temperatures. 

• Focusing on the morning estimated weather response function, there is a noticeable 

lowering in the weather response for both weekday and weekend days post-2015. The 

post-2015 weekday weather response appears to be steeper on the space-heating side 

and flatter on the air-conditioning side. The weekend day air-conditioning response 

appears to be flatter post-2015. 

• Focusing on the midday estimated weather response function, the post-2015 weekday 

weather response is close to the pre-2016 weekend day response. The gap between 

the pre-2016 weekday response and the post-2015 weekday response is greatest when 

temperatures are in the 70s, but reduces quickly as temperatures cool. The gap 

reduces, but not as quickly, when temperatures rise above 80 degrees. The gap 

between the pre-2016 weekend day response and the post-2015 weekend day 

response appears to be constant at all temperatures.  

• Focusing on the afternoon estimated weather response function, the post-2015 

weekday response is close to the pre-2016 weekend day response. The gap between 

the pre-2016 weekday response and the post-2015 weekday response is greatest when 

temperatures are in the 70s but reduces quickly as temperatures grow either colder or 

hotter. In a similar fashion, the gap between the pre-2016 weekend day response and 

the post-2015 weekend day response is greatest when temperatures are in the 70s, but 

reduces quickly as temperatures grow either colder or hotter.  
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• Focusing on the evening estimated weather response function, there is slight change in 

the level of the weather response over time. The reduction in the weekday response 

function appears to be at all temperatures. There is a greater reduction in the post-

2015 weekend weather response when temperatures fall below 70 degrees than when 

temperatures rise above 70 degrees.  

Pacific Gas and Electric Findings 

• The overall dawn weather response shows a distinct weekday versus weekend 

response. This is expected given the strong mix of residential and small commercial 

loads found in PG&E’s territory.  

• Unlike other time-of-day periods, there is only a slight change in the observed and 

estimated dawn weather response pre-2016 and post-2015.  

• There is an apparent downward shift in the non-weather-sensitive portion of morning 

loads between the pre-2015 and post-2016 periods. This is apparent in both the actual 

and estimated morning weather response functions. 

• Based on the estimated morning weather response function, there is a steepening in 

the space-heating response for both weekdays and weekends post-2015. There is a 

strong flattening in the weekend space-cooling response post-2015. There is no obvious 

change in the weekday space cooling response post-2015.  

• On average, estimated midday weekday and weekend weather response functions are 

lower post-2015. The estimated weekday response is roughly higher than the estimated 

pre-2016 weekend response. 

• The midday space cooling response appears roughly unchanged post-2015. In contrast, 

the midday space heating response appears steeper on weekdays and flatter on 

weekend days. 

• On average, the estimated afternoon weekday and weekend weather response 

functions are lower post-2015. The estimated weekday response is roughly higher than 

the estimated pre-2016 weekend response. 

• The estimated afternoon weekday space-cooling response appears steeper post-2015. 

The estimated weekend space-cooling response appears flatter post-2015. Both the 

estimated afternoon weekday and weekend day space-heating responses appear 

steeper post-2015. 

• On average, the estimated evening weekday and weekend weather response functions 

are lower post-2015.  

• The estimated evening weekday space-cooling response appears steeper post-2015. 

The estimated weekend space-cooling response appears roughly unchanged post-2015. 

Both the estimated evening weekday and weekend day space-heating responses appear 

flatter post-2015. 

Southern California Edison Findings 

• Focusing on the dawn estimated weather response function, there is no noticeable 

change in the weather response over time.  
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• Focusing on the morning estimated weather response function, there is a slight 

lowering in the weather response for both weekdays and weekend days post-2015. The 

post-2015 weekday and weekend weather response appears to be flatter on the space-

heating side and roughly unchanged on the air-conditioning side.  

• Focusing on the midday estimated weather response function, there is a lowering in the 

weather response for both weekdays and weekend days post-2015. The estimated 

weather response function appears to have steepened on both the space-heating and 

air-conditioning side post-2015.  

• Focusing on the afternoon estimated weather response function, there is a lowering in 

the non-weather-sensitive portion of the weather response for both weekdays and 

weekend days post-2015. However, the estimated weather response function appears 

to have steepened on both the space-heating and air-conditioning side post-2015.  

• Focusing on the evening estimated weather response function, there is a slight lowering 

in the non-weather-sensitive portion of the weather response for both weekdays and 

weekend days post-2015. However, the estimated air-conditioning response appears to 

have steepened post-2015 for both weekdays and weekends. The estimated space-

eating response appears to be about the same post-2015.  

Based on the findings from this analysis it is recommended that the estimated weather 

response portion of the California ISO production load forecast models be re-specified to 

capture the electric load evolution from increasing solar PV generation in California. The most 

straightforward change to the models would be to integrate the weather response portion of 

the models with a time trend. 
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CHAPTER 7: 
Valuation of Forecast Error Introduction 

The goal of this study’s valuation effort was to develop and test solar PV forecast economic 

valuation methodologies. Project partners agreed that the current SolarAnywhere® v4 forecast 

would serve as the baseline forecast. References to baseline or benchmarks throughout this 

report refer to this v4 forecast. 

This report presents results for three valuation methodologies. 

• Resource adequacy 

• Real-time market correction 

• Perfect forecast 

Resource adequacy calculates the cost of capacity based on the standard deviation of forecast 

errors. Real-time market correction is methodology that values forecast improvements based 

on prices from the day-ahead market (DAM) and hour-ahead scheduling process (HASP). 

Perfect forecast is a methodology that values forecast improvements by comparing them with 

the cost of providing a perfect forecast using energy storage. 

The research team studied these three valuation methodologies to approach the problem of 

valuing forecast errors from three separate perspectives: capacity based (resource adequacy), 

market based (real-time market correction), and energy based (perfect forecast). In examining 

the structures of each of these methods, the research team gained insight into the true value 

of improving forecast accuracy.  

Approach 

Resource Adequacy 

Resource adequacy calculates the cost of reserve capacity required to mitigate some defined 

percentage of forecast errors based on their empirical probability distribution. The value of 

moving from one forecast to another is the cost difference between the two.  

