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PREFACE 

The California Energy Commission’s Energy Research and Development Division manages the 

Natural Gas Research and Development Program, which supports energy-related research, 

development, and demonstration not adequately provided by competitive and regulated 

markets. These natural gas research investments spur innovation in energy efficiency, 

renewable energy and advanced clean generation, energy-related environmental protection, 

energy transmission and distribution and transportation.  

The Energy Research and Development Division conducts this public interest natural gas-

related energy research by partnering with RD&D entities, including individuals, businesses, 

utilities and public and private research institutions. This program promotes greater natural 

gas reliability, lower costs and increases safety for Californians and focused in these areas: 

• Buildings End-Use Energy Efficiency.

• Industrial, Agriculture and Water Efficiency

• Renewable Energy and Advanced Generation

• Natural Gas Infrastructure Safety and Integrity.

• Energy-Related Environmental Research

• Natural Gas-Related Transportation.

Multihazard Investigation of Climate Vulnerability of the Natural Gas Energy System is the final 

report for the Multi-Hazard Investigation of Climate Vulnerability of the Natural Gas Energy 

System in Southern California project (Contract Number 500-15-005) conducted by the 

University of California, Irvine. The information from this project contributes to the Energy 

Research and Development Division’s Natural Gas Research and Development Program. 

For more information about the Energy Research and Development Division, please visit the 

CEC’s research website (www.energy.ca.gov/research/) or contact the CEC at 916-327-1551. 

http://www.energy.ca.gov/research/
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ABSTRACT 

California needs to address energy security concerns while considering the potential impacts of 

climate change on the state’s energy infrastructure. Infrastructure systems such as natural gas 

pipelines are experiencing changes in exposure to natural hazards across California. 

Consequently, infrastructure will likely face more severe climatic conditions in a warming 

climate with potential societal and economic consequences. Infrastructure design has 

historically relied on the notion of stationarity, which assumes that statistics of hydroclimatic 

extremes such as rainfall or streamflow do not change over time. The necessity to adapt 

infrastructure to climate extremes was recognized by California Legislature in Assembly Bill 

2800, which aimed to start the process to ensure the long-term resilience of infrastructure 

throughout the state. Through California Senate Bill 100, California set goals to eliminate its 

reliance on fossil fuels and move to zero-carbon energy sources for its electricity needs by 

2045. This project explored quantifying climate change impacts on different climatic hazards 

that can potentially affect natural gas infrastructure systems such as extreme rainfall, coastal 

and inland flooding, and wildfires. Following scenario guidelines of the California’s Fourth 

Climate Change Assessment, the research team used downscaled climate data with a 1/16 

degree spatial resolution from selected Coupled Model Intercomparison Project Phase 5 

models. The results show that the exposure of natural gas infrastructure in response to 

individual and compounding effects of hazards is expected to increase substantially in a 

warming climate.  

Keywords: compound hazards, energy infrastructure, exposure, climate change 
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Commission. 

Publication Number: CEC-500-2020-071.



iv 



 

 

v 

TABLE OF CONTENTS  

Page 

ACKNOWLEDGEMENTS ......................................................................................................... i 

PREFACE ............................................................................................................................ ii 

ABSTRACT ......................................................................................................................... iii 

EXECUTIVE SUMMARY ........................................................................................................1 

Introduction .....................................................................................................................1 

Project Purpose ................................................................................................................1 

Project Results .................................................................................................................1 

Knowledge Transfer (Advancing the Research to Market) ...................................................3 

Benefits to California ........................................................................................................3 

CHAPTER 1: Introduction ....................................................................................................5 

CHAPTER 2: Project Approach .............................................................................................9 

2.1 Increasing Exposure of Energy Infrastructure to Climate Hazards ..................................9 

2.1.1 Data .....................................................................................................................9 

2.1.2 Method............................................................................................................... 10 

CHAPTER 3: Project Results ............................................................................................... 13 

3.1 Increasing Exposure of Energy Infrastructure to Climate Hazards ................................ 13 

3.1.1 Changes in Precipitation Intensity-Duration-Frequency Curves ............................... 13 

3.1.2 Changes in Inland Flood Hazard ........................................................................... 21 

3.1.3 Changes in Inland Flood Hazard ........................................................................... 25 

3.1.4 Change in Exposure of Gas Pipelines to Climate Hazard ......................................... 28 

CHAPTER 4: Knowledge Transfer Activities ......................................................................... 37 

CHAPTER 5: Conclusions/Recommendations ....................................................................... 38 

CHAPTER 6: Benefits to Ratepayers ................................................................................... 40 

REFERENCES .................................................................................................................... 42 

APPENDIX A-1: Detailed Method ...................................................................................... A-1 

APPENDIX A-2: Tables of Precipitation Intensity-Duration-Frequency ................................. A-2 

APPENDIX B-1: Regarding Twenty-First Century Temperature Changes Over California: 9-km 

Hybrid Downscaling......................................................................................................... B-1 

APPENDIX B-2: Regarding 1981–2014 90-m Temperature Simulations and End-of-21st-Century 

90-m Temperature Simulations .......................................................................................B-14 

APPENDIX C: Regional Climate Symposia Summary........................................................... C-1 



 

 

vi 

APPENDIX D: Dynamic Modeling of Grid-Scale Hydrogen Energy Storage Using the Natural Gas 

System ........................................................................................................................... D-1 

 

LIST OF FIGURES 

Page 

Figure 1: Change in 25-Year Intensity-Duration-Frequency Curves Under RCP4.5 ................. 14 

Figure 2: Change in 50-Year Intensity-Duration-Frequency Curves Under RCP4.5 ................. 15 

Figure 3: Change in 100-Year Intensity-Duration-Frequency Curves Under RCP4.5 ................ 16 

Figure 4: Change in 25-Year Intensity-Duration-Frequency Curves Under RCP8.5 ................. 17 

Figure 5: Change in 50-Year Intensity-Duration-Frequency Curves Under RCP8.5 ................. 18 

Figure 6: Change in 100-Year Intensity-Duration-Frequency Curves Under RCP8.5 ................ 19 

Figure 7: Change in Extreme Precipitation Return Periods  for Major Cities in California ......... 20 

Figure 8: Change in Flood Hazard ...................................................................................... 21 

Figure 9: Change in Flood Hazard Over Leveed Region of California Under RCP4.5 ............... 22 

Figure 10: Change in Flood Hazard Over Leveed Region of California Under RCP8.5 .............. 24 

Figure 13: Change in Compound Hazard............................................................................. 26 

Figure 14: Compound Hazards Density Distribution ............................................................. 26 

Figure 15: Distribution Natural Gas Pipeline Runoff Exposure ............................................... 27 

Figure 16: Natural Gas Pipeline Wildfire Exposure ............................................................... 27 

Figure 17: Length of Natural Gas Pipeline in Leveed Area .................................................... 29 

Figure 18: Number of Power Plants in Leveed Area ............................................................. 30 

Figure 19: Natural Gas Pipeline Exposure to Flood Hazard in Leveed Area ............................ 31 

Figure 20: Natural Gas Pipeline Exposure to Coastal Storm .................................................. 33 

Figure 21: Natural Gas Pipeline Exposure to Tidal Flooding .................................................. 34 

Figure 22: Natural Gas Pipeline Exposure to Coastal Storm and Sea Level Rise Compound 

Flooding ........................................................................................................................... 35 

Figure 23: Power Plants Exposure Matrix for Los Angeles County ......................................... 36 

Figure B1-1: Elevation (m) and model setup in this study with two one-way nested WRF 

domains (labeled D01 and D02) at resolutions of 27 and 9 km........................................... B-4 

Figure B1-2: Elevation (m) and model setup in this study with two one-way nested WRF 

domains (labeled D01 and D02) at resolutions of 27 and 9 km........................................... B-7 



 

 

vii 

Figure B1-3: (top) WRF March warming patterns (℃). (bottom) StatWRF March warming 

patterns ......................................................................................................................... B-8 

Figure B1-4: Temperature changes between 2081–2100 and 1981–2000 for (top) linearly 

interpolated GCM ∆T (℃) averaged from 31 RCP8.5 GCMs, and (bottom) as in (top), but for 

StatWRF ∆T (℃) ............................................................................................................. B-9 

Figure B1-5: StatWRF ∆T warming estimations in California between 2041-2060 and 1981-

2000 periods and between 2081-2100 and 1981-2000 for RCP4.5 and RCP8.5 ..................B-10 

Figure B2-1: Study domain’s a) elevation, b) canopy cover fraction, and c) land cover type in 

90-m resolution. Abbreviations in c) represent Water body (Wtr), Developed (Dvl), Barren 

(Brr), Forest (Frs), Shrubland (Shr), Herbaceous land (Hrb), Planted (Pln), and Wetland (Wtl)

 B-15 

Figure B2-2: Mean changes of surface air temperature (∆Ta) and daily precipitation (∆PPT) 

between future GCM simulations (2081–2100 with scenario RCP 8.5) and historical baseline 

(1981–2000). .................................................................................................................B-16 

Figure B2-3: Comparison of Ta between observations collected in CIMIS sites and model 

estimates: a) all data from October, 1991 to September 2001, b) monthly mean. Data are 

averaged across all 137 CIMIS sites ................................................................................B-18 

Figure B2-4: Average air temperature in winter months (December, January, and February): a) 

historical and b–f) projected temperature change from selected GCMs. .............................B-19 

Figure B2-5: Same as Figure B2-4, but for summer months (June, July, and August). ........B-20 

Figure B2-6: a) Mean air temperature for winter months (December-February, blue dots) and 

summer months (June-August, red dots) during the historical time period for major cities in 

State of California. b) Projected temperature changes from GCMs. The vertical bar represents 

standard deviation cross GCMs. ......................................................................................B-21 

Figure D-1: SoCalGas System Map ................................................................................... D-4 

Figure D-2: Schematic of the Hydrogen Energy Storage System ......................................... D-5 

Figure D-3: Annual Hydrogen Energy Storage Capacity Starting at Full Capacity ................. D-9 

Figure D-4: Annual Hydrogen Energy Storage Capacity for Various Scaling Factors Starting at 

Half Capacity .................................................................................................................. D-9 

Figure D-5: Annual Hydrogen Energy Storage Capacity for Various Scaling Factors Starting at 

Half Capacity ................................................................................................................ D-11 

Figure D-6: SoCal Transmission Pipelines Used in Modeling ............................................. D-12 

Figure D-7: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through Pipe 1-2 . D-13 

Figure D-8: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through Pipe 3-4 . D-13 

Figure D- 9: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through Pipe 5-6 D-14 

Figure D-10: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through Pipe 7-8 D-14 

Figure D-11: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through Pipe 1-2 . D-15 



 

 

viii 

Figure D-12: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through Pipe 3-4 . D-15 

Figure D-13: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through Pipe 5-6 . D-16 

Figure D-14: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through Pipe 7-8 . D-16 

 

LIST OF TABLES 

Page 

Table 1: Levee Systems That Protect Highest Length of Natural Gas Pipeline ........................ 32 

Table A-1: 25-yr Return Period Intensity-Duration-Frequency curves based on historical 

records (NOAA) and future climate (RCP 4.5 and RCP 8.5). ............................................... A-2 

Table A-2: 50-yr Return Period Intensity-Duration-Frequency curves based on historical 

records (NOAA) and future climate (RCP 4.5 and RCP 8.5). ............................................... A-4 

Table A-3: 100-yr Return Period Intensity-Duration-Frequency curves based on historical 

records (NOAA) and future climate (RCP 4.5 and RCP 8.5). ............................................... A-6 

Table D-1: Southern California Gas Company Natural Gas Underground Storage ................. D-3 

Table D-2: Land Use Requirement for Different Solar PV Power Plants in SoCal ................ D-16 

  



 

 

1 

EXECUTIVE SUMMARY  

Introduction  
Rapid increases in population and fiscal constraints have challenged California’s ability to 

maintain adequate levels of public infrastructure. Combined with increasingly severe and 

frequent natural hazards, strategic planning for California’s infrastructure is essential. The 

natural gas infrastructure is among the most reliable and resilient to natural disasters. 

However, California’s natural gas lines can be vulnerable to the increased frequency and 

intensity of wildfires and floods, extreme precipitation events, and sea level rise driven by 

climate change. For instance, increases in flooding along the coast of California due to sea 

level rise can result in more pipelines remaining in near water-saturated conditions for longer 

periods. Therefore, different requirements for pipe materials, strength, and wall thickness are 

necessary to account for this new condition. If the design of the pipelines did not incorporate 

the changing climate conditions, then the useful life of gas pipelines may be reduced, and 

more frequent pipeline replacement and repairs will be necessary. The effects from exposure 

of natural hazards on the energy infrastructure has the potential to cause significant economic 

and societal damage (such as power outages). In an effort to plan for and mitigate such 

damages, studies must be conducted to quantify the impacts of these natural hazards. Studies 

have been performed on the changes of climate hazards and their associated impacts. 

However, studies on multiple climate events occurring simultaneously or consecutively are only 

beginning to be investigated. 

Project Purpose  
In this study, the research team analyzed climate change impacts on different hazards that 

can potentially impact natural gas infrastructure systems (for example extreme rainfall, coastal 

and inland flooding, and wildfires). The study targets the changes and impacts of these natural 

hazards on natural gas infrastructure. This report addresses technical gaps in the pursuit of 

achieving California clean energy goals by specifically analyzing the possible exposure of 

natural gas infrastructure to natural hazards in the future and addressing multiple co-occurring 

natural hazards. In this report, climate change impacts refer to exposure of natural gas 

infrastructure to climate extremes, and not necessarily economic or other physical damages. 

This analysis will guide policy makers to make informed decisions, reducing the economic 

burden on California ratepayers. 

Project Results  
The team achieved the project goals and objectives. The changes in natural hazards along key 

natural gas infrastructure were determined for different future climate scenarios, based on 

different greenhouse gas concentrations. Climate change is expected to have significant 

impacts on air temperature in California, but these impacts are not yet quantified at very fine 

scales (such as hundreds of meters or finer). The possible projected increase in temperatures 

can increase severity and frequency of climate extreme events such as wildfire activity across 

California.  

Specifically, in this project, floods and wildfires were considered, and it was determined that 

under a fossil fuel intensive “business as usual” climate scenario, there would be an average of 

more than double the exposure of natural gas infrastructure to wildfires across most of 
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California. Furthermore, it was determined that major cities such as Los Angeles, San 

Francisco, and Sacramento will receive almost twice the precipitation rate over seven days for 

an extreme precipitation event under ‘business as usual’ climate scenario by the end of 21st 

century relative to a 1950-1999 baseline.  

Increases in intensity, duration, and frequency of extreme precipitation can adversely impact 

the integrity of infrastructure and natural and engineered slopes. For example, results 

demonstrate that levee systems in the northern part of Central Valley and coastal counties of 

Southern California, which protect hundreds of miles of natural gas pipelines, experience the 

highest likelihood of changes in flood hazard in the latter half of the 21st century. Therefore, 

the infrastructure protected by these levee systems may observe higher rates of exposure to 

flooding in the future. 

Additionally, the research shows that regional patterns of exposure of natural gas pipelines to 

individual/compounding effects of hazards are significantly different. Considering the 

compounding impacts of concurrent hazards is even more important when dealing with aging 

infrastructure with declining resilience to natural hazards. The researchers studied the changes 

of extreme climate events and natural hazards from multiple perspectives, including analyzing 

the change in how often (on average) an event with a certain magnitude would occur and the 

change in the magnitude of an event associated with a certain likelihood in a warming climate. 

This report refers to these occurrences as the return period and return level, respectively, of 

different natural hazards in a warming climate. The analysis was robust and filled in the 

knowledge and data gaps necessary to achieve the objectives of the study. It is important to 

note that the results are based on climate models and statistical methods, making the findings 

subject to model and parameter uncertainty.  

The major lesson learned in this study was the shift in magnitude of extreme events that 

California’s natural gas infrastructure is projected to be exposed to by the latter half of the 21st 

century. The results show that extreme precipitation-related events — such as those that are 

expected to occur every 50 or 100 years — will likely become more frequent. (Note: A 50-year 

event is one that has a 2 percent chance of happening in any year, and a 100-year event is 

one that has a 1 percent chance of happening in any year.) For example, climate model 

simulations project that the frequency of what is now referred to as a 50-year event will 

double in the future in many parts of the state under representative concentration pathways 

8.5 (such as in San Diego, Santa Barbara, San Jose, San Francisco and northern California). 

Additionally, results show that in areas such as Los Angeles County and Orange County the 

exposure to compounding impacts of SLR and coastal storm increases exponentially 

(compared to current mean sea level and coastal flooding) when sea levels increase. For 

example, this may mean that a storm of a certain magnitude that, at present, is considered to 

be a 100-year coastal storm, would be expected to become frequent tidal flooding when there 

is a sea level rise of 1.5 m. Thus, any infrastructure that is in the flooding zone will be exposed 

to extreme flooding more frequently by the end of the century than that it is now. Such 

information can be used to design new infrastructure and retrofit existing infrastructure. 

In considering natural gas infrastructure, the research team modeled integrating hydrogen 

energy storage with large-scale renewable power using the capabilities of the existing 

California natural gas infrastructure. The gedanken experiment described in Appendix D gives 
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insight into the potential contribution that the natural gas system could make toward balancing 

a highly renewable electric grid in the future.  

Knowledge Transfer (Advancing the Research to Market) 
In this report, the research team analyzed the impact of rising natural hazards from a warming 

climate on energy infrastructure. The analysis was informative to policy makers and 

stakeholders for future climate adaptation plans. The research team met with stakeholders 

and presented their work in open forums to transfer the knowledge to decision makers and 

the general public. Furthermore, the researchers will continue to work with the California 

Energy Commission, Southern California Gas Company and stakeholders to inform them based 

on the analysis in this report. 

In addition to the stakeholder outreach performed by the research team, Local Government 

Commission (LGC) and Climate Resolve contributed to further public and stakeholder outreach 

as part of this project. Their work, presented in Appendix C to this report, included the 

organization of four regional climate symposia in the Inland Desert, Los Angeles, San Joaquin 

Valley, and Central Coast regions, with speakers from public agencies such as the Strategic 

Growth Council, the Governor’s Office of Planning and Research, and the California Energy 

Commission; as well as nonprofits, universities, and private sector organizations such as 

TreePeople, Los Angeles Regional Collaborative for Climate Action and Sustainability, UC 

Irvine, UCLA, Scripps Institution of Oceanography, and Southern California Gas Company. 

Participants included representatives from state and local government, academic institutions, 

and community-based organizations, and each event earned local and regional media 

coverage. 

Benefits to California  
This research is important to ratepayers because it provides information to decision makers to 

plan for and mitigate the costly impacts of rising natural disasters associated with a changing 

climate. The potential cumulative damage to infrastructure until the end of the century may 

cost many times more than upgrading existing infrastructure. The results of this study can be 

used to design improved structures for natural gas pipelines (such as creating levees that 

guard against more extreme river discharge) considering possible future climate changes.  

Parts of this report contributed to California’s Fourth Climate Change Assessment. Specifically, 

this research supported examination of potential changes in extreme precipitation events, 

developing what is known as intensity-duration-frequency curves. Engineers use these curves 

in the design of infrastructure including natural gas physical assets. In turn, the authors of the 

report for AB 2800 (Paying it Forward: The Path Towards Climate-Safe Infrastructure in 
California) used these curves as an example on how to translate information on climate 

projections in a way that engineers can use. This contributes to a new area of research that 

brings together climate scientists and engineers. In 2018, the California Public Utilities 

Commission opened a rulemaking to consider strategies and guidance for climate change 

adaptation for electric and natural gas utilities (proceeding number R.18-04-019). Studies like 

this are providing material for consideration in the preparation of plans and guidance 

documents for the CPUC proceeding and other similar efforts.  
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CHAPTER 1: 
Introduction 

In the past decades, anthropogenic emissions have increased triggering more natural hazards 

that cause damage to infrastructure such as leaves, dams, roads and energy infrastructure 

systems (Das et al., 2011; Jongman et al., 2014). For instance, the observed increase in 

extreme temperatures can increase the risk of wildfires (Turco et al., 2017). Extensive wildfire 

during the dry season may enhance the risk of debris flow and sediment transport in the 

following wet season (Williams et al., 2014), threatening populations and infrastructure. The 

risk of wildfires is also intensified by those extreme weather conditions leading to power line 

system failure and consequent fire ignition in highly populated environments (Mitchell, 2013). 

Higher surface temperatures can also alter the global water cycle by increasing the number of 

heavy precipitation events. Heavier precipitation events, in turn, exacerbate the risk of fluvial 

and pluvial flooding (Field et al., 2014). In addition, recent studies have shown that, given the 

expected increase in future precipitation, there is a high chance of substantial impact on 

landslide activity in natural slopes (Robinson et al., 2017) and on the performance of man-

made earthen structures (Jasim et al., 2017; Vahedifard et al., 2017b), calling into question 

the current procedure for infrastructure design and risk assessment.  