The California Public Utility Commission’s resource adequacy program has two goals, to:  

• Ensure that sufficient resources are available within California to provide for the safe 

and reliable operation of the electric grid.  

• Provide targeted incentives for siting and constructing the generation resources needed 

to ensure future reliability.  

The resource adequacy framework ensures that sufficient generation resources are available 

to meet electric load at all times. Long-term trends like load growth, planned generation, and 

probabilistic outage modeling are all considered. Part of this framework involves a capacity 

reserve margin based on load, generation, and transmission characteristics in addition to 

regulatory requirements. The California Public Utilities Commission ensures that the system 

remains stable in worst case weather and/or equipment outage events.  
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The resource adequacy method is based on the probabilistic portion of the resource adequacy 

framework (the 1-10 weather-year portion). The resource adequacy metric is an estimate of 

the reserve capacity required to mitigate x percent of forecast errors at a given forecast 

horizon. The forecast error is the difference between the forecast and what actually occurred. 

More accurate forecasts yield narrower error distributions and lower reserve capacities and 

costs.  

This metric reflects a more long-term cost assessment than the real-time market correction 

method (discussed in the next section) because it quantifies the cost of building new capacity.  

Forecast errors result from both over-prediction and under-prediction events. Solar PV 

produces more than predicted during under-prediction events. Solar PV also produces less 

than predicted during over-prediction events. Under-prediction events are addressed by 

curtailing solar PV oversupply, ramping down other resources, soaking up excess solar PV with 

flexible loads, or exporting excess power to other regions. Over-prediction events are 

addressed by balancing loads with other generation, shedding load, or importing energy from 

other sources.  

This proposed methodology examines the cost impacts of both over-prediction and under-

prediction events by identifying the capacity required for ramping up or down to mitigate some 

percentage of these errors. A capacity cost is then applied so that the cost of errors can be 

quantified. Calculating the cost difference between the baseline and improved forecasts adds 

value to this metric. This method yields an upper bound of value because more economic 

solutions than simply building additional capacity exist to mitigate under-prediction events. 

The location of 16 solar PV sites that were included in the study is shown in Figure 33. These 

locations represent diverse climate regions across California and cover the geographic range of 

solar PV resources in the state. The metrics described here represent only a small sampling of 

the installed solar PV in California, and the errors of the actual fleet are assumed to be 

comparable per unit of generating capacity (per kilowatt of PV capacity). For this reason, the 

units of this error distribution are expressed in W/m2 of forecast error per kilowatt (kW) of PV 

fleet capacity. 
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Figure 33: Analytic Locations and California Climate Zones 

 

Analytical locations highlighted in blue. Spatial allocation of PV is equally weighted across these blue 

points. 

Source: Clean Power Research 

Figure 34 shows the error distribution in the benchmark forecast at 16 locations over the 

eight-month period data was available. To calculate error, a 1-hour forecast of GHI was made 

using SolarAnywhere separately for each location, representing the output of a single PV 

resource. These outputs are added together to arrive at the total fleet production. After the 

hour passed, the actual fleet output was obtained from the SolarAnywhere historical data set 

by combining the measured, historical values from all 16 sites. The error represents the error 
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in GHI forecasts, and does not include error associated with solar modeling, fleet scaling, or 

other factors outside of the forecasting methods. 

Figure 34: 1-Hour-Ahead Forecast Error 

 

Probability distribution function of hour-ahead forecast errors. Bin width is 50 W/m2. 

Source: Clean Power Research 

Irradiance, specifically GHI, is a proxy for solar PV production. This is a reasonable assumption 

since PV is rated in a sunroom at 1000 W/m2. This means that 1 kW of PV will produce 1 kW 

DC of output at 1000 W/m2. Similarly, 1 kW of PV will produce 500 W DC at 500 W/m2.  

The figure shows the probability distribution of hour-ahead forecast errors across the State of 

California using the current v4 forecast and a bin width of 50 W/m2 with empirically-derived 5th 

and 95th percentile bounds separated by color. Ninety percent of hour-ahead forecast errors 

fall within the yellow zone and 10 percent fall within the blue zone. This distribution reflects 

one hour ahead (designated “HA1”) GHI forecast errors collected in the hourly interval 

between July 12, 2015 and March 31, 2016. The width of this yellow zone is 150 W/kW PV. 

The errors are at a single PV site (point #3 shown in Figure 33). 

Real-Time Market Correction 

Real-time market correction is a methodology that values forecast improvements based on 

prices from the California ISO DAM and HASP. The relative value of a given forecast is the cost 

difference between the baseline (v4) and the improved forecast. Following here is an 

adaptation of a similar methodology developed by Itron that calculates the value of short-term 

load forecasts by looking at their cost differences. The original calculation extracts prices from 
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next-day and day-of wholesale electricity markets and applies them to corresponding day- and 

hour-ahead forecasts.  

The premise behind using short-term market pricing to perform the valuation is that the same 

amount of electricity is actually consumed regardless of which forecast is used. 

The valuation is dependent on three cost components.  

• Cost of scheduling resources day-ahead to supply forecasted net load using locational 

marginal pricing (LMP) from the California ISO DAM 

• Cost of making hour-ahead adjustments to the forecasted net load to account for errors 

in the day-ahead relative to the hour-ahead forecasts using the LMP prices in the HASP 

• Cost of making final adjustments to cover the difference between the forecasted load 

and the actual load using regulation up and regulation down prices from the ancillary 

services markets, as purchased in the DAM. 

Perfect Forecast 

The perfect forecast methodology calculates the storage required to mitigate over-prediction 

events across a given timescale. For example, Figure 35 shows a forecast of what occurred 

over a single day.  

Figure 35: Illustration of Perfect Forecast 

 

Figure showing a single day’s prediction (blue line with triangles) versus what actually occurred (black 

line with circles). Highlighted are periods of over prediction/undersupply (red hash) and under 

prediction/oversupply (blue hash). 