Flood-prone areas can experience additional loss of life because of transport network 

disruptions and power outage due to flooding, which impede rescue operations and medical 

assistance. The risk of flooding is also exacerbated by sea level rise, which represents a special 

threat to the California coast. Critical infrastructure will also be exposed to coastal flooding 

inundation and the estimated damage is to be nearly $100 billion (in year 2000 dollars; 

Heberger et al., 2009). 

Moreover, current methods for the design of infrastructure such as leaves, dams, roads, and 

energy infrastructure systems are based on the so-called stationary assumption that assumes 

the statistics of extremes and distribution of the underlying variables do not change over time 

(Sadegh et al., 2015). For example, engineers use rainfall Intensity-Duration-Frequency (IDF) 

curves for estimating the design storm intensity and the corresponding flow. Rainfall IDF 

curves show the magnitude of an extreme event with a certain duration and expected 

recurrence interval based on historical observations. The process of estimating IDF curves 

requires fitting a representative distribution function to the observed rainfall data (Bonnin et 

al., 2006). Traditionally, the parameters of the distribution function are estimated under the 

stationary assumption (i.e., time invariant parameters), meaning that no significant changes 

are expected in the characteristics (e.g., magnitude and frequency) of rainfall extremes over 

time. However, in a warming climate, the assumption of stationarity may not be necessarily 

sufficient (Milly et al., 2008). 

The projected warming and expected changes in precipitation and snow patterns are 

anticipated to change river flows (Alfieri et al., 2015; McCabe and Wolock, 2014; Nazemi and 

Wheater, 2014). A warmer climate may drive earlier snowmelt, reduce snowpack, change the 

seasonality of river flows and instigate changes in snow to rain ratio (Cayan et al., 2001; 

Harpold et al., 2017; Knowles et al., 2006; Mao et al., 2015). These changes are even more 
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important in regions like California, where streamflow relies on winter snow accumulation 

(Diffenbaugh et al., 2015; Li et al., 2017). In recent years, California has experienced a series 

of flooding events (Vahedifard et al., 2017a) on the heels of a 5-year drought (AghaKouchak 

et al., 2014; Hardin et al., 2017). In 2017, a major flood in Northern California led to structural 

failure of Oroville Dam’s spillway that triggered the evacuation of about 200,000 people. 

Several studies have documented that warm and wet storms brought by atmospheric rivers 

(AR) during winter may cause severe flooding in California (Barth et al., 2016; Dettinger, 

2011; Leung and Qian, 2009; Ralph et al., 2013). Jeon et al. (2015) used 10 CMIP5 climate 

models to show that AR events in warming climate would bring more frequent and severe 

storms to California in the future. Similarly, Payne and Magnusdottir (2015) used 28 CMIP5 

models in a study where they projected up to 35 percent increase in AR landfall days. 

Dettinger (2011) have shown that potential increases in the magnitude and frequency of AR 

events in the future can cause more severe and frequent flooding events in California. 

It is essential to recognize that climate change impacts do not occur in isolation but are 

strongly coupled. For instance, floods and debris flow pose a significant threat to energy 

infrastructure, especially when extreme rain falls over burned areas. A recent example was the 

devastating debris flow in Montecito, California that killed at least 20 people and injured many 

more. The event occurred about a month after a major wildfire that scorched over 440 square 

miles in Southern California. This is an example of compound events in which two concurrent 

or consecutive events lead to extreme impacts.  

Though there is significant variability in the ways to define/discuss extreme events across 

disciplines (McPhillips et al., 2018), in general, compound events (or compound hazards) 

correspond to combinations of two or more dependent drivers that yield extreme impacts and 

pose significant societal or environmental risk (Leonard et al., 2014; Zscheischler and 

Seneviratne, 2017). The compounding impacts can be grouped into the following categories:  

1. Two or more extreme events occurring simultaneously or successively.  

2. Combinations of extreme events with underlying conditions that amplify the impact of 

the events. 

3. Combinations of events that are not themselves extremes but lead to an extreme event 

or impact when combined (IPCC, 2012).  

In these situations, the resulting impacts due to compounding effects are expected to be 

significantly more severe than those due to individual hazard drivers in isolation, and thus 

ignoring these compounding effects may yield inappropriate characterization of posed risk 

(Sadegh et al., 2018). 

Wildfires followed by severe flooding in the western United States are examples of compound 

hazards, under which the impacts are intensified by the succession of two natural hazards 

(NFIP, 2012). Both the frequency and intensity of wildfires in the western US have significantly 

increased over the last few decades (Dennison et al., 2014). This rise is associated with many 

factors including human-caused climate change, and more specifically climate warming and 

drought severity (Abatzoglou and Williams, 2016; Westerling, 2016). This extensive wildfire 

during the dry season may enhance the risk of flooding by increased hydrologic vulnerability 

stemming from elevating soil exposure to runoff and erosion processes (Williams et al., 2014). 

Wildfires disturb hydrologic characteristics of the watershed such as evapotranspiration (Poon 
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and Kinoshita, 2018), baseflow (Kinoshita and Hogue, 2011) and surface water yield, which 

not only affect the quantity of the delivered runoff, but also the quality and concentration of 

suspended materials (Burke et al., 2013; Florsheim et al., 2017). That makes debris-flow 

activity among the most destructive consequences of post-wildfire effects. Fire-related debris 

flows can be intensified by erosion and entrainment of material by surface runoff and 

infiltration-triggered failure and mobilization of a discrete, shallow landslide mass (Parise and 

Cannon, 2017). 

On the other hand, there is robust evidence of increased coastal flooding due to sea level rise 

(SLR) (Kriebel et al., 2015; Moftakhari et al., 2017, 2015; Vitousek et al., 2017; Woodruff et 

al., 2013). The rate of exposure to flooding may, however, depart from sea level rates due to 

local patterns of topography and development (Kulp and Strauss, 2017). The projected 

increase in the risk of coastal flooding is partially explained by raised exposure due to 

population and economic growth (Curtis and Schneider, 2011; Garschagen and Romero-

Lankao, 2015; Hallegatte et al., 2013). While the research team expected this more frequent 

flooding would adversely affect the coastal infrastructures, there are limited assessments on 

projected impacts of long-term changes in the literature (Forzieri et al., 2018; Hill, 2015; Wang 

et al., 2017). 

Energy infrastructure is vulnerable to climate conditions in numerous ways (Cruz and 

Krausmann, 2013; Mukherjee et al., 2018; Schaeffer et al., 2012). By the 2080s, for example, 

an overall climate risk of € 8.2 million/year to the energy sector is expected in Europe (Forzieri 

et al., 2018). In California, substantial new investment is required for an additional 38.5 

percent peak generation capacity to compensate the decreased efficiency of generators and 

substations, and the increased demand by the end of the 21st century (Sathaye et al., 2012). 

Also, about two thirds of mega-cities with populations above 5 million are located in the low-

elevation coastal zone (Abadie et al., 2016). Coastal population densities are nearly three 

times that of inland areas, and they are increasing exponentially (Field et al., 2014; Neumann 

et al., 2015). This growth in urbanization/population is usually accompanied by costly 

infrastructural development in coastal regions (Mansur et al., 2016; Tessler et al., 2015). 

Energy infrastructure is among the most basic and vulnerable coastal infrastructures, where 

interruption in their serviceability may yield disastrous conditions (Brown et al., 2014). Natural 

gas pipelines are especially sensitive to change in flooding and wildfires (Forzieri et al., 2018; 

Schaeffer et al., 2012). Therefore, the exposure of natural gas pipelines to possible changes in 

climatic hazards must be further explored to accurately estimate the failure probability 

(Moftakhari et al., 2017). 

The overarching goal of this report is to determine the changes and exposure of natural 

hazards (precipitation events, floods, sea level rise, and wildfires) on natural gas infrastructure 

due to a warming climate. To do this, historical and future projections are used to assess the 

exposure of energy infrastructure under single or multiple climatic drivers. This study focuses 

on assessing the exposure of energy infrastructure due to extreme precipitation, flooding, and 

wildfires. Hydroclimatic extremes are interdependent, so the research team further investigate 

the impact on infrastructure system resulting from the interaction between multiple drivers. 

Climate change is predicted to have notable impacts on air temperature however impacts are 

not yet quantified at very fine scales. Therefore, UCLA researcher used a hybrid dynamical–

statistical approach to develop high resolution (i.e., 9 km and 90 m) temperature projections 
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over California (Appendix B1 and B2). In a warmer climate, intense rainfall hazard is also 

expected to be higher due to increased water vapor holding capacity of the atmosphere and 

change in precipitation pattern (Hirabayashi et al., 2013). Thus, the expected climate change-

induced alteration in heavy-precipitation and high-temperature extremes (Fischer and Knutti, 

2015) may yield growing susceptibility to compound hazards. The more intense/frequent 

extreme compound hazards significantly threaten infrastructures, depending on their 

vulnerability to each specific hazard (Forzieri et al., 2018).   

In this study, the research team first quantify the climate-induced stressors on California 

natural gas pipelines, resulting from a single climatic extreme or from concurrent/consecutive 

climatic extremes. Then the research team quantify the change in the exposure of natural gas 

pipelines as a consequence of single or multiple natural hazards and determine the regions 

with elevated projected hazard. They also seek to address the possible changes in flood 

hazard over the leveed area of California and quantify the change in the exposure of natural 

gas pipelines to flooding over the levee protected regions. Finally, the researchers quantify the 

change in the exposure of natural gas pipelines to coastal flooding for Los Angeles and Orange 

counties in Southern California due to sea level rise. The results of this report are based on 

model outputs and statistical tools, making them subject to uncertainty. However, they are a 

means to provide valuable information about possible exposure of energy infrastructure to 

natural disasters. 
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CHAPTER 2: 
Project Approach 

2.1 Increasing Exposure of Energy Infrastructure to Climate 
Hazards 

2.1.1 Data 

The climatic data used in this study are all based on the downscaled climate simulations and 

projections from Localized Constructed Analogs (LOCA) by Scripps Institution of Oceanography 

(Pierce et al., 2014). There are two major uncertainties in climate models when projecting 

future climate changes. First, there is uncertainty in the physics contained in the global climate 

models (GCMs) simulations of future environments, such as hydrological processes, cloud 

formation, and wind circulations. Second, there is uncertainty due to the spatial scale of GCMs, 

which cannot accurately resolve the complex topography of California, including its coasts, 

valleys, and high mountains. Therefore, the use of downscaling techniques to convert the 

coarse spatial resolution in GCMs to high resolution hydrological variables is an inevitable step 

for the climate change impacts assessment studies (Mehrotra and Sharma, 2016).   

The Variable Infiltration Capacity (VIC; Lohmann et al., 1998) model is driven by the high-

resolution Localized Constructed Analogs (LOCA) downscaled and bias-corrected minimum and 

maximum temperature, and precipitation. The LOCA downscaling method has shown, for 

California, a superior performance to its predecessors including Multivariate Adapted 

Constructed Analogs (MOCA). California’s Fourth California Climate Change Assessment used 

LOCA projections as a basis for climate resilience research. The LOCA method “produces 

downscaled estimates suitable for hydrological simulations using a multiscale spatial matching 

scheme to pick appropriate analog days from observations” (Pierce et al., 2014). LOCA 

reduces the averaging of analog days that other existing methods typically use and constructs 

a downscaled area (field) that best matches (historically observed) weather in a local region 

around the point being considered.   

Cal-Adapt (http://cal-adapt.org) provides access to LOCA climate data including precipitation 

and generated total runoff at spatial resolution of 1/16º (approximately 6 km) and daily 

temporal resolution all over the State of California for the period of 1950 to 2099. LOCA data 

have also been used as input to models for wildfire intensity projections. The projections from 

four General Circulation Models (GCMs) prioritized by the Fourth Assessment, namely 

HadGEM2-ES, CNRM-CM5, CanESM2 and MIROC5 under Representative Concentration 

Pathways (RCP) 4.5 and 8.5 are obtained to represent warm/dry, cool/wet, average and 

complement climate conditions in California. While the daily values for precipitation and runoff 

are provided in kg/m2/s and m3/s, the monthly wildfire intensity is estimated in hectares.   

For infrastructure exposure assessment the researchers obtain data about the distribution of 

natural gas pipelines of California from U.S. Energy Information Administration 

(https://www.eia.gov). This dataset includes information about the interstate and intrastate 

natural gas pipelines for states with State Natural Gas Pipeline Programs in the USA (Stafford, 

2017), including California. Worth noted that the data set does not include information 
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regarding the elevation of pipelines, so exposure here could either refer to complete/partial 

inundation of pipeline or exposure of supporting structures (e.g. piers). Information related to 

the leveed area of California are obtained from the National Levee Database (NLD) maintained 

by the U.S. Army Corps of Engineers (USACE; https://levees.sec.usace.army.mil/). Flooding 

hazards maps for the counties of Los Angeles and Orange are obtained from the Coastal Storm 

Modeling System (CoSMoS) by United States Geological Survey (USGS; Barnard et al., 2015, 

2014). CoSMoS provides information about the severity (i.e. extent, depth, etc.) of flooding 

along the coasts of Southern California. Here the researchers emphasize that climate model 

simulations are subject to biases and uncertainties (e.g., Liu et al., 2014; Mehrotra and 

Sharma, 2016). While climate models exhibit a wide range of uncertainty that can influence 

the estimation of flood hazard, they are a means to provide valuable information about 

possible future hydrological conditions. 

2.1.2 Method 

2.1.2.1 Precipitation Intensity-Duration-Frequency Curves 

Precipitation Intensity-Duration-Frequency (IDF) curves provided by National Oceanic and 

Atmospheric Administration (NOAA) involve fitting a representative distribution function to 

observed (historical) extreme precipitation. Two main underlying assumptions have been 

considered (see Appendix A.1): (i) annual precipitation maxima follow a Generalized Extreme 

Value (GEV) distribution; (ii) the statistics of the distribution are time-invariant (stationarity 

assumption). The assumption (ii) refers to the expectation of a climate in which precipitation 

characteristics do not change over time. However, for a more realistic representation of the 

time series behavior the research team needed to account for changes in the statistics of the 

extremes if they are significant (Cheng and AghaKouchak, 2014).   

Based on the above considerations, the researchers employ time series of annual maxima 

precipitation intensity to retrieve historical and projected IDF curves based on Ragno et al. 

(2018). For each location, they independently analyze daily precipitation products of each GCM 

to retrieve time series of annual maxima intensity in a water year (October through 

September, as defined by the United States Geological Survey) for events of 1-day to 7-day 

duration. It is worth noting that any storm duration can be investigated. Here, the researchers 

focused on daily duration because the downscaled GCM simulations provided for the Fourth 

Assessment are daily. The simulations include Representative Concentration Pathways (RCP) 

4.5 and 8.5. The researchers consider daily precipitation estimates for 1950-1999 and 2050-

2099 to be representative of the historical and future climate, respectively. Given that the 

focus of this report is on frequency analysis, the researchers have chosen a 50-year baseline 

to be consistent with the typical length of record used in the current historical IDF curves. 

Also, the researchers have chosen a 50-year projection period to ensure consistency of sample 

sizes in the baseline and projection periods. A time series of annual maxima is obtained as 

follows. Consider that the time series of daily precipitation of the jth water year, 𝑃𝑗 =

{𝑝𝑖
𝑗 , … , 𝑝𝑛𝑗

𝑗 }, where nj is the number of days in the jth water year. The annual precipitation 

intensity of a d-day event for the jth water year is:  

(2.1) 
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The time series of annual maxima is then 𝑃𝑑,𝑚𝑎𝑥 = {𝑃𝑑,𝑚𝑎𝑥
1 , … , 𝑃𝑑,𝑚𝑎𝑥

𝑛𝑦 } , where ny is the total 

number of water years (49 years in this study). For each model, the researchers process the 

historical simulations and the future projections independently. 

The project team retrieved historical IDF curves using historical simulations and a stationary 

GEV distribution to reproduce NOAA IDF curves. On the other hand, the researchers retrieved 

future IDF curves using future projections and a GEV distribution with parameters that change 

over time (hereafter, non-stationary GEV), to incorporate trends in the data when observed. 

Indeed, the non-stationary GEV is used when the Mann-Kendall trend test result detects a 

statistically significant trend in precipitation (i.e. null-hypothesis of no trend is rejected at a 

0.05 level of significance). 

2.1.2.2 Change in Flood Hazard 

Researchers use GEV distribution to estimate the flood frequency distribution for gridded 

runoff over California. In this study, the research team used annual maximum daily simulated 

runoff as a proxy to examine the direction of change in flood hazard. For this, the research 

team firstly utilize annual block maximum sampling technique to extract the maximum daily 

value of runoff for each year and for each of the four climate models and scenarios. Then, 

they fit the GEV distribution to estimate the flood frequency distribution for each pixel using 

extreme 2.0 package in R (Gilleland and Katz, 2016). To estimate the parameters of the GEV 

distribution the researchers used the maximum likelihood method (Coles, 2001). This 

statistical model has been used in many hydrological studies to characterize the behavior of 

extreme events (AghaKouchak, 2013; Cheng et al., 2014; Katz et al., 2002). With the means 

of extreme value theory, the researchers then compute the percentage change between the 

magnitudes of a 100-year flow (T=1/p where exceedance probability p=0.01) in the future 

(2020–2099) relative to the historical (1950–2005) periods as an indicator of change in the 

flood hazard for each pixel and for each model and scenario using normalized percent change: 

          (2.2) 

To compute the change in the flood hazard for each levee system the researchers spatially 

average the percentage change in the magnitude of the 100-year flow over each levee 

system. They used the 100-year flow concept since the majority of levee systems in California 

have been designed to withstand the peak flow with a 1 percent annual chance of occurrence 

(i.e. 100-year flood; Burton and Cutter, 2008; Ludy and Kondolf, 2012). Note that a 

comprehensive flood risk assessment in leveed area is a function of three components, hazard 

(likelihood of the flood event), exposure (assets and population exposed to the flood events), 

and vulnerability (capacity of system to damp the impact of a flood event; e.g., Collenteur et 

al., 2015; USACE, 2018). Here, the researchers are only focusing on the flood hazard changes 

and energy infrastructure exposure to these changes.  

2.1.2.3 Change in Hazard Exposure 

In this study for wildfire and precipitation compound hazard assessment the research team 

take the product of largest monthly wildfire in a given dry season and the 95th percentile of 

daily precipitation in the following wet season as a representative of compound wildfire-

flooding hazard. They assume that a watershed hit by wildfire can recover after a year and so 
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the history of fire experience (i.e. lag times greater than one year) is not transferred to 

calculate the compound hazard. Using this data the research team quantify the length of 

pipelines located in each pixel with wildfire intensity and runoff projection. Then the exposure 

of pipelines to natural hazards is calculated by multiplying the length of pipeline to the 

estimated intensity of the given natural hazard. 

The research team used the SLR projections for Los Angeles, provided in the State of 

California Sea Level Rise Guidance (State of California, 2018), to analyze the timeline 

associated with studied scenarios. Here the research team used 40 scenarios combining ten 

SLR scenarios (0, 0.25 m, 0.5 m, 0.75 m, 1.0 m, 125 m, 1.5 m, 1.75 m, 2.0 m, and 5 m) with 

four possible coastal storm conditions (daily/background conditions, 1-year storm, 20-year 

storm, and 100-year storm). These coastal storm conditions include sea level anomalies, 

waves, storm surge and river discharge. The document uses SLR projections from Kopp et al. 

(2014) and tabulate the 19-year average values centered on the specified year with respect to 

a 1991-2009 baseline, under high and low emission scenarios (e.g. Representative 

Concentration Pathways (RCPs) 8.5 and 2.6, respectively). Finally, the research team calculate 

the lengths of natural gas pipelines located in the flood prone zones from CoSMoS. In this 

manner the research team analyze the extent to which natural gas pipeline are located in flood 

prone zones and determine the likelihood of each scenario given the regional sea level 

projections in Southern California. They emphasize that exposure of natural gas pipelines in 

this study could either refer to complete or partial inundation of pipeline or exposure of 

supporting structures (e.g. piers). Therefore, the analysis in this report does not indicate that 

natural gas pipelines are in danger, but the research team argues that under a changing 

climate the possible exposure of this infrastructure to climate extremes will change. 
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CHAPTER 3: 
Project Results 

3.1 Increasing Exposure of Energy Infrastructure to Climate 
Hazards 

3.1.1 Changes in Precipitation Intensity-Duration-Frequency Curves  

Under the chosen future scenarios, their results show an overall upward shift of the Intensity-

Duration-Frequency (IDF) curves, indicating that more severe events are expected to occur. 