Source: Clean Power Research 
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PV is not producing as much as forecasted during an over-prediction event (red areas), so 

other resources must fill the gap. Currently, this other resource would likely be a quick-

ramping fossil-fueled generator. Storage could fill this gap if the goal is to achieve high PV 

penetration. Storage therefore needs to be sized so that it can accommodate the drawdowns 

required by these over-prediction events across given time periods. 

Results 

Resource Adequacy 

The research team evaluated four versions of the SolarAnywhere v4 forecast (described in this 

report’s Executive Summary) across four forecast time horizons (Hour Ahead 1 [HA1], HA3, 

HA24, and HA48) over the time period of July 12, 2015 through March 31, 2016. Figure 36 

presents the results.  

Figure 36: Resource Adequacy Forecast Error 

 

Histograms of the forecast error (forecast – actual in W/kW PV) for each of the four forecast horizons and 

across each of the four forecast products provided by SUNY  

Source: Clean Power Research 
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Each histogram has a yellow-shaded region and corresponding text that includes 90 percent of 

the results and errors. All the results shown here reflect an even spatial distribution of PV 

across each of California’s climate zones. The left column of plots represents the distributions 

for v4 forecasts, while the next columns represent v4x with all-points weighting, regional 

weighting, and site weighting, respectively.  

Figure 37 summarizes results from the 16 plots in Figure 37, using two vertical axes. The left 

axis corresponds to the 90-percent bound in W/kW PV. The right axis corresponds to the cost 

of this capacity in $/kW PV, given a capacity cost of $0.88/W. Each forecast horizon has its 

own color, and each cluster of columns represents a different forecast version. 

The reserve capacity and corresponding cost per unit of PV: 

• Decrease with increased geographic site specificity (bars are smaller for v4x_site than 

they are for v4); and 

• Increase with lengthening forecast time horizons. 

For every forecast horizon, each of the v4x forecasts shows improvements in the load forecast 

under consideration.  

Figure 37: Resource Adequacy 

 

Resource adequacy in W/kW (left axis) and $/kW (right axis) based on the width of the 90-percent bounds 

for each of the four versions of the forecasts and at each of the four forecast horizons. Capacity costs of 

$880/kW reflect a modern-day advanced combined-cycle gas generator. 

Source: Clean Power Research 

Figure 38 shows the savings when moving from v4 to each of the v4x versions of the forecast 

in $/kW. The savings increase with greater geographic specificity of the forecast product. The 

capacities presented in Figure 37 and corresponding costs in Figure 38 reflect an even 

geographic distribution across all 16 points in California. These values are roughly half of what 

is illustrated in the methodology section, which reflects a single one of these locations. This 

halving of costs reflects the effect of geographic dispersion. 
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Figure 38: Resource Adequacy Savings as Compared to v4 Forecast 

 

$/kW savings when employing each of the three improved versions of the forecast relative to v4, the 

forecast currently supplied to the California ISO.  

Source: Clean Power Research 

The savings offered by the version v4x_site over the baseline v4, for example, are $28 per kW 

of PV. Translating the shift from v4 to any of the three v4x versions at various time horizons 

into dollars for a given capacity of PV was performed. The expected savings to California when 

shifting the HA3 forecast version from v4 to v4xsite is $176 million (31.8 W Natural Gas 

Combined Cycle / kW_PV x 0.88 $/W Natural Gas Combined Cycle x 6,300,000 kW PV in CA) in 

terms of avoided combined cycle gas turbine (CCGT) backup capacity. This is the amount of 

money required to build new gas capacity capable of erasing 90 percent of 3HA forecast errors 

for the state’s PV fleet. 

This example is predicated on uniform cost scaling of forecast error from the 16 sites analyzed 

in the encompassing region. The assumption here is that the forecast errors within each 

region entirely correlate with one another. Therefore, the aggregate error when combining the 

entire BTM PV fleet, for instance, will mimic the aggregate error across the 16 sites. This isn’t 

entirely true; in reality, some of the sites within each individual region will correlate less since 

many microclimates exist in California.  

Real-Time Market Correction 

To model relative forecast value by the methodology outlined above, it was necessary to 

obtain time-synchronous price data from the California ISO’s open access same-time 

information system (OASIS). The research team used the application program interface as 

outlined in version 5.0.0 of the OASIS interface specification to obtain hourly price data from 

July 11, 2015 through March 31, 2016. This temporal range corresponds to the sample used 

for each of the three valuation methods. 

Figure 39 and Figure 40 show price components from OASIS across the period considered. 

The LMP’s shown represent only the energy component within both the DAM and HASP. This 

energy component is the same across all nodes, simplifying the calculation.  
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Figure 39: Open Access Same-Time Information System Prices 

 

Prices from OASIS over the period of interest. Though the y-axis is cropped to 100 $/MWh, the range of 

the HASP LMP extents upwards to 1000 $/MWh across this period. DAM RU refers to day-ahead market, 

regulation up; and DAM RD refers to day-ahead market, regulation-down. 

Source: Clean Power Research 

Figure 40: Open Access Same-Time Information System Prices for Sample Week 

 

Zoomed-in series of prices from OASIS across a single week. Note how the temporal frequency of the 

HASP market (15 minutes) is visibly more granular than the frequency of the elements pulled from the 

DAM (1-hour). 

Source: Clean Power Research 

Figure 41 presents two x-y plots of data pertinent to calculating forecast value: 1-hour-ahead 

forecasts (HA1) and 24-hour-ahead PV forecasts (HA24) versus historical data across all of 

California. As expected, the HA24 forecast is less accurate than the HA1 forecast.  
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Figure 41: Measured Versus Forecasted Global Horizontal Irradiance 

 

Global horizontal irradiance (actual) in W/m2 versus HA1 and HA24 forecasts, respectively. Correlation 

values are listed in the upper left-hand corner. 

Source: Clean Power Research 

All of these data were pulled together and timestamps were aligned. The granularity of the 

HASP market data was at the 15-minute interval. It was therefore extended to match the hour 

interval of the DAM data by time averaging. The research team tested the methodology by 

modeling the 6.3 gigawatt (GW) of BTM PV installed in California as a fleet evenly distributed 

across the state. Figure 42 presents the result of this analysis. Savings are in millions of dollars 

per year and the corresponding values are shown in Table 6. The highest value for an even 

spatial distribution of 6.3 GW of PV is $0.3M/yr if the research team switches to v4xsite from 

v4. 