Figures 1-3 and Figures 4-6 show IDF curves based on RCP4.5 and RCP8.5 scenarios, 

respectively. The interested readers can find the numerical values of the expected IDF curves 

in Appendix A-2.  

An overall pattern towards more intense precipitation is observable under both RCPs for 

events with 25-, 50-, and 100-year return period. In southern California (i.e., Irvine, Riverside, 

and Escondido) the research team can observe that, for the RCP 4.5 scenario, changes in 

extreme precipitation intensity are minimal across different storm durations (Figures 1–3). The 

same pattern can be detected in northern California. Whereas, the RCP 8.5 scenario shows an 

overall increase in the intensity of extreme events across the state of California.  

It is worth noting that precipitation is highly dependent on local climate, so high spatial 

variability is not surprising. Moreover, high uncertainty bounds are mainly associated with the 

climate models that are subject to biases and uncertainties. 
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Figure 1: Change in 25-Year Intensity-Duration-Frequency Curves Under RCP4.5 

 

Comparison between the current (grey lines) and future climate (orange lines) 25-yr Intensity-Duration-

Frequency (IDF) curves (RCP4.5), along with 90 percent confidence intervals (after Ragno et al., 2018). 

Source: University of California, Irvine and University of California, Los Angeles.  
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Figure 2: Change in 50-Year Intensity-Duration-Frequency Curves Under RCP4.5  

 

Comparison between the current (grey lines) and future climate (orange lines) 50-yr Intensity-Duration-

Frequency (IDF) curves (RCP4.5), along with 90 percent confidence intervals (after Ragno et al., 2018). 

Source: University of California, Irvine and University of California, Los Angeles.  
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Figure 3: Change in 100-Year Intensity-Duration-Frequency Curves Under RCP4.5  

 

Comparison between the current (grey lines) and future climate (orange lines) 100-yr Intensity-Duration-

Frequency (IDF) curves (RCP4.5), along with 90 percent confidence intervals (after Ragno et al., 2018). 

Source: University of California, Irvine and University of California, Los Angeles.  
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Figure 4: Change in 25-Year Intensity-Duration-Frequency Curves Under RCP8.5  

 

Comparison between the current (grey lines) and future climate (orange lines) 25-yr Intensity-Duration-

Frequency (IDF) curves (RCP8.5), along with 90 percent confidence intervals (after Ragno et al., 2018). 

Source: University of California, Irvine and University of California, Los Angeles.  
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Figure 5: Change in 50-Year Intensity-Duration-Frequency Curves Under RCP8.5  

 

Comparison between the current (grey lines) and future climate (orange lines) 50-yr Intensity-Duration-

Frequency (IDF) curves (RCP8.5), along with 90 percent confidence intervals (after Ragno et al., 2018).  

Source: University of California, Irvine and University of California, Los Angeles.  
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Figure 6: Change in 100-Year Intensity-Duration-Frequency Curves Under RCP8.5  

 

Comparison between the current (grey lines) and future climate (orange lines) 100-yr Intensity-Duration-

Frequency (IDF) curves (RCP8.5), along with 90 percent confidence intervals (after Ragno et al., 2018). 

Source: University of California, Irvine and University of California, Los Angeles.  

After investigating the change in extreme event intensity for a fixed return period, the 

research team now explore the changes in frequency of extreme events with 1-day duration 

for a given event magnitude. Specifically, the research team choose the intensity of three 

baseline events corresponding to 25-, 50- and 100-year events (retrieved from current NOAA 

IDF curves) to estimate their expected recurrence intervals in the future, along with their 

confidence intervals. Figure 7 illustrates the return periods expected in the future of the 
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baseline events (dots), along with their 90 percent confidence intervals (gray lines). The 

results show that the extreme events - such as those that are presently expected to occur 

every 50, or 100 years - will likely become more frequent. For example, climate model 

simulations project that the frequency of a 50-year event in the future will double in San 

Diego, and Santa Barbara under RCP8.5. The same behavior can be observed in northern 

California, in San Jose and San Francisco (Figure 7). The high uncertainties in the estimated 

values reflect the intermodal variability in climate model projections (here, four different 

climate models) and parameter fitting uncertainties. 

Figure 7: Change in Extreme Precipitation Return Periods  
for Major Cities in California 

 

Return periods of future events (orange and red dots), historically associated with return periods of 25-, 

50-, and 100-year in California (green lines). Panels a, b, and c show the projected return periods 

considering two future scenarios: RCP 4.5 (orange dots) and RCP 8.5 (red dots) along with their 90 

percent confidence interval (gray lines; after Ragno et al., 2018).   

Source: University of California, Irvine and University of California, Los Angeles.   
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3.1.2 Changes in Inland Flood Hazard  

Projected changes in the intensity and frequency of extreme precipitation that have been 

shown in the previews section (3.1.1) are anticipated to result in possible future changes in 

the risk posed by flooding hazards to infrastructure. Therefore, the researchers analyze the 

percent change in the magnitude of 100-year flow in the projected period relative to the 

historical period spatially distributed over California using gridded simulated runoff (Figure 8). 

The research team use this metric as a proxy to investigate the direction of changes in the 

flood hazard in the future. Overall, there is a significantly higher number of pixels showing at 

least a slight increase in the multi-model median of the 100-year flow in the projection period. 

Note that relative change is computed for each model separately, and then median of all 

models for each grid is calculated. This reveals that the direction of change in the frequency of 

high flow events, given the uncertainty, are likely to increase over the study area. This 

increasing pattern is expectedly more pronounced under the RCP8.5 (Figure 8B). The most 

noticeable change is the increasing pattern in peak runoff over the eastern side of their study 

domain extended over the Sierra Nevada mountain range. This finding is in agreement with 

Das et al. (2011), which projected an increasing trend in the magnitude and frequency of 3-

day flood over the Sierra Nevada region. 

Figure 8: Change in Flood Hazard 

 

Percentage changes between multi-model median of gridded simulated runoff associated with projected 

100-year flood level under RCP4.5 (A) and RCP8.5 (B) relative to historical period (1950-2005) over 

northern and central California. The blue (red) color reveals locations that magnitude of 100-year flood 

projected to increase (decrease) in the future. The color bar shows the percentage difference [%] in the 

100-year flood level in the projection period relative to the historical period (after Mallakpour et al. (2019)).  

Source: University of California, Irvine and University of California, Los Angeles.  

Next, the researchers investigate how flood hazard will possibly change for the leveed regions 

under a warming climate. Figures 9 and 10 show the percent change in the magnitude of a 

100-year flow in the future relative to the baseline period as a proxy to examine the direction 

of changes in the flood hazard under RCP 4.5 and 8.5, respectively.  
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Figure 9: Change in Flood Hazard Over Leveed Region of California Under RCP4.5 

 

Percentage changes in the magnitude of 100-year flow in the projected period (2020-2099) relative to the 

baseline period (1950-2005) for (A) CanESM2, (B) CNRM-CM5, (C) HadGEM2-ES, (D) MIROC5, and (E) 

ensemble median of aforementioned climate models under RCP4.5 over the leveed region of California. 

The color bar displays the percentage change [%] in the magnitude of 100-year flow where the blue (red) 

color shows levee systems that magnitude of the 100-year flow expected to increase (decrease) under a 

warming climate in the future. Inset maps in each panel show the zoomed in map of levee systems of 

California's Central Valley (right inset map) and levees over Southern California (left inset map). 

Source: University of California, Irvine and University of California, Los Angeles.  
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The spatially distributed results show that there is a significantly higher number of levee 

systems that exhibit an increase in the magnitude of 100-year flow in the projection period 

relative to the historical period. The CanESM2 climate model, which is known to be associated 

with an average climate condition for the state of California in the future, shows that other 

than several levee systems in the central and southern parts of Central Valley, all the levee 

systems will likely experience a higher flooding hazard (Figure 9A). The CNRM-CM5 climate 

model that represents a cool and wet condition over California in the future shows the highest 

increase in the magnitude of 100-year flow relative to the results from other models (Figure 

9B). Under this climate model, almost all of the levee systems display an increasing pattern in 

the flood hazard in the future. Figure 9C shows the result for HadGEM2-ES, a model that 

represents a warmer and dryer future over California, where relative to other climate models 

higher number of levee systems display a decreasing pattern in the magnitude of 100-year 

flow in the future. However, even with this climate model, a significant number of levee 

systems are projected to have at least a slight increase in the magnitude of 100-year flow. The 

results for projected change in the magnitude of 100-year flow for MIROC5 climate model 

(representing a complement climate condition) reveal that the levee systems over northern 

and central parts of Central Valley show an increasing pattern in flood hazard in the future 

while southern regions show a slightly decreasing pattern in the magnitude of 100-year flow 

(Figure 9D). Figure 9E is summarizing the projected change in the flood hazard over the 

leveed area of California based on the median of the four climate models in this study. The 

results depict that the direction of change in the frequency of high runoff events is likely 

toward increasing over the leveed area of California. Note that the increasing pattern is more 

marked under the RCP8.5 (Figure 10) for all the cases. In general, the most evident change is 

the increasing pattern in the magnitude of 100-year runoff over the northern region of Central 

Valley including Butte, Glenn, Yuba, Sutter, Sacramento, and San Joaquin Counties. These 

counties can experience up to threefold increase in the flood hazard relative to the historical 

period. In general, total precipitation amounts in northern California are higher than in 

southern California (Jones, 2000).  

There are several possible explanations for this projected change in the magnitude of the 100-

year flow. Studies that investigate possible flood generating mechanisms have indicated that 

most of the flooding events in California, historically, occurred during the winter season due to 

atmospheric river systems and in spring due to snowmelt (e.g., Berghuijs et al., 2014; Das et 

al., 2011; Mallakpour et al., 2018; Villarini, 2016). However, climate warming is changing the 

hydrology of California, so that temperature in winter and spring is likely to increase, resulting 

in earlier snowmelt, decline in snowpack, and more precipitation falling as rain and less falling 

as snow (Das et al., 2011; Dettinger and Cayan, 1995; Hidalgo et al., 2009). Therefore, while 

the annual average daily discharge is projected to remain almost similar to the historical 

period, magnitude of the annual maximum discharge is projected to increase (Mallakpour et 

al., 2018).  
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Figure 10: Change in Flood Hazard Over Leveed Region of California Under RCP8.5 

 

Percentage changes in the magnitude of 100-year flow in the projected period (2020-2099) relative to the 

baseline period (1950-2005) for (A) CanESM2, (B) CNRM-CM5, (C) HadGEM2-ES, (D) MIROC5, and (E) 

ensemble median of aforementioned climate models under RCP8.5 over the leveed region of California. 

The color bar displays the percentage change [%] in the magnitude of 100-year flow where the blue (red) 

color shows levee systems that magnitude of the 100-year flow expected to increase (decrease) under a 

warming climate in the future. Inset maps in each panel show the zoomed in map of levee systems of 

California's Central Valley (right inset map) and levees over Southern California (left inset map). 

Source: University of California, Irvine and University of California, Los Angeles.   
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Recently, Li et al. (2017) also have shown that the future contribution of snow to runoff is 

likely to decline in California. Thus, most of the changes the researchers projected in flood 

peaks may be attributed to earlier snowmelt, rain-on-snow events and more precipitation 

falling as rain, resulting in possible higher peak flow events during winter and early spring. 

This becomes even more important given the majority of levee breaks over California 

historically happened during November to June period that emphasizes the important role of 

winter storms (Florsheim and Dettinger, 2015, 2007). For instance, Florsheim and Dettinger 

(2015) identified wintertime AR precipitation events as the main reason for levee failures in 

California’s Central Valley. Impacts of the projected changes in the magnitude of 100-year flow 

over the Sierra Nevada bears important implications for water management in California as 

this region is the main source of water for California. 

3.1.3 Changes in Inland Flood Hazard 

Floods and debris flows can result in a significant threat to energy infrastructure, especially 

when extreme rain falls over burned areas. In section 3.1.1 the researchers have projected 

that many major cities in California will suffer by more frequent extreme precipitation events. 

It should also recognize that that climate extremes can result in compounding effects when 

occurring simultaneously or in a cascading fashion, which may lead to more frequent and 

more severe hazards than otherwise expected (AghaKouchak et al., 2018). Figure 13 shows 

the change in expected compound wildfire and intense precipitation events in the future (2047 

– 2099) relative to the past (1953 – 2005). The shading on the left panel (Historic) shows the 

intensity of estimated compound hazard over the historic period. The intensity of compound 

hazards is generally larger in the North compared to the Southern California. The north part of 

California is the region of this state where the researchers have shown that they anticipate the 

highest change in both flooding and heavy precipitation (sections 3.1.1 and 3.1.2). Therefore, 

this difference can be attributed to the significant spatial variability of precipitation across the 

State. The total rainfall amounts received during a typical winter season in northern California 

could be 2 to 4 times higher than the southern California (Jones, 2000). This yields large 

differences in vegetation pattern and so the wildfire dynamics that combined with precipitation 

variability explains the aforementioned spatial pattern in compound hazard intensity. Another 

detectable pattern is the difference between coastal watersheds and mountain ranges with low 

lying inland watersheds. Indeed, out of various known bioregions in California (Lenihan et al., 

2003), forests (Northwest, Cascade Ranges, and Sierra Nevada) and coastal 

shrublands/woodlands (Central Western and Southwestern) are experiencing more intense 

compound hazards. In the future, forests are expected to experience even more severe 

compound hazards (up to 6X), with south part of Sierra Nevada experiencing the highest rise 

under both RCPs 4.5 and 8.5. Coastal shrublands/woodlands though expect to experience 

either low-to-moderate rise (i.e. Central Western) or no-significant rise (i.e. Southwestern). 

Interestingly, East of Sierra Nevada, South of Mojave Desert and Sonoran Desert that in the 

current situation show relatively low potential for compound hazards are projected to 

experience significantly more intense compound events in the future. This may stem from the 

potential for land cover change due to change in climatic patterns. 
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Figure 13: Change in Compound Hazard  

 

Relative change in compound hazard (burned area x precipitation intensity) in the future (2047 – 2099) 

compared with the past (1953 – 2005) based on ensemble mean of climate models. Red (green) means 

increased (decreased) likelihood of compound hazards.  

Source: University of California, Irvine and University of California, Los Angeles.  

Figure 14 shows the temporal evolution in the distribution of compound hazard intensities. The 

left panel shows the empirical probability distribution function (PDF) of median values. 

Figure 14: Compound Hazards Density Distribution 

 

Distribution of median and 90th quantile of the ensemble average estimates of compound hazards. The 

shaded areas represent the exceedance likelihood with respect to the mean of the historic distribution. 

Source: University of California, Irvine and University of California, Los Angeles.  

To obtain this PDF, first the ensemble mean of estimated compound hazards from the four 

studied GCMs are calculated, and then the distribution of median of estimated hazards for the 

pixels all around the California is calculated. Then, the mean of historic values is considered as 

a threshold to calculate the exceedance likelihood above the given threshold. Indeed, the 

shaded area (and the percentage associated with that) represent the likelihood that historic 

mean to be surpassed by above-average events. The right panel shows the empirical PDFs of 

90th quantiles. The distributions of compound hazards are expected to be significantly 

different in the future relative to past. While, in the past there has been 38 percent chance 

that the historic mean of median values to be exceeded, this likelihood is projected to double 

in the future under both RCPs 4.5 (68%) and 8.5 (73%). The difference between distributions 



 

 

27 

becomes even more significant on the extreme events. The likelihood that mean of 90th 

quantiles to be exceeded in the future is almost three times higher than the past (34%), under 

both RCPs 4.5 (90%) and 8.5 (91%). The statistics of compound hazards are ought to be 

totally different, and if this non-stationarity would not be taken into account, hazards may not 

be appropriately characterized in the future (Cheng et al., 2014; Ragno et al., 2018).  

Analysis of exposure of energy infrastructure to the projected hazards highlighted in the 

previews sections may provide a better understanding of the expected change in risk towards 

these infrastructure systems in the future relative to past. For this purpose, the researchers 

calculate the length of pipelines within each pixel with runoff and wildfire estimates. Then the 

product of hazard intensity and pipeline length in each pixel provides an estimate of the 

exposure of the natural gas pipelines to these hazard drivers. Figures 15 and 16 show the 

results for the ensemble mean estimates.  

Figure 15: Distribution Natural Gas Pipeline Runoff Exposure 

 

Natural gas pipeline exposure to runoff in the past (left; 1953 – 2005), and its expected change in the 

future (2047-2099) under RCPs 4.5 (middle) and 8.5 (right). Red (green) means increased (decreased) 

exposure to runoff.  

Source: University of California, Irvine and University of California, Los Angeles.  

Figure 16: Natural Gas Pipeline Wildfire Exposure 

 

Natural gas pipeline exposure to wildfire in the past (left; 1953 – 2005), and its expected change in the 

future (2047-2099) under RCPs 4.5 (middle) and 8.5 (right). Red (green) means increased (decreased) 

exposure to wildfire.  

Source: University of California, Irvine and University of California, Los Angeles.  
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3.1.4 Change in Exposure of Gas Pipelines to Climate Hazard 

The estimated exposure of pipelines to runoff is significantly higher over the northern parts of 

California. Since their analysis shows no notable difference between average lengths of 

pipelines in each pixel between south and north, the researchers conclude that the exposure 

difference between northern and southern California to be attributed to variation in received 

precipitation across California (Jones, 2000). The exposures have been highest in the 

Northwest and lowest in the deserts of the south (e.g. Mojave, and Sonoran) as expected from 

their flooding and precipitation analyses. In the future, however, the infrastructure in the north 

of Central Valley, Modoc Plateau, and the San Francisco Bay area along with parts of the South 

(e.g. Southwestern, Mojave Desert and Sonoran Desert) will experience a raised (2+ times) 

exposure to runoff. Should be noted that this raise is estimated based on the assumption that 

no flood mitigation measures will be implemented and thus (if available) the effects of runoff 

control projects (i.e. storm water drainage systems implementation) must be taken into 

account for more accurate projections. 

The exposure to wildfire is somehow different and is expected to vary differently over time 

(Figure 16). The exposure is relatively higher (up to three times) in coastal regions (e.g. 

Northwest, Central Western and Southwestern) and cascade ranges and relatively low in the 

deserts of the South. While expected to rise in Northwest, Cascade ranges, and the east of 

Mojave and Sonoran deserts, it shows no significant change or tends to decrease in the future 

in the rest of State. A considerable decreasing trend (down to one-third) is expected in Modoc 

Plateau, the north of Central Valley and the Bay area, wets of Mojave and Sonoran deserts and 

the Southwestern regions.  

In order to identify which levee system is more susceptible to projected changes in the flood 

hazard in term of energy infrastructure systems, the researchers first quantify the length of 

natural gas pipelines (Figure 17) and number of power plants (Figure 18) that are located 

behind each of California’s levee systems using the National Levee Database. Note that the 

energy infrastructure dataset used in this study does not contain information about the 

elevation of pipelines and location of the power plants. Therefore, their exposure analysis 

could either refer to complete or partial exposure of pipeline and power plant facilities and 

their supporting structures. Figure 17 displays the length of natural gas pipelines located 

behind each of the levee systems across California, where the Sacramento River West Bank 

levee system (~ 183 km) has the highest length of pipelines. For Southern California, 

exposure of pipelines is higher in the levee systems that are closer to the coast. The highest 

length of natural gas pipelines in this region is located in the Santa Ana River 1 levee system 

(~ 54 km) in Orange County. For Los Angeles County, the Los Angeles River/Compton Creek 2 

levee system (~40 km) has the highest length of natural gas pipelines. Figure 18 displays the 

number of power plant protected by each of the levee systems. Here, MA-09 of City of 

Sacramento and Santa Ana River 1 levee systems (with 10 power plants) followed by Feather 

River west bank - Sutter Bypass east bank (with 9 power plants) have the highest number of 

power plants. 

  



 

 

29 

Figure 17: Length of Natural Gas Pipeline in Leveed Area 

 

Map showing the length of natural gas pipelines that are protected by the levee systems over California. 

Inset maps in each panel show the zoomed in map of levee systems of California's Central Valley (right 

inset map) and levees over Southern California (left inset map). Darker red color shows a higher length of 

the infrastructure is protected by a levee system.    

Source: University of California, Irvine and University of California, Los Angeles.  

  



 

 

30 

Figure 18: Number of Power Plants in Leveed Area 

 

Map showing the number of power plants that are protected by the levee systems over California. Inset 

maps in each panel show the zoomed in map of levee systems of California's Central Valley (right inset 

map) and levees over Southern California (left inset map). Darker red color shows a higher length of the 

infrastructure is protected by a levee system.  

Source: University of California, Irvine and University of California, Los Angeles.  