Table 6: Value of Forecasts 

v4xallPts v4xregion v4xsite 

-1.2 -0.3 +0.3 

Value in $M of switching to one of three alternative forecasts from v4 (baseline) using this methodology 

Source: Clean Power Research 

The improved forecast version v4xsite weighting yields the highest value using this metric if PV 

is spread evenly across the state. Switching the HA1 and HA24 forecasts to v4xsite yields a 

value of roughly $300k/yr. Interestingly, a negative value results when switching to v4xall.pts 

or v4xregional. This is because the DA forecast in v4 is larger than the DA forecast for 

v4xall.pts or v4xregional, making the first term of the value equation weigh heavily. 
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 Figure 42: Forecast Value 

 

Column plot showing net value of switching from current in-operation v4 forecast to one of three versions 

of the improved forecast if PV is geographically allocated evenly across California. Values are in $M of 

dollars per year when considering a PV fleet size of 6.3 GW. 

Source: Clean Power Research 

Perfect Forecast 

Assume a future storage cost of $100/kWh capacity. Figure 43 presents the savings from 

moving from the v4 forecast to the three improved forecasts. It is based on forecast data for a 

single point. The figure shows that more money is saved as the geographic specificity of the 

forecast tuning is increased (moving from left to right on the graphic plot). 
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Figure 43: Forecast Improvements 

 

Nominal storage costs in $/kW PV for the currently-in-operation v4 forecast and all three of the improved 

forecasts studied in this project. Forecast value relative to v4 is highlighted above each bar. Storage 

costs are assumed to be $100 per kWh. 

Source: Clean Power Research 

Note that the research team calculates cents per kWh instead of nominal dollars per kW of 

capacity in the other sections. This is done because with this method alone the research team 

can put a price on curtailed electricity from under-prediction and oversupply events.  

Table 7 presents costs from a cents-per-kWh perspective. What is the cost of guaranteeing 

various versions of the forecast in c/kWh? For these calculations, the research team again 

used a storage cost of $100/kWh and a PV cost of $300/kW. Given these assumptions, 

meeting all HA1 forecast errors with PV + storage will cost 2.63 c/kWh. This is 15 percent 

more expensive than the cost of PV alone (2.28 c/kWh) because of the storage required to 

perfect the forecasts. Switching to v4xall.pts saves 0.01 c/kWh, while switching to v4xregion 

or v4xsite increases costs slightly for the HA1 forecast. Switching to any of these three 

forecast types for the HA3, HA24 or HA48 horizon saves money relative to the v4 forecast. 

Table 7: Cost of Energy and Associated Premiums to Back Up with Storage 

 

Cost of energy in cents per kWh using future capital costs for PV and storage, and premium over COE of 

PV without storage 

Source: Clean Power Research 
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Conclusions and Recommendations 

Resource Adequacy 

If new gas generation were built expressly to accommodate 90 percent of the HA3 forecast 

errors across California’s 6.3 GW BTM PV fleet, this metric indicates savings of up to roughly 

$176 million. These savings accrue when moving from v4 to the newest, most geographically-

tailored version (v4xsite). 

The resource adequacy method has two limitations. First, it gives equal weight to under- and 

over-prediction errors when forward and reverse bias errors have different cost profiles. 

Second, the capacity required to mitigate forecast errors will have a low capacity factor if it is 

used solely to mitigate PV forecast errors. If this reserve capacity were actually built, it would 

likely play other grid-service roles as well. It is therefore an overestimate to attribute all of the 

$0.88W cost to forecast-error mitigation alone. 

Real-Time Market Correction 

Using an adapted version of the methodology defined by Itron, the research team calculated 

that changing from the v4 forecast to the v4xsite forecast will save $300,000 per year across 

the state.  

This metric is probably the most complex of the methods described in this report because it 

requires time-correlated market data. Because of this use of market data, it is perhaps more 

intrinsically palatable to grid operators and other utility stakeholders who are already familiar 

with it.  

One issue with this metric is that forecasts can be manipulated to intentionally show high 

value. 

Note that in Figure 42 and in the corresponding Table 6, two of the three new forecasts 

(v4xall.pts and v4xregional) examined present negative values when using this method. This 

does not mean that these are unimproved forecasts (they are by measures of RMSE, forecast 

skill and the two other valuation methods discussed in Chapter 1 and Chapter 3. The ”game-

ability” of this method indicates that this method is not useful for calculating value. 

A final insight is in relation to costs linked to forecast scaling. The most valuable forecast using 

this metric is the one biased for underprediction. In this case, additional resources are brought 

online to mitigate the shortfall, and this is less expensive that forecasts biased for 

overprediction because ramping down is less expensive than ramping up. 

Perfect Forecast 

The perfect forecast metric reflects the fundamental energy balance between what was 

predicted and what actually occurred.  

The metric quantifies the amount of storage required to guarantee forecasts at a specific time 

horizon. It sets a high bar because, as a firm-power guarantee, it penalizes the most extreme 

cumulative over-prediction events. Unlike the resource adequacy metric or the real-time 

market correction metric, perfect forecasts force decisions not only in terms of instantaneous 

power, but also in terms of energy across extended periods. This is important because 

renewable energy is plentiful but doesn’t share the same ramp-up, on-demand characteristics 



 

82 

of conventional generation. This method quantifies that incremental cost if storage is required 

to guarantee PV forecasts. 

By scaling forecasts, the research team reduced the amount of storage needed to mitigate 

forecast errors regardless of the horizon. By paying just a 9.3-percent premium per kWh for 

curtailment and storage, the research team mitigated all hour-ahead forecast errors. This is a 

reduction from the 15-percent premium the research team would theoretically pay if no 

curtailment optimization were applied to correct hour-ahead errors shown in Table 7. The 

research team mitigated all 48-hour-ahead forecast errors with storage by paying a 28.5-

percent premium per kWh.  
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CHAPTER 8: 
Distributed Energy Resource Capacity Forecasting 

Introduction 
As solar PV and other DER technologies become available and more affordable, retail electric 

customers are increasingly turning to these on-site energy alternatives.  

Both residential and commercial utility customers are installing rooftop solar PV in increasing 

numbers. Energy storage options are also increasingly available and affordable for on-site 

energy management, propelled in part by high manufacturing volume in the EV sector. EVs 

themselves, with high charging consumption and controllable charge rates, are, in aggregate, 

affecting grid management. New options for electrification such as electric heat pumps for 

space heating and water heating, are also becoming available, replacing natural gas furnaces 

and water heaters. Smart thermostats and other smart devices now provide the means to shift 

flexible thermal loads to lower-cost time periods.  

Customer decisions to adopt DER technologies are motivated by a variety of factors. Some 

may seek to lower their utility bills or take advantage of federal tax incentives and short 

payback periods. Some may seek clean-energy alternatives to conventional fossil fuels due to 

personal environmental beliefs or a desire for energy independence. Some may be attracted to 

new technology, and some may respond to a combination of any of these factors. 

Whatever their reasons, the large number of utility customers adopting these DER 

technologies are significantly affecting California’s electric utilities. Overall grid-electricity usage 

decreases with on-site solar PV generation but increases with EV charging. Both impact utility 

revenues and, consequently, electric rate design. Depending on the technology, the timing of 

daytime electricity usage can shift. Battery dispatch, smart-thermal load control, and EV-

charging control all modify demand timing, ultimately affecting resource planning and 

changing wholesale electricity market operations. DER electrification decreases gas usage but 

increases electricity usage, which affects the financial outlook for both gas and electric utilities.  

It is not surprising then, that long-term DER forecasting methods play an important role in the 

state’s energy future. Accurate forecasts of solar PV capacity coming online will allow utility 

resource planners to better gauge the amount and types of new generation required to meet 

customer demand. Forecasts of new EV load and its charging demands will help electric 

resource planners and distribution engineers plan for additional distribution capacity and 

system protections. Hourly models of DER forecasts will enable rate designers to accurately 

design demand charges, energy charges, and time-of-use periods. Financial models, enhanced 

by forecasted DER adoption, will provide utility analysts with the data they need to estimate 

financial impacts to utility shareholders, customer-owners, and municipal-utility customers. 

DER capacity forecasts will enable energy policymakers to identify risks, design incentive 

programs, and plan for clean energy advances.  
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Approach 
CPR developed a logistic regression model using customer-level input data to forecast 

customer adoption of DER technologies. In this model, input data can be defined separately 

for each technology type. For example, to forecast PV adoption, inputs could include customer 

payback periods, demographic segments, or local customer adoption densities to date. The 

battery energy storage adoption forecast may include whether the customer has previously 

adopted PV and the number of prior outages on a local circuit. Electric vehicle adoption may 

include a binary input describing whether the customer evaluated the EV on a utility-provided 

informational tool. Other inputs could be considered based on data availability and tests of 

their significance, described in the next section. 

Model Overview 

The input data was first combined in a linear model, calculated for each customer by 

combining each input predictor variable (explanatory variable), weighted by a coefficient and a 

stand-alone intercept term. In logistic regression, the linear model represents the logarithm of 

the odds of adoption, or “logit,” thus defining the link function from which the probability is 

calculated. 

Model coefficients in logistic regression are determined using any of several statistical 

packages, such as those available in R or Python. These tools select coefficients that best fit 

customer responses to available training data. This is accomplished with the likelihood 

function, illustrated in Figure 44. The figure shows customers in the training data set as 

circles, with g(X) indicating the linear model, and with response coding “1” for adopters and 

“0” for non-adopters.  

For a given set of coefficients and intercepts, the transformed model (red line) is the 

probability of adoption π(X) as a function of g(X). The likelihood function is built from all 

customers; for each adopter, such as customer “A,” a factor π(X) is assigned, which is the 

probability of adoption. For each non-adopter, such as customer “B,” a factor 1-π(X) is 

assigned, which is the probability of not adopting. The likelihood function is the product of all 

factors across the customer set. The likelihood function is therefore a measure of fit, so the 

coefficients and intercepts maximize the likelihood function.  
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Figure 44: Building the Likelihood Function 

 

Source: Clean Power Research 

Future-year probabilities were calculated using the same model coefficients and suitable 

adjustments to the predictors themselves. For example, in year 10, input predictors could be 

modified using scenario assumptions about future installed-DER costs, electric rate structures, 

availability of federal tax credits, and other factors. Adoption density in year 10 could then be 

calculated from existing installed DERs and the cumulative probabilities of adoption for all 

customers. 

Customer Data Set 

Input data for approximately 600,000 electric customers in Northern California was used to 

validate the PV forecast model. Data included hourly loads for 2016, rate class, PV 

commissioning date, market segment, and location. From this, CPR developed and tested a 

logistic regression PV adoption forecast model for residential customers. 

Predictor Variables 

Predictor variables were defined for cost-effectiveness, adoption density, and market segment. 

The cost-effectiveness variable was the inverse payback; payback was calculated using year-

specific historical or future-year estimated PV installed costs, a calculation of annual bill 

amounts from hourly loads and time-correlated PV production, and year-appropriate 

incentives.  

Adoption density was defined as the prior-year cumulative PV adopter count in a 10-mile x 10-

square-mile region, centered at customer location. This is illustrated in Figure 45. If the model 

training year was t, then all prior adopters in year t-1 were counted in 2-mile x 2-mile cells 

throughout the service territory. In the illustration, three such adopters were found in the cell 

containing the customer, and 76 such adopters were found in the cells in the 5x5 matrix 

centered on that cell. The predictor variable for that customer in year t would therefore be set 

at 76. 
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Figure 45: Illustration of Adoption Density Calculation 

 

Source: Clean Power Research 

The market segment predictor was defined as a continuous score based on the number of 

prior PV adopters in the customer’s segment. For example, there were 10,512 customers in 

one specific segment. Of these, 151 adopted PV (1.43%) by the prior year. Percentages 

among all segments ranged from 0% to 3.37%. So, customers in this segment were assigned 

a predictor variable value of 0.0143/0.0337 = 0.424. 