Next, the researchers provide a detailed analysis of which of the levee systems, given the 

associated uncertainties, are more susceptible to exposure of gas pipelines to the projected 

changes in the flood hazards in the future (Figure 19 and Table 1). For the sake of brevity, 

here the research team present results for the thirty levee systems that encompass the 

highest length of natural gas pipelines. In figure 19, each cell represents the percentage 

change in the magnitude of 100 year runoff as a proxy to evaluate future changes in the flood 

hazard for each levee system based on the aforementioned four climate models and an 

ensemble median of the climate models. Here, the multi-model median values summarize the 

possible values of the magnitude and direction of changes in the flood hazard for the future. 

Also, the magnitudes and direction for the four climate models represent the possible range of 

uncertainties associated with the use of different climate models. By using the information 

provided in Figure 19 and Table 1 the research team can identify that 5 of the thirty levees 

that protect the highest length of the natural gas pipeline show at least 80 percent increase in 
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ensemble median of the flood hazard under RCP 4.8. These numbers increase to 15 levee 

systems under RCP 8.5. As expected, under the RCP 8.5 scenario increase in the flood hazard 

are more marked and larger on average. As expected from their precipitation and flood 

analyses the majority of these levee systems are located in northern California. The 

information provided here can be used by water managers to prioritize resources allocated for 

rebuilding and maintaining the assets behind the levee systems based on possible changes in 

the flooding hazard and exposure of the critical infrastructure to the projected change in flood 

hazard in a changing climate. For example, the highest length of the natural gas pipeline is 

located within Sacramento River West Bank (System ID=5205000561) followed by Feather 

River west bank - Sutter Bypass east bank (System ID=5205000521) system that both of 

these systems show a relatively small increase in the flood hazard under RCP 4.5. However, 

the next levee system with the highest length of the natural gas pipeline is MA 09 - City of 

Sacramento (System ID=5205000441), which is relatively more susceptible to change in flood 

hazard under RCP 4.5. Flood-prone areas can experience additional loss of lives because of 

disruptions in power outages, which impedes rescue operations and medical assistance. Based 

on these results, energy and water managers can invest on emergency preparedness plans to 

increase resiliency and improve evacuation effectiveness that can lead to a reduction in 

potential life loss during a possible levee incident (Ludy and Kondolf, 2012), by starting from 

the levee systems that show a higher relative change in the flood hazard for the future. 

Figure 19: Natural Gas Pipeline Exposure to Flood Hazard in Leveed Area 

 

Heatmaps showing possible changes in the flood hazard in the future relative to the baseline period for 

each of the levee systems based on different climate models used in this study. In each of the panels, the 

levee system are sorted descending based on the length of natural gas pipelines, where the topmost 

levee system on the Y-axis represents the levee system that has the highest length of natural gas 

pipelines it. Left panels depict the result for RCP 4.5 whereas the right panels represent future projections 

under RCP 8.5 scenario. The color bar shows the percentage change [%] in the magnitude of 100-year 

flow. The blue (red) color displays levee systems that the magnitude of the 100-year flow expected to 

increase (decrease) in the future. Refer to Table 1 for the name of the levee systems.  

Source: University of California, Irvine and University of California, Los Angeles.   
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Table 1: Levee Systems That Protect Highest Length of Natural Gas Pipeline 

System-Id System Name 
Length of 

Natural Gas 
Pipelines (km) 

5205000561 Sacramento River west bank 183.22 

5205000521 Feather River right bank - Sutter Bypass east bank 174.43 

5205000441 MA 09 - City of Sacramento - American R left bank 145.78 

5205000544 RD 0070 and RD 1660 - Sutter Basin North 79.92 

5205000711 RD 0341 - Sherman Island 59.83 

5205000641 Putah Cr Unit 1 - Yolo Bypass - Willow Slgh Unit 2 54.57 

3805010039 Santa Ana River 1 53.33 

1905015228 San Joaquin County Levee 30 51.34 

1905007119 Kings County Levee 171 47.40 

5205000541 Sacramento River East Levee - LD 3 Glenn County 46.93 

5305000001 Alameda Creek - LB 42.68 

5205000412 Cache Creek - RD 2035 - Willow Bypass 41.99 

5205000331 
Kings River - Units 6, 9, and 11 north and James 
Bypass 

41.83 

3805010033 Los Angeles River/Compton Creek 2 39.91 

5205000841 RD 0784 - Plumas Lakes Basin 34.70 

5205001151 RD 0017, 2094, 2096, 2075, 2064 - SJ River East 32.35 

1905015227 San Joaquin County Levee 7 31.28 

5205000633 MA 13 Unit 2 south - Cherokee Canal left bank 29.98 

5205000401 Brannan-Andrus LMD - RD 0556 28.70 

5205000923 RD 1000 - Natomas 28.66 

5205000282 
Mormon Slough-Calaveras left bank - RD 0404 - 
Duck Creek 

27.94 

5205000592 MA 05 Unit 2 - Butte Creek right bank 27.72 

5205000903 West Sacramento 26.24 

5205000332 Kings River - Units 1, 3, 5, 13, and 14 25.94 

1.50005E+11 LSJLD-Units 3, 6, 18 - Eastside-Chowchilla Bypass 24.46 

5305000010 Coyote Creek, Santa Clara - RB 23.22 

1905015231 Merced County Levee 1 22.97 

1905029354 Kern County Levee 53 21.79 

1905011051 San Joaquin County Levee 56 20.84 

1905011294 Sacramento County Levee 32 20.42 

Source: University of California, Irvine and University of California, Los Angeles.  

There is robust evidence of increased coastal flooding due to SLR and energy infrastructure 

are among the vulnerable coastal infrastructures (Moftakhari et al., 2017, 2015). Figure 20 

shows the exposure of natural gas pipelines to coastal flooding under design storm events in 

the current system (e.g. with no SLR). Figure 20 includes a range of possible exposures from 

minimum to mean and maximum estimates, reflecting the underlying uncertainties. The 

sources of uncertainties include numerical model errors, digital elevation model uncertainty, 
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and vertical land motion. While in Los Angeles County the uncertainties could cover a relatively 

wide range of possibilities (i.e. from 7 kilometers (km) to 15.5 km) for frequent events (e.g. 

background and 1-yr storms), Orange County estimates are insensitive to the underlying 

uncertainties and ~2 km of pipeline is expected to be exposed to frequent coastal flooding. 

This is, however, different for infrequent storm events (e.g. 20-yr and 100-yr) and in these 

cases the exposure could be significantly higher in both counties. In Los Angeles County the 

exposure is estimated to be ~3X higher under maximum inundation scenario (21.5 − 22.5 km) 

compared to minimum and mean scenarios (7 − 7.7 km). In Orange County too, while the 

lower range of possibilities remains around 2 km of exposure, the upper range is estimated to 

be ~6 times higher (~12 km). Compatible with the findings of (Moftakhari et al., 2017), their 

results suggest coastal infrastructure in Orange County have some level of protection against 

high-to-mid frequency events, but the exposure exponentially increases after a threshold. This 

significant higher exposure rate suggests careful consideration of rare oceanic events in future 

design/development purposes and their associated risk factors (e.g. vulnerability) in Orange 

County. 

Figure 20: Natural Gas Pipeline Exposure to Coastal Storm 

 

Exposure of natural gas pipelines in Los Angeles County (left) and Orange County (right) to coastal 

storms with design return periods in the current mean sea level. 

Source: University of California, Irvine and University of California, Los Angeles.  

At higher mean sea levels, energy infrastructure would be exposed to coastal flooding, even 

without significant coastal storm activities. Figure 21 shows how rates of exposure increase 

with sea level rise at the studied counties. While exposure in Los Angeles County gradually 

increases with SLR, Orange County exposure rates again show step changes at maximum 

probable flooding in 0.5 and 1.5 m of SLR scenarios. Without storm activity, 1 m of SLR 

increases both the minimum and maximum estimated exposure by~30%. This means at some 

SLR levels tidal flooding becomes so severe in impacts, somehow comparable to current 

infrequent storm flooding. The maximum estimated exposure due to a 100-yr coastal storm, 

for example, with current mean sea level in both counties, could be achieved by astronomic 

tides on top of 1.5 m of SLR. This much of SLR, however less likely by the end of this century 

(0.7 – 2 percent probable under RCPs 2.6 and 8.5, respectively (State of California, 2018)), is 

23 percent probable to be met or exceeded by 2050, and also projected to be reached by 

2070 under H++ scenario (State of California, 2018). 
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Figure 21: Natural Gas Pipeline Exposure to Tidal Flooding 

 

Exposure of natural gas pipelines to tidal flooding (no storm activity) in Los Angeles County (left) and 

Orange County (right) under different sea level rise scenarios.  

Source: University of California, Irvine and University of California, Los Angeles.  

In Los Angeles County, with the current mean sea level, up to 22 km of pipelines are exposed 

to coastal flooding, about 7 km of which exposed to regular tidal flooding (Figure 22). These 

rates, however, exponentially rise under the compounding impacts of SLR and coastal storm 

up to ~38 km when a 100-year coastal storm hits the coast on top of 2 m of SLR. The SLR 

both intensifies the extreme events and minor-moderate flood events. One and half meters of 

SLR make the estimated mean and maximum exposure to a 100-year coastal storm to rise by 

92 percent and 52 percnet, respectively. This rise, however, is not limited to extreme flooding. 

The same 1.5 m of SLR make the estimated mean and maximum exposure to tidal flooding 

(no coastal storm activity) to rise by 76 percent and 42 percent, respectively. This means the 

exposure rate to a 100-year coastal storm in the current system would be expected to become 

frequent tidal flooding with 1.5 of SLR.  

In Orange County also, the compounding effects may exacerbate the risk of flooding (Figure 

22). The maximum expected exposure to a 1-year coastal storm (with 99 percent chance of 

occurrence in a given year) with one foot of SLR jumps to five times higher. This suggests that 

County of Orange is near a tipping point that, if SLR would not be taken seriously into account, 

unprecedented relatively frequent flooding may threaten its energy infrastructure. In this 

county too, with a rise of 1.5 m in mean sea level, the maximum expected rate of exposure to 

tidal flooding would be equal to the one due to a 100-year coastal storm under current mean 

sea level.  
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Figure 22: Natural Gas Pipeline Exposure to Coastal Storm and Sea Level Rise 
Compound Flooding 

 

Estimated maximum natural gas pipeline exposure to coastal storm and sea level rise compound 

flooding. 

Source: University of California, Irvine and University of California, Los Angeles.  

Coastal flooding threatens both energy transmission and production infrastructure. Up to 45 

percent of energy production infrastructure in Los Angeles County is expected to be exposed 

to flooding due to sea level rise and coastal storms combined. Figure 23 shows the matrix of 

expected exposure for different time horizons. The researchers follow the recommendations by 

the State of California Sea Level Rise Guide to provide useful information for evaluating a 
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range of projections based on low, medium-high and extreme levels of risk aversion 

(www.opc.ca.gov/updating-californias-sea-level-rise-guidance/). To depict the matrix in Figure 

23 the research team have considered the SLR projections under different scenarios including 

Low and Mid-High Risk Aversion (under both high and low emission scenarios) plus Extreme 

Risk Aversion (a.k.a. H++ scenario) discussed in the Ocean Protection Council’s State of 

California Sea Level Rise Guidance 2018 Update (Ocean Protection Council, 2018).  

In Figure 23, the color bar represents the estimated mean and maximum exposure of power 

plant capacity of Los Angeles County to coastal flooding relative to the total power plant 

capacity of the County, which is ~14,000 MW. In this figure, the circle, square and diamond 

symbols represent the estimated exposure due to the no storm activity, 1-year and 100-year 

coastal storm scenarios, respectively; These results show by the year 2100, for example, with 

mid-high risk aversion under low emission scenario, the mean (black edge) and maximum 

(blues edge) estimates for power plants capacity exposed to tidal flooding (circle) would be 3 

percent and 21 percent of the total capacity of County, respectively. This rate would be 21 

percent and 36 percent in the same year due to a 100-year coastal storm (diamond). Under 

H++ scenario (extreme risk aversion), by the year 2080, at least 18 percent (mean estimates 

of tidal flooding) and at most 45 percent (maximum estimates due to a 100-year coastal 

storm) of Los Angeles County power plant capacity is expected to be exposed to coastal 

flooding. 

Figure 23: Power Plants Exposure Matrix for Los Angeles County 

 

Color bar shows the ratio of power generation capacity exposed to coastal flooding. Under each sea level 

rise projection (on y-axis) circle, square and diamond, represent the estimated exposure due to 

background scenario (i.e. no storm activity), 1-year and 100-year coastal storm, respectively; while 

marker edge colors black and blue are associated with mean estimated exposure and the maximum 

estimates. These estimates cover SLR projections between 0.5 m and 2 m. 

Source: University of California, Irvine and University of California, Los Angeles.  
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CHAPTER 4: 
Knowledge Transfer Activities 

In this report, the research team analyzed the impact rising natural hazards due to a warming 

climate on energy infrastructure. The analysis was informative to policy makers and 

stakeholders for future climate adaptation plans. They have set meetings with stakeholders 

and presented their work in open forums to transfer the knowledge to decision makers and 

the public. The details about the regional climate symposia held by Local Government 

Commission (LGC) as part of this project is presented in the Appendix C. The researchers will 

continue to work with the CEC, SoCal Gas, and other stakeholders to inform them based on 

the analysis in this report.  
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CHAPTER 5: 
Conclusions/Recommendations 

In this report, the research team showed the potential impacts of a warming climate on 

natural gas system infrastructure. This was done through quantification of climate induced 

stressors on California natural gas pipelines, and quantification of the change in exposer of 

natural gas pipelines as a consequence of single or multiple natural hazards.  

The conclusions of the report are:  

1. There is a rise in the impacts of extreme precipitation intensity and recurrence interval 

due to a warming climate. The results show that in most cities, extreme precipitation 

events are projected to intensify. Urban areas in California may struggle against 

increases in severity and frequency of rare events. Increases in intensity, duration, and 

frequency of extreme precipitation can adversely impact the integrity of infrastructure 

and natural and engineered slopes. Severe rainfall causes flooding, landslides, soil 

erosion and jeopardizes functionality or integrity of infrastructure systems. 

Infrastructure built with soil (for example, earthen dams, levees, embankments), or the 

ones that interface with soil (for example, roads, bridge, pipelines, foundations) are 

often more vulnerable. The IDF curves presented in this report can be used to evaluate 

the risk of existing infrastructure systems in a changing climate.  

2. Projected changes in the characteristic of extreme precipitation are anticipated to result 

in possible future changes in the flood characteristics, and consequently, the risk posed 

by flooding hazards to infrastructure. The results using simulated runoff as a proxy to 

investigate the direction of change in the flood hazard point to amplification of flood 

hazard in the future. This can be attributed to increases in the frequency of extreme 

flows in a warming climate. While climate model simulations contain biases and 

uncertainties the results reveal that a historical 100-year flood event is 5 times more 

likely in the future under a fossil fuel intensive “business as usual” scenario (RCP8.5). 

The results also demonstrate that levee systems in the northern part of Central Valley 

and coastal counties of Southern California, which protect hundreds of miles of natural 

gas pipelines, experience the highest likelihood of changes in flood hazard. Therefore, 

the infrastructure protected by these levee systems may observe higher rates of 

exposure to flooding in the future. These possible changes in flood hazard are neither 

considered in the current levee assessments nor in the future water resource planning 

and management for the levee operation and maintenance.   

3. Sea level rise not only raises the mean water level but also affects the free surface 

wave (for example, tide and storm surge) propagation (Devlin et al., 2017; 

Schindelegger et al., 2018; Wahl, 2017). The interactions between SLR and coastal 

storm activities are non-linear and their compounding effects are complicated to 

estimate. Future projection of risk of coastal flooding is therefore a complicated process 

that needs to both deal with compounding effects of interdependent flooding drivers 

and also systematically take the uncertainties associated with the hazard prediction 

estimates into account for reliable estimates of the threat to coastal communities. In 
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this study the research team quantify the exposure of natural gas pipelines in Los 

Angeles County and Orange County of California, USA to compound coastal flooding. 

Combined impacts of seas level rise scenarios with design coastal storms are considered 

for exposure assessment. Results suggest that, if no adaptation measure is 

implemented, 1-1.5 m of sea level rise may trigger tidal flooding (without significant 

storm activity) equal in exposure to a 100-year coastal storm today.   

4. The research shows that regional patterns of exposure of natural gas pipelines to 

individual/compounding effects of hazards are significantly different. The results show 

Northwest and Cascade ranges are the regions with highest exposure and they are 

expected to experience significantly higher rates of exposure to compound hazards in 

the future. These compound hazards can be detrimental to critical energy 

infrastructure, because their combined effects have impacts that are more significant. 

Considering the compounding impacts of concurrent hazards is even more important 

when dealing with aging infrastructure with declining resilience to natural hazards. The 

research team emphasized that natural gas pipelines infrastructure are typically 

underground and therefore, the chance of being directly affected by climate hazards are 

relatively small. The hazards discussed in this study can cause significant impact both 

directly and indirectly. For instance, a flooding event may disrupt the transportation 

network making it difficult to resolve natural gas pipeline incidents. This may result in 

possible power outages which in turn impede rescue operations and medical assistance 

and thus potentially leading to additional loss of lives. Also, in these analyses, 

interactions between hazard drivers and anthropogenic effects (that is, risk 

prevention/mitigation measures) are not included. A more thorough understanding of 

risk in the future needs holistic approaches that take the post-disaster dynamic 

interactions between natural and human processes into account.  

5. In this project, a hybrid dynamical–statistical approach was used to downscale the 
CMIP5 GCMs to 9 km resolution for fine-scale temperature projections over California 

during the 21st century. The downscaled ensemble of temperature over California 
reveals that statewide temperatures under RCP4.5 (RCP8.5) are projected to increase 

by about 2.0 (2.5) ℃ in the middle of the 21st century and 2.6 (5.0) ℃ at the end of 
21st century compared to the historical (1981-2000) climate. Overall, the findings in 

this report indicate that a hybrid-downscaling approach that combines the benefits of 
physical realism associated with dynamical downscaling and the computational 
efficiency of statistical downscaling can provide a credible way to downscale a large 

ensemble of GCM temperature projections. Using Weather Research and Forecasting 
(WRF) model found that in winter months, temperatures in southern California cities are 

generally higher than those in northern California cities, as expected. However, in 
summer months, Sacramento and Fresno are hotter than other cities in northern 
California. The reason could be the lack of sea breeze cooling down the air temperature 

in these cities located in the Central Valley. It is important to note that all exposure 
estimates in this study are based on the current installations, and future developments 

and adaptation measures are not considered here. While successful adaptation (Adger 
et al., 2018, 2013), depending on a number of socioeconomic and geophysical factors 

(Arkema et al., 2013; Barbier, 2014; Cheong et al., 2013), is expected to mitigate the 
risk, and should be considered for integrated risk assessment (Nicholls and Cazenave, 
2010).   
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CHAPTER 6: 
Benefits to Ratepayers 

Climate change impacts are projected to worsen in the future altering vulnerability of the 

existing infrastructure systems. The changes in the climate extremes and the importance of 

incorporating climate change impacts on infrastructure have been recognized by California 

State Legislature as an emerging problem through AB-2800. The goal of California’s AB-2800 is 

to achieve a set of climate adaptive strategies and guidelines to ensure safety and durability of 

infrastructure in the future. California also is also decarbonizing its electricity system. In 

September 2018, California senate passed SB100, which requires the Golden State to obtain 

100 percent of its power from clean sources by 2045. Considering the State consumes more 

than 206 billion kilowatt hours (bn kWh) of electricity per year, achieving this goal requires 

significant investment in the infrastructure needed for the production, transportation, and 

storage of alternative green sources of energy. Anticipating the threats to California's energy 

infrastructure and developing new techniques to move toward utilizing green energies can 

help Californians achieve climate adaptive strategies to ensure the safety and durability of 

energy infrastructure in the future.  

Here the research team shows that extreme precipitation is expected to increase across most 

cities in California based on the current multi-model climate simulations. The research team 

argues that the increase in intensity, duration, and frequency of extreme precipitation can 

adversely impact the integrity of infrastructure. Indeed, severe rainfall causes flooding, 

landslides, soil erosion and jeopardizes functionality or integrity of infrastructure systems. The 

future developments over the leveed regions in particular need to incorporate the possible 

changes in the flood hazard in a changing climate. To ensure the adaptation and mitigation 

strategies can lead to reducing flood impacts in the leveed area, also there is a need to include 

hydrological risks into guidelines and actions that address water challenges in the leveed area. 

These strategies, if informed by climate change analyses, can lead to increased public safety 

and security of infrastructure systems protected by the levees. 

Also, the research team has shown that projected increased of coastal flooding in southern 

California threatens both energy transmission and production infrastructure. For instance, up 

to 45 percent of energy production infrastructure in Los Angeles County is expected to be 

exposed to flooding due to sea level rise and coastal storms combined. In general, the results 

show that the exposure of natural gas infrastructure in response to individual and 

compounding effects of hazards is expected to increase substantially in a warming climate. 

Understanding possible future climate risks and developing context-sensitive adaptive 

strategies and options for infrastructure provision and management will give the state a solid 

scientific foundation from which to prioritize policies, guidelines, activities and economic 

investments to protect infrastructure systems. Effective adaptation and mitigation strategies 

for reducing the impact of extreme events on infrastructure systems require community 

engagement, public risk and safety education, economic and regulatory analysis, and close, 

iterative collaboration with stakeholders. Therefore, this research benefits ratepayers in the 

future, because the results of this work show the projected changes in damaging and costly 

compound (cascading) hazards.   
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Sections of this report contributed to California’s Fourth Climate Change Assessment 

examining potential changes of extreme precipitation. The research team developed what is 

known as intensity-duration-frequency curves using non-stationary techniques. Engineers use 

these curves in the design of infrastructure including natural gas physical assets. In turn, the 

authors of the report for AB 2800 (Paying it Forward: The Path Towards Climate-Safe 
Infrastructure in California) used these curves as an example on how to translate information 

on climate projections in a way that engineers can use. This contributes to a new area of 

research that brings together climate scientists and engineers.   

In 2018, the California Public Utilities Commission opened a rulemaking (ongoing at the time 

of this publication) to consider strategies and guidance for climate change adaptation for 

electric and natural gas utilities (proceeding number R.18-04-019). Studies like this are 

providing material for consideration in the preparation of plans and guidance documents for 

the CPUC proceeding and other similar efforts.   
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APPENDIX A-1: 
Detailed Method 

The cumulative distribution function of the GEV distribution is (Cheng et al., 2014): 

 

where, µ, σ, and ξ are the location parameter representing the center of the distribution, the 

scale parameter describing the distribution of the data around the center, and the shape 

parameter that defines the tail behavior of the distribution, respectively.  

The researchers employed the Non-Stationary Extreme Value Analysis (NEVA; Cheng et al., 

2014) toolbox to estimate the parameters of the GEV distribution in the case of both stationary 

and non-stationary analysis. NEVA framework has two main advantages: (i) it is versatile 

enough to deal with temporal stationary and non-stationary extremes (including annual 

maxima and extremes over a particular threshold); (ii) it estimates Return Level curves along 

with their uncertainty bounds through Bayesian inference and the Differential Evolution 

Markov Chain (DE-MC) approach (Cheng et al., 2014). Indeed, a Bayesian approach allows for 

uncertainty quantification, which is crucial especially when dealing with small sample size and 

rare events.  

In this study, non-stationarity is characterized by a time-dependent location parameter µ(t), 

µ(t) =µ1 · t + µ0, where the regression parameters µ1 and µ0 are calibrated. A longer data set 

is required to reliably model the σ and ξ variability over time (Coles, 2001; Papalexiou and 

Koutsoyiannis, 2013), so it is assumed the scale and shape parameters to be time-invariant, as 

suggested by (Cheng et al., 2014).  

We use NEVA to process the historical and future time series of annual maxima and obtain IDF 

curves of 25-, 50-, and 100-year return period along with their associated uncertainties. The 

return period is defined as 1/(1-p) where p is the non-exceedance probability of a given event. 

The intensity of the p-year event is given by: 

 

where the location parameter 𝜇̂ = median(µ(t)) if the Null-Hypothesis of no monotonic trend is 

rejected, and 𝜇̂ = µ elsewhere.  

Generally, for the ith-set of GEV parameters, the expected return period Ti is given by 
1

1−𝜓(𝐼𝑇)
 

where 𝜓(𝐼𝑇) is estimated as: 
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APPENDIX A-2: 
Tables of Precipitation Intensity-Duration-
Frequency 

Table A-1: 25-yr Return Period Intensity-Duration-Frequency curves based on 

historical records (NOAA) and future climate (RCP 4.5 and RCP 8.5).  

Location 
Based 

on 

1-day 

mm/day 

2-day 

mm/day 

3-day 

mm/day 

4-day 

mm/day 

7-day 

mm/day 

Eureka 

NOAA 124.36 81.08 61.57 51.21 37.80 

RCP 4.5 153.14 104.77 80.04 67.14 49.31 

RCP 8.5 164.06 119.08 88.22 73.33 52.70 

Redding 

NOAA 166.42 110.95 85.95 71.93 49.99 

RCP 4.5 179.33 121.94 93.28 79.84 56.63 

RCP 8.5 185.35 127.83 100.41 84.32 64.01 

Sacramento 

NOAA 106.07 65.23 48.77 39.62 27.43 

RCP 4.5 122.13 82.08 61.39 50.45 34.31 

RCP 8.5 130.90 85.62 66.48 54.92 39.98 

San Francisco 

NOAA 107.90 65.23 48.16 40.23 28.65 

RCP 4.5 120.97 77.45 59.38 48.69 33.71 

RCP 8.5 129.05 75.45 58.05 49.61 35.99 

San Jose 

NOAA 77.42 49.38 37.19 30.48 21.34 

RCP 4.5 80.33 52.45 40.84 32.91 24.18 

RCP 8.5 91.47 61.91 47.35 41.19 30.30 

Fresno 

NOAA 65.23 39.62 29.26 23.77 16.46 

RCP 4.5 69.97 44.66 33.75 26.78 18.02 

RCP 8.5 72.60 48.42 36.58 30.24 21.59 

Monterey 

NOAA 90.83 58.52 45.11 37.80 26.21 

RCP 4.5 97.80 63.01 48.69 41.27 28.83 

RCP 8.5 102.52 66.83 50.44 43.19 32.65 

Santa Barbara 
NOAA 156.67 99.97 76.20 62.79 42.06 

RCP 4.5 166.95 110.57 86.21 74.32 51.17 
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Location 
Based 

on 

1-day 

mm/day 

2-day 

mm/day 

3-day 

mm/day 

4-day 

mm/day 

7-day 

mm/day 

RCP 8.5 190.19 122.94 98.64 87.44 60.51 

Ventura 

NOAA 148.74 97.54 75.59 62.79 42.06 

RCP 4.5 155.93 99.02 79.64 67.98 46.02 

RCP 8.5 167.73 108.96 89.99 75.19 55.06 

Los Angeles 

NOAA 137.77 89.00 69.49 57.30 39.01 

RCP 4.5 144.52 97.65 79.31 67.84 43.93 

RCP 8.5 146.43 102.12 84.48 72.10 53.67 

Riverside 

NOAA 90.83 58.52 43.89 35.97 23.77 

RCP 4.5 90.78 61.28 46.13 38.82 24.49 

RCP 8.5 94.75 63.12 48.28 39.97 26.57 

Palm Springs 

NOAA 96.93 58.52 42.67 33.53 21.34 

RCP 4.5 106.08 63.82 47.65 38.67 23.43 

RCP 8.5 113.01 69.70 53.12 42.93 27.96 

Irvine 

NOAA 104.85 67.06 50.60 41.45 27.43 

RCP 4.5 98.43 65.77 50.91 45.33 28.40 

RCP 8.5 113.29 72.69 57.90 49.96 34.58 

Temecula 

NOAA 145.08 91.44 67.06 57.30 39.01 

RCP 4.5 161.32 102.76 78.84 67.44 43.31 

RCP 8.5 165.76 110.86 83.87 74.25 51.82 

Escondido 

NOAA 110.95 70.71 54.86 45.72 30.48 

RCP 4.5 118.78 76.77 58.87 48.72 32.33 

RCP 8.5 122.49 81.44 65.01 53.99 38.13 

San Diego 

NOAA 79.86 48.77 37.19 30.48 20.73 

RCP 4.5 84.20 56.16 42.81 34.88 22.61 

RCP 8.5 95.25 62.92 47.19 37.55 26.53 

 Source: University of California, Irvine and University of California, Los Angeles. 
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Table A-2: 50-yr Return Period Intensity-Duration-Frequency curves based on 
historical records (NOAA) and future climate (RCP 4.5 and RCP 8.5). 

Location 
Based 

on 

1-day 

mm/day 

2-day 

mm/day 

3-day 

mm/day 

4-day 

mm/day 

7-day 

mm/day 

Eureka 

NOAA 140.21 91.44 68.88 57.30 42.06 

RCP 4.5 172.97 118.04 88.67 75.36 55.58 

RCP 8.5 189.50 140.80 103.22 85.40 61.09 

Redding 

NOAA 185.32 123.75 95.71 80.47 55.47 

RCP 4.5 198.84 136.41 104.23 90.39 62.60 

RCP 8.5 207.40 141.53 110.81 93.78 71.22 

Sacramento 

NOAA 121.31 73.76 54.86 44.50 31.09 

RCP 4.5 141.37 95.58 70.00 58.27 39.41 

RCP 8.5 148.79 95.99 74.68 61.00 45.10 

San Francisco 

NOAA 124.36 74.98 55.47 45.72 32.31 

RCP 4.5 141.70 90.23 68.35 56.21 37.98 

RCP 8.5 147.84 83.90 64.70 54.67 39.35 

San Jose 

NOAA 89.61 56.69 42.67 34.75 24.38 

RCP 4.5 91.41 59.10 46.52 37.42 28.04 

RCP 8.5 105.26 70.34 53.57 46.85 34.60 

Fresno 

NOAA 74.98 45.72 32.92 27.43 18.90 

RCP 4.5 81.34 52.31 38.61 31.41 20.94 

RCP 8.5 84.31 56.04 41.80 35.09 25.31 

Monterey 

NOAA 105.46 67.67 52.43 43.28 29.87 

RCP 4.5 114.63 73.74 56.77 46.95 33.06 

RCP 8.5 119.70 76.76 57.75 48.93 36.83 

Santa Barbara 

NOAA 176.17 112.78 86.56 71.93 48.77 

RCP 4.5 188.34 125.40 99.82 88.17 60.70 

RCP 8.5 211.95 135.88 110.89 100.93 69.14 

Ventura 

NOAA 165.20 109.12 84.73 71.32 48.16 

RCP 4.5 169.79 107.70 87.75 76.19 52.34 

RCP 8.5 181.50 120.64 103.41 85.71 64.56 
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Location 
Based 

on 

1-day 

mm/day 

2-day 

mm/day 

3-day 

mm/day 

4-day 

mm/day 

7-day 

mm/day 

Los Angeles 

NOAA 157.89 102.41 80.47 67.06 45.11 

RCP 4.5 169.39 115.15 93.96 81.55 51.64 

RCP 8.5 162.22 114.43 96.06 85.21 64.06 

Riverside 

NOAA 105.46 68.28 51.21 41.45 27.43 

RCP 4.5 104.61 69.87 52.93 44.35 27.92 

RCP 8.5 107.55 71.51 54.69 44.48 29.79 

Palm Springs 

NOAA 114.60 70.10 51.21 40.23 25.60 

RCP 4.5 126.22 75.86 56.97 46.38 28.02 

RCP 8.5 132.55 81.91 63.77 51.26 33.82 

Irvine 

NOAA 120.70 76.81 58.52 48.16 31.70 

RCP 4.5 111.23 74.22 58.01 51.75 32.56 

RCP 8.5 130.08 84.07 67.26 57.25 40.17 

Temecula 

NOAA 166.42 106.68 79.86 68.28 46.94 

RCP 4.5 187.46 121.21 94.22 80.75 52.06 

RCP 8.5 188.48 128.21 98.03 88.31 63.62 

Escondido 

NOAA 126.80 81.08 63.40 53.04 35.36 

RCP 4.5 136.92 88.71 67.56 56.05 37.35 

RCP 8.5 139.90 93.05 74.96 62.04 44.88 

San Diego 

NOAA 90.22 54.86 42.06 34.75 23.77 

RCP 4.5 96.59 65.26 49.95 41.17 26.14 

RCP 8.5 109.12 74.00 54.92 43.63 31.66 

Source: University of California, Irvine and University of California, Los Angeles.  
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Table A-3: 100-yr Return Period Intensity-Duration-Frequency curves based on 
historical records (NOAA) and future climate (RCP 4.5 and RCP 8.5). 

Location 
Based 

on 

1-day 

mm/day 

2-day 

mm/day 

3-day 

mm/day 

4-day 

mm/day 

7-day 

mm/day 

Eureka 

NOAA 156.67 101.80 76.81 63.40 46.33 

RCP 4.5 195.87 132.00 98.25 83.83 62.30 

RCP 8.5 217.38 165.12 119.57 98.39 70.06 

Redding 

NOAA 204.22 135.94 105.46 88.39 61.57 

RCP 4.5 218.00 150.56 115.23 100.52 68.92 

RCP 8.5 228.86 153.77 121.17 101.84 79.06 

Sacramento 

NOAA 136.55 82.30 60.96 49.38 34.14 

RCP 4.5 161.28 110.22 79.24 66.52 44.64 

RCP 8.5 168.65 106.32 82.85 67.39 49.95 

San Francisco 

NOAA 142.04 85.34 62.79 51.82 35.97 

RCP 4.5 164.26 104.17 77.84 64.53 42.50 

RCP 8.5 168.08 92.77 71.76 59.88 42.19 

San Jose 

NOAA 103.63 64.62 48.16 39.62 27.43 

RCP 4.5 104.61 66.00 52.14 42.78 31.96 

RCP 8.5 120.43 79.20 59.61 53.12 38.98 

Fresno 

NOAA 85.34 51.82 37.80 31.09 21.34 

RCP 4.5 92.87 60.19 44.72 36.07 23.96 

RCP 8.5 96.62 64.03 48.47 39.88 29.20 

Monterey 

NOAA 121.92 77.42 59.13 49.38 34.14 

RCP 4.5 133.72 85.13 63.90 53.17 38.11 

RCP 8.5 138.92 87.48 64.43 55.24 41.75 

Santa Barbara 

NOAA 195.68 126.19 97.54 80.47 54.86 

RCP 4.5 210.45 141.20 114.21 101.52 70.38 

RCP 8.5 234.34 149.30 124.80 113.57 76.86 

Ventura 

NOAA 180.44 120.09 93.88 79.25 53.64 

RCP 4.5 181.77 115.17 95.28 83.15 57.15 

RCP 8.5 193.64 131.89 116.90 95.80 73.26 
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Location 
Based 

on 

1-day 

mm/day 

2-day 

mm/day 

3-day 

mm/day 

4-day 

mm/day 

7-day 

mm/day 

Los Angeles 

NOAA 179.22 116.43 91.44 76.20 51.82 

RCP 4.5 196.07 132.96 109.11 95.11 60.47 

RCP 8.5 177.50 125.57 107.05 96.81 75.81 

Riverside 

NOAA 120.09 78.03 58.52 47.55 31.70 

RCP 4.5 118.41 78.24 59.46 50.28 31.55 

RCP 8.5 120.00 79.58 60.63 49.37 33.46 

Palm Springs 

NOAA 134.11 82.30 60.35 47.55 30.48 

RCP 4.5 147.65 88.61 66.96 55.06 33.27 

RCP 8.5 153.82 94.73 75.18 60.17 40.63 

Irvine 

NOAA 137.16 87.78 67.06 54.86 35.97 

RCP 4.5 124.44 83.58 65.75 58.50 36.42 

RCP 8.5 147.25 96.12 77.55 65.17 45.98 

Temecula 

NOAA 188.37 123.14 93.27 80.47 55.47 

RCP 4.5 214.92 140.70 110.63 95.45 62.35 

RCP 8.5 211.41 146.70 113.00 103.39 76.40 

Escondido 

NOAA 143.26 92.66 72.54 60.35 40.84 

RCP 4.5 155.95 101.78 76.82 63.40 43.26 

RCP 8.5 158.02 105.79 85.60 70.38 52.55 

San Diego 

NOAA 99.97 61.57 46.94 38.40 26.21 

RCP 4.5 108.27 75.48 57.76 46.85 29.08 

RCP 8.5 122.84 86.23 63.41 50.17 36.24 

Source: University of California, Irvine and University of California, Los Angeles.  
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APPENDIX B-1: 
Regarding Twenty-First Century Temperature 
Changes Over California: 9-km Hybrid 
Downscaling 

By Yen-heng Lin (yenhenglin@g.ucla.edu), Alex Hall, and Neil Berg  

University of California, Los Angeles 

Department of Atmospheric and Oceanic Sciences 

Institute of the Environment and Sustainability  

Acronyms 

Term Description 

CMIP5 Coupled Model Intercomparison Project, Phase 5 

CMIP6 Coupled Model Intercomparison Project, Phase 6 

CNRM-CM5 GCM from Centre National de Recherches Météorologiques (France) 

GCM Global climate model 

GFDL-CM3 GCM from National Atmospheric and Oceanic 

Administration/Geophysical Fluid Dynamics Laboratory (USA) 

INMCM4 GCM from Institute of Numerical Mathematics (Russia) 

IPCC Intergovernmental Panel on Climate Change 

IPSL-CM5A-LR GCM from L’Institut Pierre-Simone Laplace (France) 

MPI-ESM-LR GCM from Max Planck Institute for Meteorology (Germany) 

RCM Regional climate model 

SAF Snow albedo feedback 

SCF Snow cover fraction 

StatWRF Statistical emulator of the high-resolution temperature changes 

produced by the Weather Research and Forecasting Model simulations 

WRF Weather Research and Forecasting Model  

Abstract 
This study projects future temperature changes over the state of California using a hybrid 

dynamical–statistical framework to achieve high-resolution patterns. Projections from 31 global 

climate models (GCMs) in phase 5 of the Coupled Model Intercomparison Project (CMIP5) are 

downscaled to a 9-km resolution over California. The study focuses on temperature changes 

during the middle (2041–2060) and the end (2081–2100) of the 21st century compared to the 

historical climate (1981-2000) under two Representative Concentration Pathway (RCP) 

scenarios: RCP8.5 (business as usual) and RCP4.5 (stabilization scenario). The hybrid 

downscaling ensemble projections indicate that during the middle of the 21st century under 

RCP4.5 (RCP8.5), average temperature across California is expected to be about 2.0 ℃ (2.5 ℃

) warmer than the historical value. During the end of the 21st century, temperature is 
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expected to increase by 2.6 ℃ annually under the RCP4.5, and by 4.2 ℃ in the winter and 

spring and 5.6 ℃ in the summer and fall under RCP8.5. Moreover, due to the rapid loss of 

snow in mountain regions under future warming scenarios, the snow albedo feedback leads to 

localized zones of concentrated warming in regions of strong snow reductions compared to 

non-mountainous regions.  

1. Introduction 
There are two major uncertainties in climate models when projecting future climate changes 

over California. First, there is large uncertainty in the physics contained in global climate model 

(GCM) simulations of future environments, such as hydrological processes, cloud formation, 

and wind circulations. To capture a range of how these processes may unfold in the future, 

large ensembles of climate models are simulated and analyzed to form a range of possible 

future scenarios. Specifically, the World Meteorology Origination Intergovernmental Panel on 

Climate Change (IPCC) organizes the Coupled Model Intercomparison Project (CMIP) [Taylor 

et al., 2012] to conduct multiple climate model simulations forced by different scenarios of 

greenhouse gas emissions. The ensemble results provide a range of future projections, which 

presents more reliable results than only analyzing a single model [Knutti and Sedláček, 2013]. 

Over 30 GCMs participated in phase 5 of CMIP (CMIP5), which informed the IPCC's Fifth 

Assessment Report (AR5).  

Second, there is uncertainty due to the spatial scale of GCMs (on the order of 100 km), which 

cannot accurately resolve the complex topography of California, including its coasts, valleys, 

and high mountains. For example, the Sierra Nevada is only represented by a few grid cells 

that have poorly interpolated elevations in most GCMs. As such, these global-scale projections 

are heavily biased and inaccurate in their projections over much of California and need to be 

translated to finer scales for more credible assessments of future climates.   

Two primary techniques are used to “downscale” coarse-scale GCM projections down to finer 

scales: dynamical downscaling and statistical downscaling. The dynamical downscaling 

approach utilizes GCM simulation data as boundary conditions to drive a high-resolution 

regional climate model (RCM) over the region of focus. The RCM provides the most physically 

consistent projection as it solves the equations of motion over limited regions – and more 

accurately resolves physics for regions with a complex environment [e.g., Mass et al. 2002; 

Plummer et al. 2006] - however, it requires a high demand of computing capacity. This often 

leads to a tradeoff of not being able to downscale many GCMs (or different greenhouse gas 

scenarios for a given GCM) to finer scales, which limits the range of possible future scenarios 

that can be analyzed.   