Training 

CPR used customer data for 2014 and made a forecast for 2015 adoption. Having actual 

adoption data for both years enabled accurate forecast calculations. Only residential customers 

were included except in calculations of adoption density since, by definition, both residential 

and commercial PV systems were used in adoption density calculations.  

Results 
When a customer installs a DER technology, it changes that customer’s hourly load profile. 

Production patterns from new PV capacity follow changes in local meteorological conditions, so 

charge and discharge storage rates depend upon current states of charge and storage 

dispatch algorithms. Each DER technology similarly has a profile, potentially including both the 

production and absorption of energy. This energy represents net load.  

Modeling DERs also depends upon both physical sizing constraints and design attributes. In 

the case of PV, modeling depends upon the kW power rating of the system and other 

parameters including the tilt and azimuth angles of the panels. In the case of storage, 

maximum kW charge and discharge ratings must be determined, as well as energy storage 

capacity (kWh). Each technology has similar required attributes to model its output. 

Hourly production modeling, such as the California IOUs’ PV fleet production profiles, is subject 

to three broad categories of potential error. First, there are errors associated with forecasts of 

customer adoption. This error may follow from general difficulties in modeling complicated 

consumer behaviors, lack of input data sources, or errors in input data sources.  

Second, there may be errors associated with the technology’s assumed design attributes. A 

20-kW PV system will have twice the hourly output of a similarly configured PV system rated 
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for 10 kW. So, if the assumed average system forecast size is 20 kW when it is actually 10 kW, 

this would lead to an error of 100%. Similar modeling errors for all technologies will persist in 

system design attributes. For example, there will be errors introduced by assuming that a 

system is oriented due south while, in fact, it is oriented in a south-east direction. Similar 

errors would be associated with other design attributes, such as tilt, inverter efficiency, and 

loss factors. 

Finally, there are errors in production modeling itself. Inaccuracies in local irradiance data will 

cause PV production modeling errors. The assumed battery or EV charging algorithm will also 

result in estimated charging or discharging patterns that may differ from current patterns.  

Only errors related to the first type — DER adoption forecast errors — are covered in this 

section. This simplifies the analysis since the errors discussed follow only DER adoption 

modeling that is the subject of this report. Errors of the second and third types — design 

assumptions and production modeling — would be quantifiable using the methods described in 

the “Valuation of Error” chapter. Such an analysis could be performed, theoretically, a year 

after the installations. Hourly measurements could then be taken on these future installed 

systems and the actual cost of forecast error could be quantified.  

Test of Significance 

CPR developed defined variables based on consideration of what data could be good 

predictors of adoption. In general, variables that correlate or anti-correlate with adoption rates 

should be good predictors. However, the question remains as to whether a defined input 

variable actually improves the model. If a variable does not improve the model, then there is 

no benefit in including it. 

The coefficients themselves do not indicate significance. They are rather “calibration 

constants” that depend on predictor units and their definitions. Statistical libraries used for 

logistic regression include built-in inference tests for significance. CPR used the Wald test in 

this analysis. 

Here’s how the test works. The “null hypothesis” is when the predictor variable cannot indicate 

adoption. The research team therefore compared a model that includes the variable in 

question with a model where the variable was excluded. The comparison was therefore made 

using likelihood. 

The Wald test calculates the ratio of maximum likelihood of the variable’s coefficient to an 

estimate of its standard error. This follows a normal distribution. If the probability was small, 

the research team rejected the null hypothesis, and the predictor was said to be statistically 

significant. For example, if a two-tailed p-value for a given predictor is Pr(>|z|) < 0.001, it 

means that there is less than a 0.1 percent chance that the null hypothesis is correct. The 

research team could therefore conclude with high confidence that its predictor is statistically 

significant. 

While arbitrary, it is common practice to include all parameters with p-values less than 0.05. 

This practice was followed here. Results from the significance tests follow.  
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Goodness-of-Fit 

Even variables shown to be highly significant do not necessarily guarantee that the model 

closely fits the observed data. The test of significance only indicates that including the variable 

will result in a better model than excluding that variable. A test is therefore required to 

determine how good the model is overall in fitting modeled results to actual results when all 

predictor variables are included. 

In linear regression, R2 is a commonly used metric for goodness-of-fit. In logistic regression, 

there are several analogous alternatives. CPR selected the following formula: 

Goodness of Fit=1-(Residual Deviance)/(Null Deviance) 

This formula is analogous to R2 since the value is always between zero and one, and the closer 

it is to one, the better the fit. 

Null deviance measures how well the observed responses compare with the simplest of models 

with no predictors and only an intercept. In such a model, all customers are equally likely to 

adopt. Residual deviance is a measure of how well observed responses compare with actual 

responses, using all predictors and their coefficients. 

Aggregate Forecast Accuracy 

Finally, CPR defined a simple measure of forecast accuracy as the error in the aggregate 

number of forecasted adopters. If a forecast estimated the number of adopters to be 105 in a 

given year and the actual number was only 100, this measure indicates an aggregate forecast 

error of 5 percent.  

Adoption Forecast 

Results are shown in Table 8. The first two columns show predictor term names and symbols. 

The third column shows the corresponding coefficients that maximize the likelihood function. 

The last columns show the results of the significance test, the goodness-of-fit test, and the 

aggregate forecast error. 

All three predictors are shown to be statistically significant. Asterisk codes are shown only to 

reflect general significance levels. All predictors are statistically significant since they meet the 

criteria that p-scores must be under 5 percent. 

The goodness-of-fit metric is calculated as 0.056. This shows that the residual deviance 

(20,212) is better than, but not much better than, the null deviance (21,404). This suggests 

that it is difficult to determine high differentiation probabilities between customers. 