Statistical downscaling is another approach to generate high-resolution regional climate 

change projections. This approach develops various statistics-based empirical relationships 

between coarse-scale and fine-scale historical data and applies those relationships to 

downscale future GCM data to estimate regional changes from GCM output. This method has a 

much lower computational demand than dynamical downscaling, which allows for an efficient 

downscaling of many GCMs and emissions scenarios, helping reduce the uncertainty across 

models/scenarios [Benestad et al., 2018]. However, the empirical relationships are derived 

from historical data and they may not hold in a non-stationary future climate. This limitation is 

particularly relevant for regions like the Sierra Nevada, where changing snow conditions and 
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the presence of the snow albedo feedback can significantly alter coarse-to-fine-scale 

relationships in the future [Walton et al., 2017].   

Berg et al. [2015] and Walton et al. [2015, 2017] combined the physical realism of dynamical 

downscaling and the computational efficiency of statistical downscaling together to form a new 

dynamical-statistical “hybrid” downscaling approach for projecting regional climate changes 

over the Los Angeles area and the Sierra Nevada. This report builds upon the hybrid 

downscaling technique to project future temperature changes across the entirety of California 

at 9 km. All available CMIP5 GCMs under multiple greenhouse gas emissions are downscaled 

for both the middle and end of the 21st centuries.  

2. Methods  
In this study, temperature projections from 31 CMIP5 GCMs are downscaled using a hybrid 

dynamical-statistical downscaling approach for analyzing high-resolution future temperature 

changes over California. The hybrid downscaling approach starts by using an RCM to first 

dynamically downscale historical and future high-resolution patterns. The historical simulations 

from this step are compared to observed gridded datasets to ensure their validity. Then, 

statistical relationships are developed between the raw GCM output driving the dynamically 

downscaled simulations and the downscaled changes themselves, in essence determining how 

to re-produce dynamically downscaled simulations through statistical means alone. These 

relationships are then applied to other GCMs to efficiently downscale their coarse-scale 

features to finer scales, forming an essential high-resolution ensemble of future temperature 

patterns. 

2a. Dynamical downscaling 

The National Center for Atmospheric Research Weather Research and Forecasting (WRF) 

model, version 3.5, [Skamarock et al. 2008] has been applied to dynamically downscale 

historical data and future projections over California. WRF has been extensively tested and 

proved to credibly simulate regional climates with physical consistency over the state [Lo et al. 

2008; Bukovsky and Karoly 2009; Gilliam and Pleim 2010]. WRF’s configuration was tested 

with multiple modules and parameterizations to determine the best configuration for the 

complicated topographic area over California. In this study, WRF is coupled to the Noah Land 

Surface Model with Multi-Parameterization options [Noah-MP; Niu et al. 2011]. Two one-way 

nested domains with 27 km and 9 km resolution were simulated in this study (Figure B1-1). 

The 27 km domain simulates the large-scale general circulation around California and provides 

boundary conditions to the 9 km domain. There are 43 total vertical layers in the atmosphere 

and 30 layers below 3 km to improve the simulation of surface and boundary layer. Additional 

configuration details can be found in Walton et al. [2017].  
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Figure B1-1: Elevation (m) and model setup in this study with two one-way nested 
WRF domains (labeled D01 and D02) at resolutions of 27 and 9 km 

 

Source: University of California, Los Angeles 

A 1991-2000 historical simulation is first generated using 6-hourly North American Regional 

Reanalysis (Mesinger et al. 2006) data as boundary conditions. Five future climates spanning 

2091-2100 are then simulated using the pseudo-global warming (PGW) method (Schär et al. 

1996; Sato et al. 2007; Rasmussen et al. 2011). These future climates are based on five GCMs 

under RCP8.5: CNRM-CM5, GFDL CM3, INM-CM4.0, IPSL-CM5ALR, and MPI-ESM-LR; see 

Appendix b. In the PGW method, a future climate is produced by re-simulating the historical 

simulation with boundary conditions perturbed by end-of-century (2081-2100 minus 1981-

2000) changes in temperature, specific humidity, zonal and meridional winds, and geopotential 

height according to the GCM in question. This method allows for a clear comparison between 

future and historical climates and avoids issues of internal variability from the GCM. However, 

it should be noted that variability between the historical and future projections are constant in 

a pseudo-global warming approach. For instance, the frequency of storms is constant in both 

time periods, but future magnitudes will differ. Overall, this method is best interpreted as 

examining how an observed historical climate may look in the future if everything else is held 

constant but large-scale climate changes in temperatures, humidity, pressure, and winds are 

imposed on the boundaries on the historical climate within the region in question.   

2b. Statistical Downscaling 

The statistical portion of the hybrid downscaling approach begins by developing a statistical 

emulator of the high-resolution temperature changes produced by the WRF simulations in 

section 2a (referred to as “StatWRF” in Walton et al. 2017). Two physical features have been 

considered in statistical models to reconstruct temperature distributions over California 

[Walton et al. 2015; 2017]. One of the most important factors is the relationship between 

snow albedo feedback (SAF) and temperature. Following Walton et al. [2015, 2017], here the 
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total snow cover fraction (SCF) data from WRF output to understand the effect of SAF on 

temperature has been used. Equation 1 shows the relationship between the variations of SCF 

and surface temperature:  

𝑇𝑟𝑒𝑔
′ = 𝑇′ −  α ∙ 𝑆𝐶𝐹′ + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙                  (𝐵 − 1) 

Primes indicate anomalies either from the historical or future periods, 𝑇𝑟𝑒𝑔 is the regional mean 

temperature over the California, and α is the SAF strength representing the impact of SCF on 

temperature. The residual term refers to the intercept term in the linear regression, which can 
be ignored because 𝑇𝑟𝑒𝑔

′ is small and 𝑇′−𝑇𝑟𝑒𝑔
′ and 𝑆𝐶𝐹′ fluctuate around zero. This equation 

shows that the temperature anomaly in any grid cell (𝑇′) can be decomposed into the change 

of background temperature anomaly (𝑇𝑏𝑎𝑐𝑘
′) and the effect of the SCF anomaly. To estimate 

the impact factors of SCF on temperature, in each month, a linear regression analysis was 

applied to (𝑇′  −  𝑇𝑟𝑒𝑔
′
) and (𝑆𝐶𝐹′) to generate the α value from all combined years in the 

historical and future time periods. When calculating the local SAF strength α, the additional 

warming contributed from the local SCF can be subtracted from the temperature change to 

produce a “background warming” ∆𝑇𝑏𝑎𝑐𝑘 in each grid cell of a given month: 

∆𝑇𝑏𝑎𝑐𝑘 = ∆𝑇 −  α ∙ ∆𝑆𝐶𝐹                    (𝐵 − 2) 

where ∆ presents the climatological differences between WRF’s future and historical runs. The 

value of ∆𝑇𝑏𝑎𝑐𝑘 is an estimation of temperature warming without the effect of local SAF. To 

estimate the background warming change, Walton et al. [2015, 2017] found that the regional-

mean temperature warming and the dominant spatial variability pattern from the WRF 

background warming are key factors to reconstruct the background warming amount from the 

GCM.  

∆𝑇𝑏𝑎𝑐𝑘(𝑥, 𝑦) = ∆𝑇𝑅𝑒𝑀𝑒𝑎𝑛 + β (∆𝑇𝑒𝑎𝑠𝑡 − ∆𝑇𝑤𝑒𝑠𝑡)𝑃𝐶1 (𝑥, 𝑦)            (𝐵 − 3) 

Equation B-3 shows the formula of reconstructing background warming from the GCM. 

∆𝑇𝑅𝑒𝑀𝑒𝑎𝑛 contains the GCM regional climatological temperature difference; 𝑃𝐶1 (𝑥, 𝑦) is the 

spatial variability pattern identified via principal component analyses generated from the 

background warming patterns of the five WRF simulations, and represents the dominant 

background temperature change; (∆𝑇𝑒𝑎𝑠𝑡 − ∆𝑇𝑤𝑒𝑠𝑡) is the climatological temperature difference 

between land and ocean in GCM to setup a physical constraint of the temperature gradient in 

all GCMs; and β is temperature gradient stretch between land and ocean over the study area 

generated from the linear regression of the GCM-sampled warming difference (∆𝑇𝑒𝑎𝑠𝑡 − ∆𝑇𝑤𝑒𝑠𝑡) 

and the eigenvalue of 𝑃𝐶1 to determine the value of β that appropriately scales the GCM 

warming differences to approximate 𝑃𝐶1 loadings, while minimizing error. To constrain the 

background warming with zero east-west gradient, the intercept in the linear regression is set 

to zero. The east-west grid locations having the least error are located over the southern 

Sierra Nevada (120.13° W, 32.05° N) and the coastal ocean (115.74° W, 34.63° N). Since 

coarse-resolution GCMs poorly resolve SAF and its influences on regional mean temperatures 

(𝑇𝑅𝑒𝑀𝑒𝑎𝑛), the GCM ∆𝑇𝑅𝑒𝑀𝑒𝑎𝑛 calculated from the mean temperature over California land areas 

is not consistent with the WRF ∆𝑇𝑅𝑒𝑀𝑒𝑎𝑛 from December to April. To better estimate the 

∆𝑇𝑅𝑒𝑀𝑒𝑎𝑛 from the GCM in this season, a grid point in GCMs is used which can represent the 

∆𝑇𝑅𝑒𝑀𝑒𝑎𝑛 in WRF by selecting the point in GCM with the lowest root-mean-square error against 

the WRF ∆𝑇𝑅𝑒𝑀𝑒𝑎𝑛, and which is located at 34.85° N and 119.15° W.  
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The last step in the statistical model is to estimate the SCF change in the GCM. To understand 

the relationship between SCF and temperature, a logistic regression function between T and 

SCF from WRF output (1 historical and 5 future runs) is applied in Equation B-4: 

SCF(T) =
1

1 + exp[𝑐(𝑇 − 𝑇∗)]
                   (𝐵 − 4) 

where c and T* are constants computed via logistic regression. The change of SCF can be 

obtained through equation B-5:  

∆SCF(T) =
1

1 + exp[𝑐(∆𝑇 + 𝑇ℎ𝑖𝑠𝑡 − 𝑇∗)]
 − 𝑆𝐶𝐹ℎ𝑖𝑠𝑡            (𝐵 − 5) 

Equations B-3 and B-5 create the reconstruction of background warming and SCF changes 

from the WRF output that is applied to the CMIP5 CGMs output to estimate the multi-model 

temperature change in Equation B-2.  

3. Results 

3a. Evaluating Hybrid Model Performance 

A cross-validation exercise is used to test how robust the hybrid model, StatWRF, is when re-

creating downscaled features from the dynamical model, WRF, when only 4/5 downscaled 

models are used to predict changes from the 5th model. In essence, this is a leave-one-out-

cross-comparison technique that reveals how sensitive statistical relationships are to its 

training dataset. The exercise is repeated for all combinations of the five models for seasonal 

changes, yielding 20 total data points for evaluation. The resulting scatter plot of this cross-

validation exercise of regional-mean temperature changes is presented in Figure B1-2. The 

dynamical results from WRF are displayed on the x-axis, with the hybrid results on the y-axis, 

where the hybrid results are colored according to the model that is left-out in the validation 

exercise. The figure shows excellent agreement for all models and all seasons (r2 ~ 0.82), 

indicating that the statistical relationships in StatWRF are not highly sensitive to the choice of 

5 models versus 4 models in its training dataset. This provides more confidence that the 

hybrid technique can credibly be applied to any GCM to efficiently downscale future 

temperature changes. 

  



 

 

B-7 

Figure B1-2: Elevation (m) and model setup in this study with two one-way nested 
WRF domains (labeled D01 and D02) at resolutions of 27 and 9 km 

 

Warming values represent a downscaling of regional-mean temperature changes between the 1981–2000 

and 2081–2100 periods in different seasons. Dashed line is the least squares line. 

Source: University of California, Los Angeles 

Moreover, Figure B1-3 further shows comparison between StatWRF (using all 5 dynamically 

downscaled results) and WRF output in March when is expected have the largest change of 

snow cover fraction [Bales et al. 2011; Walton et al. 2017; Sun et al. 2019]. Specifically, it 

shows the end-of-century projected temperature changes for each of the 5 downscaled GCMs 

according to StatWRF and WRF in March. The figure shows that StatWRF can successfully 

emulate WRF’s spatial detail of temperature changes (spatial correlation coefficient > 0.94 

with 99 percent confidence), particularly the coastal gradient and sharply varying elevation-

based gradients of temperature across the Sierra Nevada and other mountain regions. During 

the melting season, the middle-high elevations (1,500-3,000 meters) have the largest 

temperature changes across the state, which is related to the SAF as large snowpack 

reductions in these elevations dramatically increase future temperatures [Sun et al. 2015; 

Walton et al. 2017]. Moreover, the high variance of temperature changes across the 5 models 

demonstrates the necessity of examining multi-model ensembles to better capture the range 

of potential future scenarios over California.  
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Figure B1-3: (top) WRF March warming patterns (℃). (bottom) StatWRF March 

warming patterns 

 

Warming patterns represent a downscaling of GCM temperature changes between the 1981–2000 and 

2081–2100 periods.  

Source: University of California, Los Angeles 

3b. Value Added from Downscaling  

With confidence in the ability for the hybrid model to credibly downscale warming signals over 

California using the 5 dynamically downscaled GCMs (Figures B1-2 and B1-3), then 

temperature changes downscaled for 31 CMIP5 GCMs using the hybrid approach. Figure B1-4 

reveals the ensemble mean of seasonal temperature changes under RCP8.5 at the end of 21st 

century between simple linearly interpolated output of 31 CMIP5 GCMs and their hybrid 

downscaled patterns using StatWRF. Both GCM and StatWRF ensemble-mean temperature 

changes show coastal-to-inland temperature gradient patterns, but only StatWRF is able to 

resolve fine-scale geographic features across the state, critical for providing information for at 

local scales. In general, the downscaled datasets project 5.0 ℃ warming on an annual-average 

for the entire state by the end of the century, with more warmth in mountain regions (5.5℃, > 

1500m) and less warmth in Central Valley and coast regions (4.7 ℃), In addition, in the peaks 

of the Sierra Nevada (>3,000m) temperature changes show less warming than middle-high 

elevation areas (1,500-3,000m) in the winter and spring. On the contrary, in the summer and 

fall, warmer temperatures in the peaks of the Sierra Nevada are much warmer than lower-

lying areas. Surface hydrological changes in snow water equivalent, snowmelt timing, and 

initiation of evaporation from soils under the warming temperature may result in different 

warming rates over different elevations [Walton et al. 2017; Sun et al. 2019]. These features 

of temperature changes do not exist in the coarse-resolution GCM projections, highlighting the 

importance and value added of downscaling GCMs to finer scales for more accurate projections 

of temperature change over California. 
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Figure B1-4: Temperature changes between 2081–2100 and 1981–2000 for (top) 

linearly interpolated GCM ∆T (℃) averaged from 31 RCP8.5 GCMs, and (bottom) as 

in (top), but for StatWRF ∆T (℃) 

 

Source: University of California, Los Angeles 

3c. Impact of Different Greenhouse Gas Emissions Scenarios 

To assess the impact of different greenhouse gas pathways in the 21st century on California 

climate, Figure B1-5 compares seasonal-mean temperatures over the entire state and just the 

high-elevations between RCP4.5 and RCP8.5 during the middle and the end of the 21st 

centuries. During the middle of the 21st century, statewide ensemble-mean temperature 

changes between RCP4.5 and RCP8.5 are about 2.0 and 2.5 ℃ warmer compared to the 

historical climate (1981-2000), respectively. A similar result is found when only considering 

high-elevation regions. As such, there is not a significant difference in temperatures across the 

state by mid-century between the two greenhouse gas scenarios. However, at the end of the 

21st century, the projections of ensemble-mean temperature changes under the RCP8.5 

scenario show dramatic warming of about 4.2 ℃ warmer in the winter and spring and 5.6 ℃ 

warmer in the summer and fall, which is about 2.3 ℃ warmer than the RCP4.5 scenario. In 

addition, temperature changes over high-elevation areas (> 1,500m) are about 0.4 ℃ warmer 

than in low-elevation areas (<= 1,500m) in all seasons.  
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Figure B1-5: StatWRF ∆T warming estimations in California between 2041-2060 
and 1981-2000 periods and between 2081-2100 and 1981-2000 for RCP4.5 and 

RCP8.5 

 

The line within the box indicates ∆T ensemble mean; the bottom and top of box indicate the ensemble 25 

percent to 75 percent range, and the vertical lines extending from the box represent the 10 percent to 90 

percent ensemble range. The light-color bar on the right shows ∆T for elevations that are higher than 

1,500 meters. 

Source: University of California, Los Angeles 

4. Summary 
In this report, a hybrid dynamical–statistical approach (StatWRF) was used to downscale the 

CMIP5 GCMs to 9 km resolution for fine-scale temperature projections over California during the 

21st century. A cross-validation exercise is used to demonstrate the credibility of StatWRF 

successfully reproducing fine-scale features of temperature changes from the full dynamical 

solution from WRF. To reduce the uncertainty of physics contained in GCMs and across different 

greenhouse gas emissions scenarios, StatWRF is used to downscale 31 CMIP5 GCM models 

under two emissions scenarios: RCP4.5 and RCP8.5. The downscaled ensemble reveals that 

statewide temperatures under RCP4.5 (RCP8.5) are projected to increase by about 2.0 (2.5) ℃ 

in the middle of the 21st century and 2.6 (5.0) ℃ at the end of 21st century compared to the 

historical (1981-2000) climate. There are clear patterns of changes according to elevation and 

by season. Mid- and high-elevation areas (>1,500 m) are projected to experience more warmth 

than low-elevation areas (< 1,500 m) due to the presence of the snow albedo feedback. In 

terms of seasonality, temperatures in the dry season are projected to warm about 1.4 ℃ more 
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than changes in the wet season. These fine-scale warming patterns with season and elevation 

in the high-resolution downscaling projections are generally absent in the GCMs. Thus, using a 

hybrid downscaling approach to credibly and efficiently project changes in local temperature 

variations that incorporate variations of snow cover fraction, snow water equivalent, and soil 

moisture across California [Howat and Tulaczyk 2005; Pagán et al. 2016; Sun et al. 2019].  

Overall, the findings in this report indicate that a hybrid-downscaling approach that combines 

the benefits of physical realism associated with dynamical downscaling and the computational 

efficiency of statistical downscaling can provide a credible way to downscale a large ensemble 

of GCM temperature projections. These high-resolution projections of future climate provide 

important and necessary information for understanding regional climate changes and adaptation 

planning in California. Looking forward, there are expected advancements in both GCMs and 

RCMs, both of which offer opportunities to generate more reliable projections and accurate 

downscaled projections over California. In preparation for the next IPCC report, a new phrase 

of GCMs and associated intercomparison project, CMIP6, is currently being conducted. As CMIP6 

GCMs become available, they will over new global-scale datasets that may improve upon CMIP5 

projections and offer better large-scale inputs to a hybrid downscaling model. RCMs like WRF 

are also continuously being updated and improved through new parameterizations, which should 

further improve the accuracy of downscaled projections.   
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APPENDIX B-2: 
Regarding 1981–2014 90-m Temperature 
Simulations and End-of-21st-Century 90-m 
Temperature Simulations 

By Hsin-Yuan Huang and Alex Hall  
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Acronyms 

Term Description 

CIMIS California Irrigation Management Information System 

CMIP5 Coupled Model Intercomparison Project, Phase 5 

CNRM-CM5 GCM from Centre National de Recherches Météorologiques (France) 

GCM Global climate model 

GFDL-CM3 GCM from National Atmospheric and Oceanic 

Administration/Geophysical Fluid Dynamics Laboratory (USA) 

INMCM4 GCM from Institute of Numerical Mathematics (Russia) 

IPSL-CM5A-LR GCM from L’Institut Pierre-Simone Laplace (France) 

MPI-ESM-LR GCM from Max Planck Institute for Meteorology (Germany) 

NCEP National Centers for Environmental Prediction 

Ta Air temperature 

WRF Weather Research and Forecast Model  

I. Introduction 
Climate change is expected to have significant impacts on air temperature in State of 

California, but these impacts are not yet quantified at very fine scales (e.g., hundreds of 

meters or finer). Global climate models (GCMs) are the most powerful tools climate scientists 

have to simulate the climate system and project future climates. This study uses data from a 

subset of GCM outputs in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), 

which is the collection of GCM experiments underlying the 5th Assessment Report by the 

Intergovernmental Panel on Climate Change (IPCC) and represents the latest generation of 

GCMs. However, GCMs are very low in spatial resolution, outputting climate data points that 

represent very large areas (e.g., 100 km resolution or larger). For this reason, GCMs do not 

represent the complex topography of State of California, and therefore do not produce climate 

change projections that are spatially explicit enough to be employed in adaptation planning. 

Thus, the use of a regional climate model (e.g., Weather Research and Forecasting, WRF) to 

“downscale” GCM information to finer spatial scales (e.g. on the order of 10 km resolution) is 

required to obtain more details about near-surface atmospheric temperature.  
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The WRF model is a next-generation mesoscale numerical weather prediction system designed 

for both atmospheric research and operational forecasting applications. The model serves a 

wide range of meteorological applications across scales from tens of meters to thousands of 

kilometers. In the late 1990's, the development of WRF began at the National Center for 

Atmospheric Research, the National Oceanic and Atmospheric Administration, the National 

Centers for Environmental Prediction (NCEP), the Air Force Weather Agency, the Naval 

Research Laboratory, and the University of Oklahoma. WRF can produce simulations based on 

actual atmospheric conditions or idealized conditions. WRF offers operational forecasting on a 

flexible and computationally efficient platform, while reflecting recent advances in physics, 

numerical, and data assimilation contributed by developers from the expansive research 

community. WRF is currently in operational use at NCEP and other national meteorological 

centers as well as in real-time forecasting configurations at laboratories, universities, and 

private companies. Using reanalysis data as well as GCM data as a forcing to drive WRF 

simulations, this study simulates near-surface atmospheric conditions in a 9 km resolution grid 

covering the entire State of California (Figure B2-1a, topography shown at 90 m resolution).  

Figure B2-1: Study domain’s a) elevation, b) canopy cover fraction, and c) land 
cover type in 90-m resolution. Abbreviations in c) represent Water body (Wtr), 

Developed (Dvl), Barren (Brr), Forest (Frs), Shrubland (Shr), Herbaceous land 
(Hrb), Planted (Pln), and Wetland (Wtl) 

 

Top 10 largest cities are shown in red dots. The black dots shown in c) are CIMIS sites where 

observations are collected 

Source: University of California, Los Angeles 

Though WRF is a powerful tool to simulate atmospheric variables of interest, it still has 

limitations when capturing geographical variations in soil and topography, which is on the 

order of a couple hundred meters or less. To perform WRF simulations with resolutions of 
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hundreds of meters is theoretically possible but not feasible due to the limitation of 

parameterizations included in the model. Therefore, the research group employed other 

approaches to downscale 9 km WRF outputs to even finer spatial scales necessary for detailed 

analyses. Details of this technique will be described in the Methodology section, followed by a 

brief discussion of the simulation results.   

II. Methodology 

1. Selection of Global Circulation Models 

Since the changes in surface air temperature and precipitation between the future projections 

and the current climate are the key atmospheric characteristics to affect near-land variables, 

the research group selected a subset of GCMs to downscale air temperature based on these 

two variables. The 20-year mean changes in air temperature and daily precipitation between 

the end of the century (2081–2100) under the greenhouse gas emissions scenario of RCP8.5 

and historical baseline (1981–2000) are shown in Figure B2-2. Each dot (gray markers) 

represents data from a CMIP5 GCM. GCM data over the entire California land domain are 

shown in the left panel and data for California land and coastal ocean domains are in the right 

panel.  

Five selected GCMs are shown in red dots. MPI-ESM-LR is one GCM representing nearly no 

change in precipitation between the future projection and historical data. IPSL-CM5A-LR shows 

a much warmer and wetter future climate projection, while INMCM4 projects a lesser increase 

in air temperature and a reduction in precipitation. Additional two GCMs also selected that 

representing a warmer but dryer condition (GFDL-CM3) and a less warm but wetter condition 

(CNRM-CM5), to show the spread in GCM uncertainty.  

Figure B2-2: Mean changes of surface air temperature (∆Ta) and daily precipitation 
(∆PPT) between future GCM simulations (2081–2100 with scenario RCP 8.5) and 

historical baseline (1981–2000) 

 

a) Averaged over California land grids and b) averaged over California land grids and surrounding 

oceanic grids. 

Source: University of California, Los Angeles 
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2. Fine-scale Downscaling Technique 

The research group use the MicroMet scheme introduced in Liston and Elder (2006)1 to 

downscale WRF 9 km resolution near-surface air temperature (at 2-m height) to 90-m 

resolution over the study domain covering the entire State of California as shown in Figure B2-

1. This method is a quasi-physically based, high-resolution meteorological distribution model. 

It is designed specifically to produce high-resolution meteorological forcing distribution 

required to run a land surface model. Two basic assumptions of this method are: 1) all 

available data, at a given time, are spatially interpolated over the domain, and 2) physical sub-

models are applied to each variable to improve parameter realism at a given point in space 

and time.  

The spatial interpolation (horizontal and vertical) using a Barnes objective analysis scheme 

(e.g., Koch et al., 19832), which applies a Gaussian distance-dependent weighting function and 

the weighting function, w, is described as: 

𝑤 = exp [−
𝑟2

𝑓(𝑑𝑛)
], 

where r is the distance between the observation and a grid point, and f(dn) defines a filter 

parameter whose value gives how smooth the interpolation will be. Since the grid point values 

are weighted averages of the surrounding stations (i.e., lower-resolution grid points), the 

gridded values are always less than the maximum and greater than the minimum value 

surrounding the point. This method is able to achieve good success with high-resolution 

topography data (e.g., Digital Elevation Model3) and remotely sensed observations (e.g., 

Landsat data4).  

Dodson and Marks (1997)5 summarize two of the most realistic and general methods used to 

distribute point air temperature data over mountainous terrain: assuming 1) neutral 

atmospheric stability, and 2) a constant linear lapse rate. They conclude that the constant 

linear lapse rate method most successfully reproduces the natural environment, but also note 

that lapse rates can vary widely over space and time. Since air temperature is highly affected 

by elevation, the elevation information is considered in downscaling temperature estimate (T).  

First, the large-scale air temperatures (9 km resolution) are adjusted to a common level (i.e., 

sea level) using the formula of lapse rate. The reference-level large-scale temperatures are 

then interpolated to the model grid (i.e., 90 m resolution) using the Barnes objective analysis 

 

1 Liston G. E., and K. Elder (2006), A meteorological distribution system for high-resolution terrestrial modeling 
(MicroMet). J. Hydromet., 7, 217-234. 

2 Koch, S. E., M. desJardins, and P. J. Kocin (1983), An interactive Barnes objective map analysis scheme for use 

with satellite and conventional data. J. Climate Appl. Meteor., 22, 1487-1503. 

3 https://www.usgs.gov/faqs/what-are-digital-elevation-models-dems. 

4 https://www.nasa.gov/mission_pages/landsat/main/index.ht. 

5 Dodson, R., and D. Marks (1997), Daily air temperature interpolation at high spatial resolution over a large 

mountainous region. Climate Res., 8, 1-20. 
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scheme. The gridded topography data and lapse rate are then used to adjust the reference-

level gridded temperatures to the elevations provided by the topography dataset, using 

𝑇 = 𝑇0 − Γ(z − 𝑧0), 

where T0 is the interpolated temperature on Barnes scheme, Γ is a seasonal lapse rate, z is the 

elevation from topography dataset, z0 is the reference-level elevation surface. For more 

details, the reader is referred to Liston and Elder (2006). 

3. Model performance evaluation 

The data of estimated air temperature (Ta) using above model is first compared to point-scale 

observations to see the model performance. The observations are collected from California 

Irrigation Management Information System6 (CIMIS) sites shown in Figure B2-1c. CIMIS is a 

program unit in the Water Use and Efficiency Branch, Division of Statewide Integrated Water 

Management, California Department of Water Resources, that manages a network of over 145 

automated weather stations in California. It is clear that good agreement exists between 

model estimates and observations (Figure B2-3a). The correlation coefficient is 0.99 and the 

root-mean-square-error is about 0.7 oC. The model also well reproduces the seasonal cycle of 

air temperature and fits well with monthly mean observations (Figure B2-3b). This comparison 

provides us confidence to apply this technique to downscale WRF Ta outputs to a 90-m 

resolution.  

Figure B2-3: Comparison of Ta between observations collected in CIMIS sites and 

model estimates: a) all data from October, 1991 to September 2001, b) monthly 
mean. Data are averaged across all 137 CIMIS sites 

 

Source: University of California, Los Angeles 

III. Overall Pictures of Downscaled Air Temperature 

1. Temperature change in winter months 

The research group first take a look at air temperature (Ta) in winter months (e.g., December, 

January, and February). The climatology of historical temperature data is shown in Figure B2-

4a. It is clear that Ta is significantly affected by topographic elevation and land surface type. 

 

6 https://cimis.water.ca.gov/ 

https://cimis.water.ca.gov/
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Higher Ta is seen in the coastal urban area and Mojave Desert, and lower Ta is seen in 

California’s Sierra Nevada, where most precipitation and snow accumulate. Projected 

temperature change from five selected GCMs (projection minus historical data) are shown in 

subplots 4b-4f. An overview shows that larger increases of Ta are seen in IPSL-CM5A-LR and 

GFDL-CM3 models, and smaller increases are seen in CNRM-CM5 and INMCM4. This result is 

consistent with Figure B2-2. For each projection, the smaller increase in Ta is seen in coastal 

urban areas and the Central Valley, whereas the larger increase is usually seen in mountainous 

regions, especially the Sierra Nevada. This is because of the difference in lapse rate between 

low-elevation and high-elevation areas simulated in future projections. Another reason could 

be due to differences in land surface type, where ground temperatures in urban areas are 

higher than those over vegetated regions.  

Figure B2-4: Average air temperature in winter months (December, January, and 
February): a) historical and b–f) projected temperature change from selected 

GCMs 

 

Source: University of California, Los Angeles 

2. Temperature change in summer months 

Results averaged over summer months (June, July, and August) are shown in Figure B2-5. The 

general pattern shown in Figure B2-5 is similar to what has been seen in Figure B2-4, but with 

greater magnitude. However, the GFDL-CM3 model here shows the largest increase in mean 

temperature over the entire study domain for summer months. There is a larger model spread 

during summer months than winter months. This indicates that at least within the small subset 

of downscaled GCMs analyzed in this study, models converge to a greater extent in their 

projections of future temperature over California during the cold season than they do in the 

warm season. However, the inclusion of more GCMs would likely increase the spread during 
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both seasons, so caution should be applied when interpreting these results, which are based 

only on a few GCMs. For more details about increase in Ta versus topography, the reader is 

referred to Sun et al. (2016)7.  

Figure B2-5: Average air temperature in winter months (June, July, and August): a) 
historical and b–f) projected temperature change from selected GCMs 

 

Source: University of California, Los Angeles 

3. Temperature changes in big cities 

Figure B2-6a shows the historical mean temperatures for winter (blue dots) and summer 

months (red dots). In winter months, temperatures in Southern California cities are generally 

higher than those in Northern California cities, as expected. However, in summer months, 

Sacramento and Fresno are hotter than other cities in Northern California. The reason could be 

the lack of sea breeze cooling down the air temperature in these cities located in the Central 

Valley. Figure B2-6b shows there is a larger spread of GCM projections (standard deviation 

shown as vertical bars) in summer than in winter, which is consistent with previous figures. 

The average increase in temperature is about 3.5 and 4.5 oC in winter and summer months, 

respectively. Larger differences in temperature increase between winter and summer are seen 

in Fresno and Bakersfield, both located in the Central Valley, a result similar to those shown in 

previous maps.   

 

7 Sun, F., A. Hall, M. Schwartz, D.B. Walton, and N. Berg, (2016), Twenty-first century snowfall and snowpack 

changes over the Southern California mountains. Journal of Climate, 29(1), 91-110. 
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Figure B2-6: a) Mean air temperature for winter months (December-February, blue 
dots) and summer months (June-August, red dots) during the historical time 

period for major cities in State of California. b) Projected temperature changes 
from GCMs. The vertical bar represents standard deviation cross GCMs 

 

Source: University of California, Los Angeles 

VII. Data Description 

1. Data files 

Monthly air temperature data in 90-m resolution are saved in gridded format based on latitude 

and longitude information in /Surface folder. 

2. Data format 

Data are saved in a HDF5 file format, with unit of oC. The file name is in a format of 
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T2D_{model}_{rcp option}_{year}_{month}.h5 

The parameters, text in {}, are: 

model:  HIST (historical data) 

  CNRMCM5, GFDLCM3, INMCM4, IPSLCM5ALR, and MPIESMLR (future projection) 

rcp option: N/A for historical data 

85 for GCM future projection 

year:   Data year (1981-2014 in historical and 2091-2100 for future projections) 

month:  Data month 

For example, T2D_HIST_1981_01.h5 is the monthly temperature data for January, 1981. 

Dimensions of each file are 13450 (points in latitude) x 7886 (points in longitude). Data with 

NaN value indicates grid outside the simulation domain.   
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APPENDIX C: 
Regional Climate Symposia Summary 

The Local Government Commission (LGC) and Climate Resolve, in partnership with the 

California Energy Commission (CEC) and various local partners, organized a series of regional 

climate symposia to disseminate findings from California’s Fourth Climate Change Assessment, 

including deeper dives into the energy sector. The Symposia served as valuable venues to 

share best-available science, research findings, and adaptation strategies and tools, as well as 

to bring practitioners together from across each region. 

Event Date Location Lead Partners 

Inland Deserts 
Climate Symposium 

10/12/18 Palm Desert, 
CA 

Climate 
Resolve 

LGC, CEC, OPR, CNRA 

Los Angeles 
Climate Symposium 

11/2/18 Long Beach, 
CA 

Climate 
Resolve 

LGC, CEC, OPR, CNRA, Los 
Angeles Regional 
Collaborative for Climate 
Action and Sustainability, 
Aquarium of the Pacific 

San Joaquin Valley 
Climate Symposium 

12/4/18 Fresno, CA LGC CEC, CNRA, Fresno Council 
of Governments, UC Merced, 
Central Valley Community 
Foundation 

Central Coast 
Climate Symposium 

12/10/18 San Luis 
Obispo, CA 
and Santa 
Cruz, CA 

LGC CEC, CNRA, California Water 
Boards Central Coast, Central 
Coast Climate Collaborative, 
UC Santa Cruz 

Source: University of California, Irvine and University of California, Los Angeles 

Participation 

LGC and Climate Resolve worked proactively to conduct targeted outreach and work with local 

partners to attract a diverse range of participants across sectors. Through mass emailing 

campaigns, targeted invitations, recruitment of promotional partners, and engagement with 

local media outlets, organizers worked to attract both practitioners and members of the public. 

Each symposium was well-attended and received overwhelmingly positive feedback from both 

participants and speakers. 
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Region 
Total 

Participants 

Public 

Agencies* 

Non-profit 

Organizations* 

Private Sector 

Companies* 

Inland Deserts 143 19 10 5 

Los Angeles 150 28 22 6 

San Joaquin Valley 77 16 23 13 

Central Coast 154 33 21 18 

Total 524 96 76 42 

*Counts reflect unique agencies, organizations, and/or companies rather than the total number of public, 

non-profit, or private sector participants. Public members, academic institutions, and universities are not 

reflected in these columns.   

Source: University of California, Irvine and University of California, Los Angeles 

Speakers and Panelists 

LGC and Climate Resolve managed all aspects of planning and hosting the symposia, including 

working closely with partners to develop the agenda, and inviting and coordinating with 

speakers and panelists. Each symposium featured a mix of presentations and panel 

discussions featuring leading climate experts. 

Event Public Agencies 
Non-profits, Universities, and 

Private Sector 

Inland 

Deserts 

CA Assemblymember Eduardo Garcia 

Louise Bedsworth, SGC 

Guido Franco, CEC 

Daniel Tirado-Lopez, Torres Martinez 

Desert Cahuilla Indians 

UC Riverside: Francesca Hopkins, 

William Porter, Cindy Yanez, Darrel 
Jenerette, Lynn Sweet, Hoori Ajami, Elia 
Scudiero 

Amir Aghakouchak, UC Irvine 

Silvia Paz, Alianza Coachella Valley 

Humberto Lugo, Comite Civico del Valle 

Peter Satin, Mojave Desert Land trust 

Colin Barrows, Friends of the Desert 

Mountains 

Amber Amaya, Coachella 

Unincorporated 

Rebecca Zaragoza, Leadership Counsel 

Pueblo Unido CDC: Yaneth Andrade, 
Serio Carranza 
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Event Public Agencies 
Non-profits, Universities, and 

Private Sector 

Los Angeles CA State Senator Ricardo Lara 

City of Long Beach: Councilmember 

Jeannine Pearce, Christopher Koontz 

Joey Wraithwall, CNRA 

Nuin-Tara Key, OPR 

Sarah Risher, CalOES 

Elizabeth Rhoades, LA County DPH 

Kelly Trainor Gamino, South Coast 
AQMD 

Juliette Finzi-Hart, USGS 

Heather Tomley, Port of Long Beach 

Laurel Hunt, Los Angeles Regional 
Collaborative for Climate Action 

UCLA: Alex Hall, Neil Berg, Katharine 
Reich, Eric Fournier, Stephanie Pincetl 

Nancy Thomas, UC Berkeley 

George Ban-Weiss, USC 

Edith de Guzman, TreePeople 

Dan Cayan, Scripps Institute for 
Oceanography 

San Joaquin 
Valley 

Martha Guzman Aceves, CPUC 

CEC: Alana Mathews, Laurie ten Hope, 

Susan Wilhelm 

Mayor Jose Gurrola, City of Arvin 

Tom Jordan, SJV APCD 

Sarah Risher, CalOES 

Matt Rogers, U.S. Senator Kamala D. 
Harris 

UC Merced: Joshua Viers, Josué 
Medellín- Azuara 

Julia Hatton, Rising Sun Energy Center 

Russ Teall, Biodico Zero Net Energy 

Farms 

Central Coast City of San Luis Obispo: Mayor Heidi 
Harmon, Chris Read 

Supervisor Ryan Coonerty, Santa Cruz 
County 

Dominic Roques, Central Coast Water 
Resources Control Board 

CEC: Laurie ten Hope, Guido Franco 

OPR: Jennifer Phillips, Nuin-Tara Key 

Li Erikson, USGS 

Anna Olsen, Cachuma Resource 
Conservation District 

UC Santa Cruz: Ruth Langridge, Gary 
Griggs 

Melissa Rohde, The Nature Conservancy 

Monique Myers, California Sea Grant 

Geoffrey Danker, SoCalGas 

Source: University of California, Irvine and University of California, Los Angeles 

Inland Deserts Symposium 

The Inland Deserts Symposium featured a diverse array of climate presentations and speakers 

made the event very special and it was noted that this was something attendees really 

appreciated. Panel topics included: energy; biodiversity & ecosystems; public health; 

community development, land use, and transportation; and water & agriculture. Coachella 

Valley Assemblymember Eduardo Garcia spoke at the end about legislative priorities on climate 

change and making them relevant to the Inland Deserts area, like with the Salton Sea work. 

Photos of the event. 
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Some testimonials from the event: 

• “The next generation of children will be faced with many issues associated with climate 

change. We’re being faced with unprecedented changes…the new normal of what to 

expect and how to prepare for it. You have to be proactive and reactive,” - attendee 

Alan Hurt, College of the Desert Professor, as quoted in NBC article 

• “Higher temperatures, more intense droughts and more damaging wildfires and floods 

are just some of the climate change effects already being seen in the California desert 

— and residents of low-income, minority communities in the Coachella Valley are most 

likely to suffer the consequences of those environmental stresses.” - reporter, Sammy 

Roth as quoted in Desert Sun article 

• “Climate Resolve did an excellent job of hosting the roll out event in the Desert region 

of California, which is not well connected to activities out of Sacramento or to the 

climate movement in the greater Los Angeles area. They were able to build a diverse 

group of stakeholders, activists, and interested parties, and their sensitivity to the local 

perspective really made the event a success. In addition, Natalie was a pleasure to 

work with.” - UCR Lead Author of Inland Deserts Report, Francesca Hopkins, personal 

testimony. 

Los Angeles Region Symposium 

The Symposium was attended by 150 representatives from state and local government, 

academic institutions, and community-based organizations. The panel topics focused on 

themes in the LA Region report: more frequent natural disasters like wildfires, sea-level rise, 

drought, flooding, and extreme heat, as well as increased pressure on the region’s electrical 

grid. The symposium and report also highlighted the acute public health vulnerabilities of low-

income communities in the face of climate change.  

Moreover, the symposium demonstrated tools and resources (like Cal-Adapt, Adaptation 

Planning Guide, and ResilientCA.org) for practitioners, and provided a space where climate 

experts and stakeholders networked with each other. The event’s keynote speaker was local 

California State Senator Ricardo Lara who talked about climate change priorities for low-

income communities of color. Photos of the event.  

Some testimonials from the event: 

• “Just wanted to send my gratitude for you all hosting this free climate change event. 