The forecast error is -1.8%, strong confirmation that the model is very good at predicting 

overall adoption for the residential customer base.  
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Table 8: PV Adoption Forecast Results 

 

Source: Clean Power Research 

Conclusions and Recommendations 
CPR developed a logistic regression model that forecasts DER technology adoption and 

demonstrates its PV adoption. Predictor variables were defined to reflect customer cost-

effectiveness, local adoption density, and market segment. All variables are statistically 

significant, but the ability of the model to differentiate customers by probability of adoption is 

not high. Overall, the forecast agreed within 2 percent of the actual adoption rate. 

This model provides the versatility required to forecast any DER technology, provided that 

suitable input data is available and adoption rates can be measured for training purposes. The 

model could be used to forecast batteries, EVs, flexible loads, and other technologies. 

Methods are described for calibrating the model, using best practices for logistic regression, 

applying the resulting model coefficients to calculate probabilities, testing for candidate 

predictor variable significance using the Wald test, measuring goodness-of-fit based on null 

deviance and residual deviance, and measuring aggregate forecast accuracy. 
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CHAPTER 9: 
Technology/Knowledge/Market Transfer 
Activities 

Overview 
To transfer the technology and knowledge to the energy industry, CPR and its partners (Itron, 

UCSD, Jim Blatchford, and SUNY) presented this project’s results to various industry 

conferences, published a journal article, provided data to a California DG Statistics website, 

and sent the project task report concerning California ISO integration to energy system 

operators both in the US and abroad.  

Conferences 
A summary of conference presentations follows. These conferences were all industry-

sponsored events, so specialized professionals attended. The Energy Systems Integration 

group meetings included energy system operators specifically engaged in renewable resource 

forecasting and grid integration.  

• American Meteorological Society Meeting, January 7-11, 2018, Austin, Texas: Wu E, 

Clemesha RE, Kleissl J. “Coastal Stratocumulus Cloud Edge Forecasts” 

• World Conference on Photovoltaic Energy Conversion (WCPEC-7), IEEE Photovoltaic 

Specialist Conference, June 10-15, 2018, Waikoloa, Hawaii: R. Perez, et.al, "A New 

Version of the SUNY Solar Forecast Model: A Scalable Approach to Site-Specific Model 

Training" (presented by M. Perez) 

• Energy Systems Integration Group Meeting, June 19, 2018, Minneapolis, Minnesota: T. 

Hoff, “Extending Fleet Forecasting Capability into the Probabilistic Realm” 

• American Solar Energy Society, Solar 2018 Conference, August 5-8, 2018, Boulder, 

Colorado: R. Perez et al., "PV Fleet forecasting — A New Version of the SUNY Model 

With Localized Satellite Training Scalability." 

• Association of Edison Illuminating Companies, March 26-29, 2019, Orlando, Florida: B. 

Norris, “DER Forecasting Methods” 

• 13th Annual ISO/RTO/TSO Summit, Itron User Group, May 6-7, 2019 Denver, Colorado: 

J. Blatchford, “Improve Irradiance Forecast Accuracy,” (Task 2); F. Monforte, “Integrate 

Holistic Forecast into California ISO Operations,” (Task 5) 

• Energy Systems Integration Group Meeting, June 4-6, 2019, Denver, Colorado: M. 

Perez, “Quantifying Forecast Error” 

Journal Article 
A peer-reviewed journal article was published by UCSD in the journal Solar Energy. This 

journal is the official journal of the International Solar Energy Society®, which is exclusively 

devoted to the science and technology of solar energy applications. 
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The article is available at: 

https://www.sciencedirect.com/science/article/pii/S0038092X18302056 

CaliforniaDGStats 
Project data developed for the DER Production Database were made publicly available on the 

California Distributed Generation Statistics (www.californiadgstats.ca.gov) website. This 

dataset updates and corrects an existing set of measured PV system production data from 411 

BTM systems throughout California. The data set was produced using specifications from the 

inference engine, CPR’s historical location-specific solar resource data, and CPR’s PV simulation 

model. Supplemental material, including this report, is also available for download. A 

screenshot is shown in Figure 46. 

Figure 46: Screenshot from CaliforniaDGStats 

 

CaliforniaDGStats website hosts a key data deliverable from the project, including supporting information 

such as the relevant task report. 

Source: CaliforniaDGStats (www.californiadgstats.ca.gov) 

Additional Contacts 
Itron sent the task report concerning California ISO integration to a number of ISO/RTOs and 

utilities. The report “Advanced Statistical Model Specifications for Incorporating On-Premise 

Solar PV Generation into a Short-Term Load Forecast Model” provides solar PV forecast 

improvement results and methods for assessing them. Recipients of the report include: 

• Australian Energy Market Operator, Jack Fox 

• Alberta Energy System Operator, Canada, Lars Renborg 

• Bonneville Power Association, Justin Rohrboug 

• California ISO, Amber Motley 

https://www.sciencedirect.com/science/article/pii/S0038092X18302056
http://www.californiadgstats.ca.gov/
http://www.californiadgstats.ca.gov/
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• El Centro Nacional de Control de Energía, Mexico, Jesus Valenzuela Balbastro 

• Electric Reliability Council of Texas, Calvin Opheim 

• Independent Energy System Operator, Ontario Canada, Andrew Trachsell 

• Independent System Operator New England, John Black 

• Midcontinent Independent System Operator, Blogoy Borissov 

• New York Independent System Operator, Arthur Maniaci 

• Southwest Power Pool, Gunnar Shaffer 

• Tennessee Valley Authority, Jeff House 

• Western Power (now part of the Australian Energy Market Operator, David Weinholz 

Ongoing Outreach 
Ongoing outreach and future plans include: 

• CPR is using improved forecasting methods derived from the project (Task 2, 

UCSD/SUNY Forecast Improvement) in its fleet forecasting for use by the California ISO, 

the IOUs, and out-of-state agencies. As CPR licenses its forecast software to new 

agencies (future licenses), embedded improvements will be available since they 

represent best practices for fleet forecasting. 

• Itron will be able to better integrate the BTM fleet forecast into its neural network 

model using the methods developed by this project (Task 5, Short-Term Load Forecast) 

for the California ISO. This is an ongoing process between Itron and the California ISO 

that will directly benefit the California grid, and knowledge of forecast improvements 

will continue to spur technical advances.  

• Data deliverables from Task 4, DER Production Database, will be usable by researchers, 

market analysts, policymakers, and others as a publicly available input data set. This 

data will continue to be offered for download for analysis where detailed 15-minute 

data is required.  

• CPR will incorporate the spec inference engine into its SolarAnywhere® software to 

support PV asset managers. One company is already using this as a new service, which 

was not previously available to the industry. The application improves modeling by 

quantifying the impacts of shading and other real-world solar PV generation factors not 

typically available from system installers. 
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CHAPTER 10: 
Benefits to Ratepayers 

Lower Costs 
Ratepayers benefit from an improved solar PV fleet production forecast because it will enable 

the California ISO to reduce net-load forecast uncertainty. This is because the cost of 

procuring both spinning and non-spinning reserves will be reduced, since fewer of these 

resources will be required.  

If uncertainty is high, grid operators must readily make available generating units for quick 

action when required to meet demand. This calls for additional capacity, which is costly. In 

most cases, it also calls for fossil-fueled spinning reserves that burn a small amount of fuel 

even when units are off line. These fossil-fuel spinning resources can ramp up to full power 

rapidly if needed, reducing the time required to meet electricity load.  

CPR developed forecast error valuation methodologies that will permit users to estimate the 
cost of improvements in forecast accuracy. These methods are also applied to forecast 

improvements developed in research from this project. Using the Resource Adequacy method, 
CPR estimates that the forecasting methods developed in this project will save California $176 

million over the next 30 years. Over time, these forecast error valuation methodologies will 
assist in the long-term resource planning process and could ultimately reduce the need for 
planned resources. 

Greater Reliability 

The project improves solar PV production forecasts, with great potential to increase power 

system reliability across California.  

Uncertainty in generation from both BTM and centralized solar PV generation imparts costs to 

ratepayers, because grid operators must carry spinning and non-spinning reserves to meet 

demand created by this uncertainty. Reducing uncertainty could potentially reduce the need 

for those required reserves.  

With reduced uncertainty leading to a higher probability of meeting net loads, reliability will 

increase. 

This project quantified specific reductions in reserve requirements. Project results will provide 

knowledge to grid operators and other California decision makers that will help the state plan 

for greater integration of DER generation while maintaining reliability standards. Based on the 

Resource Adequacy method, designed to eliminate 90 percent of forecast uncertainty, 

expected savings in the three-hour forecast would be $28 per kW of installed PV. 

Environmental Benefits 
Adoption of this project’s results will improve California’s environmental footprint, because 

greater DER generation will decrease use of fossil-fueled reserves, which would otherwise be 

required to accommodate PV forecast inaccuracy.  
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GLOSSARY AND LIST OF ACRONYMS 

Term Definition 

Azimuth The horizontal angular distance between the vertical plane containing a 

point in the sky and true north. 

BTM Behind-the-Meter: Generation connected on the customer side of the 

meter that impacts net load 

California ISO California Independent System Operator – the organization that manages 

the three IOU’s electricity grid in California  

Clear sky GHI The theoretical GHI under clear sky conditions 

Clear sky power The theoretical power output of a PV system or fleet under clear sky 

conditions 

CMV Cloud Motion Vector: A forecast method in which the location of clouds in 

the future are calculated based on their current location and the 

prevailing wind speed and direction. 

DAM Day-Ahead Market 

EPIC Electric Program Investment Charge 

FS Forecast Skill. This is a measure of forecast accuracy. 

GHI Global Horizontal Irradiance: A measure of the sun’s intensity as 

measured on a horizontal surface, including both the direct (beam) 

irradiance and the diffuse irradiance components. 

GOES Geostationary Operational Environmental Satellite: A satellite system, 

operated by the US National Oceanic and Atmospheric Administration, 

designed to support weather forecasting, severe storm tracking, and 

meteorology research 

HASP Hour-Ahead Schedule Process 

Kt Clearness index: percentage of clear sky, calculated by dividing GHI by 

clear sky GHI 

LMP Locational Marginal Price. This is the market price of power in a given 

hour at a given location. 

MAE 

 

Mean Absolute Error: A measure of forecast error based on the absolute 

difference in forecast versus measured value. 

MAPE Mean Absolute Percentage Error: A measure of forecast error based on 

the percentage difference in forecast versus measured value. 

MBE Mean Bias Error. This is a measure of forecast accuracy. 
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Term Definition 

Measured Load The load seen at the customer meter, or the actual load minus any 

generation. For this report, this refers to the aggregate of all customer 

metered loads at the California ISO load zone 

NNET Neural Network. This is a machine learning approach used in load 

forecasting. 

NWP Numerical Weather Prediction: Any of several mathematical models of the 

atmosphere and oceans to predict the weather based on current weather 

conditions.  

PG&E Pacific Gas and Electric; the IOU that provides natural gas and electricity 

to much of Northern California 

Reconstituted 

Load 

Measured Load with behind-the-meter solar PV generation added to form 

an estimate of electricity consumption 

rMAE Relative Mean Absolute Error: A measure of forecast error based on the 

relative difference in the mean difference of forecast versus measured 

value. 

RMSE Root Mean Square Error 

SCE Southern California Edison; the IOU that provides electricity to much of 

Southern California outside of San Diego 

SDG&E  San Diego Gas and Electric; the IOU that provides natural gas and 

electricity to San Diego and the surrounding area 

SolarAnywhere 

 

The Clean Power Research software family related to historical and 

forecast solar irradiance and solar PV energy system performance. 

Solar PV Solar Photovoltaic; a technology that uses semiconductors to convert 

solar irradiance into DC electrical power. This DC electrical power is 

usually converted to AC electrical power uses inverter(s). 

Sc Stratocumulus: A genus-type of clouds characterized by large dark, 

rounded masses, usually in groups, lines, or waves, the individual 

elements being larger than those in altocumulus, and the whole being at 

a lower height. 

SURFRAD The Surface Radiation budget (SURFRAD) network, developed for the US 

in the mid-1990s to support satellite system validation; numerical model 

verification; and modern climate, weather, and hydrology research 

applications. 
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