Beautiful venue, awesome content, great new tools for me to play around with, and 

new contacts to continue discussions. Success, indeed.” Attendee, Robyn Eason- West 

Hollywood Chief Sustainability Officer, personal testimony 

• “I was able to network with and hear from the presenters that are critical to the work I 

do in the LA Region.” Attendee, Lolly Lim, UCLA staff, personal testimony 

• “Great event, awesome venue. Really liked Sea Level Rise panel. Jerry Schubel was a 

perfect moderator that hit the key questions.” Attendee, Alexander Yee, CA Coastal 

Commission staff, personal testimony. 

San Joaquin Valley Climate Symposium 

Researchers, agency leaders, and community practitioners came together at the San Joaquin 

Valley Climate Symposium to highlight climate change risks and impacts, as well as to 
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demonstrate progress towards a resilient future. The Symposium launched an overview of 

California’s Fourth Climate Change Assessment and presentations on the key climate impacts 

facing the San Joaquin Valley. CPUC Commissioner Martha Guzman Aceves provided a lunch 

keynote, exploring affordable energy options and energy access improvements for San Joaquin 

Valley residents. In the afternoon, two panel discussions bridged across sectors to dive deeper 

into adaptation opportunities. The first focused on challenges and innovations in creating an 

energy system of the future, and the second highlighted examples of on-the- ground 

adaptation efforts, best practices, and replicable strategies. The Symposium concluded with 

closing remarks from Matt Rogers from U.S. Senator Kamala D. Harris’ office. Overall, the 

Symposium was a great success with many participants expressing their desire for additional 

climate-focused events. This may demonstrate an unmet need in the San Joaquin Valley – a 

region experiencing the impacts of climate change firsthand with a growing workforce and 

communities committed to climate action and resilience. 

Media coverage: 

• Interview: KFCF 88.1 Climate Politics, November 30, 2018 

• KPFA 94.1 

• Fresno Community Alliance 

• California Energy Commission 

Feedback received through the evaluation: 

• “I would like to commend Local Government Commission, UC Merced, California Energy 

Commission, California Public Utilities Commission, Rising Sun Energy Center and all 

other guest speakers for taking the time to be present in the San Joaquin Valley to 

discuss in depth on this topic of climate adaptation. CCAC looks forward to further 

staying in contact with you all and continue to move towards 100 percent clean energy 

for not just their communities in the San Joaquin Valley, but for all communities in the 

State of California. Thank you.” – Angela Islas, Central California Asthma Collaborative 

• “Please continue bringing us together--great conversation, learning, and sharing!” – 

Participant 

• “Terrific job! Thanks for an excellent event.” – Participant 

• “Thank you for the Symposium. I found it very interesting and important.” – Participant 

Central Coast Climate Symposium 

In order to maximize participation, and in recognition of travel-related challenges in the 

region, LGC conducted the Central Coast Climate Symposium in a co-located format by 

connecting the San Luis Obispo location to the Santa Cruz location via webcast. The 

Symposium included an overview of California’s Fourth Climate Change Assessment and key 

findings from the Central Coast Regional Report. A series of presentations and panel 

discussions aimed to dig deeper into the key climate risks and adaptation opportunities in the 

region including: coast and ocean; water, agriculture, and ecosystems; and the energy 

system. Participants also learned about state tools and resources including Cal-Adapt and the 

Adaptation Clearinghouse, engaged in table discussions to identify opportunities and resources 

to accelerate adaptation and enhance coordination efforts in the region. San Luis Obispo’s 

Mayor Heidi Harmon provided welcoming remarks, and Santa Cruz County’s Supervisor Ryan 

Coonerty provided closing remarks. Overall, the Symposium was well-attended, covered a 
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diverse range of topics critical to the Central Coast region, and provided valuable networking 

opportunities for participants. 

Media coverage: 

• California Energy Commission 

• UC Santa Cruz  

Feedback received through the evaluation: 

• “Was very grateful I was able to attend. It was excellent getting to see others working 

with these issues, hearing the data, and being able to network.” – Participant 

• “Thank you for hosting this event! Overall it was helpful and I appreciated seeing what 

other community members and jurisdictions were there. It was also nice to have people 

at the State level to make the connection.” – Participant 

• “Thank you so much for bringing it directly to the Central Coast!” – Participant 

• “Thank you for a really well orchestrated symposium!” – Participant 

Contact 

Inland Empire and Los Angeles Symposia: Natalie Hernandez | Climate Resolve, 

nhernandez@climateresolve.org 

San Joaquin Valley and Central Coast Symposia: Julia Kim | Local Government Commission. 

jkim@lgc.org  
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APPENDIX D: 

Dynamic Modeling of Grid-Scale Hydrogen Energy 

Storage Using the Natural Gas System   

California has set ambitious goals to reduce the state’s reliance on fossil fuels and move 

towards zero-carbon energy sources. However, the variability of renewable energy sources has 

brought increased attention to the requirements for energy storage systems, especially for 

large scale integration into the electricity sector. To mitigate the intermittency of renewable 

energy, different energy storage technologies, such as hydroelectric storage, compressed air 

energy storage, batteries, hydrogen energy storage (HES), capacitors, and various other 

energy storage technologies are being deployed. Some energy storage systems (e.g. batteries) 

are well suited for short-term storage, while other systems (e.g. hydroelectric storage, 

hydrogen energy storage) can utilize independent power and energy scaling to accomplish 

seasonal energy storage (Beaudin et al., 2010; Maton et al., 2013). Hydrogen energy storage 

is especially growing in demand due to the significantly higher storage capacity, however, the 

integration of hydrogen storage to the grid is not straight-forward. Further research is required 

to model this integration process.  

In areas such as California where high levels of renewable power generation are already grid-

connected, Hydrogen Energy Storage has been shown to be promising for increasing solar and 

wind market penetration. Repurposing the existing natural gas infrastructure to transport and 

store hydrogen may significantly accelerate the adoption of hydrogen and reduce the initial 

infrastructure investment.  

Additionally, the motivation to use the existing natural gas infrastructure instead of building 

new hydrogen infrastructure and equipment is to reduce the initial cost and gradually phase in 

hydrogen and mix it with natural gas. This is similar to mixing ethanol to gasoline. Over time, 

it may be possible to retrofit the natural gas infrastructure to transport hydrogen and retire 

natural gas to support the goal of carbon neutrality, though this option should be compared 

with other decarbonization alternatives.   

Hydrogen energy storage systems generate hydrogen gas from water using electrolysis as the 

main conversion technology which can be dynamically powered to complement renewable 

intermittency. Hydrogen energy storage can become cost effective by using inexpensive or 

otherwise curtailed renewable energy, storing the hydrogen, and subsequently using the 

hydrogen for various purposes (e.g., to produce electricity via a fuel cell for power generation 

or transportation applications). One of the biggest challenges in moving toward 100 percent 

renewable energy portfolio is the integration of the renewable sources to the grid.  

The overarching goal of this appendix is to model the integration of hydrogen energy storage 

with large-scale renewable power using the capabilities of the existing California natural gas 

infrastructure. The research team analyzed the dynamics associated with grid demand, 

renewable power, pressure, and hydrogen energy storage capacity in detail, and simulated 

higher level analysis for the southern California region. In doing so, the scenario that was 

chosen to be modeled included assumptions of: 
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• Only 100 percent renewable energy penetration to meet all electric demand in Southern 

California through scaling solar PV installations throughout southern California (i.e., no 

change in wind power generation), 

• All overgeneration and curtailment is used to produce hydrogen in the Southern 

California, 

• All of the hydrogen is transmitted via the existing natural gas transmission system to 

existing natural gas storage facilities.  

The results suggest that existing natural gas storage facilities may be converted to hydrogen 

storage facilities using proton exchange membrane (PEM) electrolysis. In addition, PEM fuel 

cell systems can be used to dispatch the hydrogen back to the grid as power. This analysis 

portrays that the dynamics of Southern California’s natural gas storage system can support 

renewable gas integration. The provided framework can help to use the existing natural gas 

infrastructure for storage and transportation of hydrogen as one the major sources of green 

fuel for the future. Decision makers in the energy sector can use the information from this 

research to plan for and minimize the potential damage resulting from such hazards.  

Additionally, the dynamic modeling of grid-scale hydrogen energy storage discussed in this 

appendix could be used when considering expanding hydrogen energy storage while building a 

hydrogen gas network with multiple gas inlet points and compressor stations for the whole 

southern California territory. The framework described could be used to investigate the 

dynamics of the SoCal natural gas infrastructure evolution to support 100 percent sustainable 

and renewable gas use that can benefit people of southern California.  

I. Approach 
The research team modeled the integration of hydrogen energy storage into the energy grid. 

This was done to investigate the maximum contribution that southern California natural gas 

transmission pipelines and underground storage facilities could make to transport and store 

pure hydrogen for carbon neutral energy portfolio to meet southern California’s electric 

demand.  

a. Method 

The implications of a hydrogen energy storage system utilizing California’s existing natural gas 

infrastructure were analyzed and developed in MATLAB and MATLAB/Simulink. The goal is to 

investigate the capabilities and vulnerabilities of Southern California (SoCal) natural gas 

storage facilities and main transmission pipelines owned by SoCalGas Company to absorb 

otherwise curtailed renewable power when renewable penetration is 100%. The analysis 

herein assumes that adequate hydrogen production equipment is available when the 

renewable power exceeds the demand to produce hydrogen in order to either store in the 

storage facilities or inject hydrogen into the pipeline. The study also assumes that adequate 

power generation equipment is available to generate electric power by dispatching hydrogen 

from the storage facilities when the demand is higher than renewable power. 
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b. Model Components  

The Implications of Renewable and Demand Power 

The hourly renewable power generation data was obtained from the California Independent 

System Operator (CAISO; http://oasis.caiso.com/mrioasis/logon.do). CAISO reports renewable 

power generation real-data on an hourly basis for three zones; NP15, ZP26, and SP15. Wind 

and solar data for zone SP15, which is the SoCal region, was obtained. For 100 percent 

renewable penetration of the SoCal region for the entire 2017 year, the solar PV and wind 

were considered as potential new renewable power sources. The renewable power profile from 

PV was thus scaled up to produce a total energy amount that meets the total SoCal demand 

on an annual basis considering also the round-trip efficiency of the energy storage system. 

Some curtailment was allowed for all scenarios (i.e., power generation amount is allowed to 

exceed that required to meet demand). The hourly demand data for the Southern California 

Edison (SCE) also was taken from CAISO. Total SCE hourly demand was then scaled up to 

match the southern California electricity demand.  

SoCal Natural Gas Underground Storage and Transmission Pipelines 

Table 1 lists SoCal natural gas underground storage facilities with respect to their capacities 

(based on https://www.eia.gov/state/maps.php.). SoCalGas system map is presented in Figure 

D-1 (https://scgenvoy.sempra.com/). All four natural gas underground storage are shown in 

the map. Four main transmission receipt points were selected to inject hydrogen: El Paso, 

Blythe, Topock, and Needles. Pipes diameter, length, and ID number were taken from 

California Natural Gas pipeline and station 

(https://www.arcgis.com/home/webmap/viewer.html). The maximum operation pressure for 

SoCalGas transmission pipelines with diameter 30’’and 36’’ is 860 psi and the minimum 

compressor station suction pressure is 475 psi. SoCalGas natural gas transmission pipelines 

are American Petroleum Institute (API) steel 5L grades B, X52, X56, X60, and X65.  

Table D-1: Southern California Gas Company Natural Gas Underground Storage 

Storage Facility Working Capacity (m3) 

Aliso Canyon 2,435,262,000 

Honor Rancho 685,271,400 

La Goleta 608,815,500 

Playa del Rey 67,960,800 

Total 3,797,309,700 

Source: University of California, Irvine and University of California, Los Angeles 
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Figure D-1: SoCalGas System Map 

 

Source: University of California, Irvine and University of California, Los Angeles 

Fuel Cell and Electrolyzer 

There are various types of electrolyzers with features that depend upon their electrolyte type: 

Proton exchange membrane (PEM) electrolysis using solid polymer electrolyte membranes, 

Solid oxide electrolysis (SOE) using a solid metal oxide electrolyte, Alkaline electrolysis (AE) 

using aqueous alkaline electrolyte solution (Schiebahn et al., 2015). SOE systems have 

advantages compared to PEM and Alkaline electrolyzers. First, the operation temperature of 

SOEs is high (900-950 C) which leads to a lower required electrical energy and faster 

electrochemical kinetics (lower activation losses) that lead to lower voltages (and lower 

energy) to produce hydrogen. Second, SOE systems can continuously operate below the 

thermoneutral voltage (i.e., at greater than 100 percent electrical efficiency) if a source of 

high-grade heat is available. This is an advantage, since electricity is more costly than thermal 

energy (Mohammadi and Mehrpooya, 2018). On the other hand, PEM electrolyzers can operate 

under pressurized conditions (even creating higher hydrogen pressure through electrochemical 

pumping) and both PEM and alkaline electrolyzers can operate in a highly dynamic fashion. In 

this study PEM fuel cell/electrolyzer (PEMFC) was used in the modeling.  

Hydrogen Energy Storage System 

Figure D-2 shows a schematic of the hydrogen energy storage system. When the renewable 

power is higher than the demand the excess power will be directed to the PEM Electrolysis Cell 

(PEMEC) to produce hydrogen. Hydrogen then is pressurized in a two-stage compressor before 

injection into the transmission pipelines. Hydrogen then is transferred to the underground 

storage facilities through a network of pipelines. When the demand power is greater than the 
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renewable power, hydrogen is withdrawn from the storage facilities and is allowed to expand 

through a turbine before being directed to PEMFC to generate electricity. The hydrogen energy 

storage facility model used in this work was initially developed and is described in Maton et al. 

(2013). This storage facility model assumes that the pressurized gas facility is governed by 

cylindrical, one dimensional radial heat transfer, and negligible convective heat transfer within 

the storage facility. In the original model it was assumed that the hydrogen is produced next 

to the storage and there was no pipeline in the modeling. Model components are simulated 

with the following assumptions in Maton et al. (2013): 

• The compressor isentropic efficiency is 0.75. 

• The turbine isentropic efficiency is 0.82 

• PEM fuel cell system efficiency of 58 percent (LHV). 

• PEM electrolyzer system efficiency of 57 percent (HHV). 

• Electrolyzer H2 outlet pressure of 13.1 bar. 

Figure D-2: Schematic of the Hydrogen Energy Storage System 

 

Source: University of California, Irvine and University of California, Los Angeles 

II. Results  
This section presents a gedanken experiment (thought experiment) which is aimed at 

determining the magnitude of the contribution that the natural gas system could make toward 

balancing a highly renewable electric grid in the future. The assumptions that are made 

regarding the amount of solar and wind power considered, regional transmission of renewable 

power, potential for other technologies (e.g., battery energy storage, demand response) to 

help manage grid dynamics, etc. are not consequential to determining capabilities and 

challenges of using the gas system for this purpose. In addition, the potential use of the gas 

system for renewable hydrogen has many research and development challenges that must 

first be overcome before one should consider implementing grid scale hydrogen energy 

storage in California. 

Nonetheless, in areas like California where high levels of renewable power generation are 

already grid-connected, Hydrogen Energy Storage (HES) has been shown to be promising for 
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increasing solar and wind market penetration (González et al., 2004). California is also 

interested in using hydrogen to fuel its transportation sector (California Fuel Cell Partnership, 

2016; E4Tech, 2015), which produces the largest percentage of greenhouse gases.   

To adopt hydrogen as one of the major sources of green fuel of the future, several obstacles 

need to be addressed. Statewide infrastructure for Hydrogen requires high initial investment 

compared to the existing infrastructure for fossil fuels. The existing of this cost-effective 

alternative makes commercial justification for investment in hydrogen in the private sector 

difficult, which slows down the transition to hydrogen (Myers Jaffe et al., 2017).  

One approach suggested to lower the initial investment needed for Hydrogen fuel system is to 

utilize the existing natural gas infrastructure for storage and transportation of Hydrogen 

(Myers Jaffe et al., 2017). Repurposing the existing natural gas infrastructure to transport and 

store Hydrogen significantly accelerate the adoption of Hydrogen and reduces the initial 

investment.  

A robust transportation infrastructure is needed to transport and store the hydrogen that is 

produced at the site of wind or solar farms using the excess power which is far from urban 

centers in CA. There are several Hydrogen transportation methods in the industry today, 

including dedicated pipelines, and specially made trucks. There is no one-solution-fits-all for 

delivery of hydrogen. Several studies have discussed the similarities between natural gas and 

hydrogen and the potential to utilize the existing natural gas infrastructure to transport 

hydrogen (Melaina et al., 2013; Myers Jaffe et al., 2017). Some of these projects are several 

decades old and go back to the year 1980.  

In the present work, solar and wind resource dynamics, considering spatially resolved resource 

availability at each hour during the year, were analyzed to simulate large-scale implementation 

of combined solar and wind power resources sufficient to meet the entire annual southern 

California electric energy demand. For each hour in which excess power is available from the 

renewable sources such power is directed to PEM (Proton Exchange Membrane) system to 

produce hydrogen. Produced hydrogen from the PEMEC (Proton Exchange Membrane 

Electrolysis) is then transported through four main transmission pipelines to be stored in a 

model of the existing natural gas underground storage resources. When the grid demand is 

greater than the available renewable power, hydrogen is removed from the storage resources 

and provided to PEMFC (Proton Exchange Membrane Fuel Cell) to return power to the grid. 

The pressure dynamics during simulation time period were analyzed for all of hydrogen being 

stored. The goal of the work is to determine how much pure hydrogen can be carried out by 

Southern California Gas Company (SoCalGas) main transmission pipelines and underground 

storages under pressure limitation for 100 percent renewable energy penetration scenario.  

The scenario analyzed here in this thought experiment is in fact, the worst-case scenario (e.g., 

one that doesn’t consider other approaches or technologies that could also help manage a 

highly renewable electric grid, such as battery energy storage, regionalization, and demand 

response) to investigate the maximum contribution that southern California natural gas 

transmission pipelines and underground storage facilities could make to transport and store 

pure hydrogen for a 100 percent renewable energy portfolio to meet southern California 

electric demand. In the studied scenario, it was assumed that the amount of wind generation 

will be the same as 2017 and that solar generation is then scaled up to meet the entire 
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southern California electric demand. This scenario should not be considered a realistic 

scenario, but rather, one intentionally conceived to introduce the maximum need for 

dynamically supporting the electric grid with the goal of this thought experiment being to 

determine the capacity (pressure and flow dynamics) of the southern California natural gas 

infrastructure to transport and store hydrogen for this purpose.   

It should be noted that blending hydrogen into the natural gas infrastructure is still in the early 

stages of research and one of the challenges of employing existing natural gas infrastructure 

to transport hydrogen is embrittlement and fatigue crack growth rate enhancement features of 

hydrogen on natural gas pipelines. Hydrogen molecules are significantly smaller than methane 

gas, which gives hydrogen a much faster leakage rate, and increases the corrosive effect of 

Hydrogen on metals (Djukic et al., 2015; Wasim et al., 2019). In California today, hydrogen is 

transported through specialty pipelines that are specifically designed from carbon steels that 

are well-suited to long term exposure to pure hydrogen.  

Considering these challenges for introducing hydrogen into natural gas pipelines, careful 

analysis has been done to study the effect of injecting a blend of natural gas and hydrogen 

into the existing pipelines. Several studies have investigated the corrosion and cracks that 

have appeared in natural gas pipelines that transported a mixture of hydrogen and natural gas 

(Ogden et al., 2018). It is shown that mixing low percentage of Hydrogen (<15 percent by 

volume) does not materially increase the corrosiveness of the gas and therefore does not 

reduce the durability of the pipelines (Melaina et al., 2013). This same study did find increased 

risk, even from low blends of hydrogen, on distribution systems that would have to be 

addressed to enable blending. Melaina et al. (2013) also noted that there are site-specific 

conditions that need to be considered on a case-by-case basis for incompatibility with low 

amounts of hydrogen blending. On the other hand, the idea of storing hydrogen in the existing 

natural gas underground storage has been around since 1970. In fact, hydrogen has been 

stored in underground storage reservoirs in some countries and is currently stored in salt 

caverns in the U.S. To store such large scale of hydrogen, natural gas underground geological 

reservoirs in the form of salt caverns, depleted oil and gas fields, and aquifers are the only 

options available to-date.  

In this study, the research team assumes that natural gas infrastructure (pipeline and 

underground facilities) may be used as hydrogen facilities that operate in the same pressure 

range with adequate modifications. What modifications may be required are not known at this 

time and should be a matter of future research and development. It is worth mentioning that 

the purpose of the study is not to determine the optimum mix of solar and wind generation in 

the southern California region for 100 percent renewable energy penetration but to investigate 

the capabilities and vulnerabilities (pressure and flow dynamics) of southern California natural 

gas infrastructure to transport and storage of hydrogen. Simply put, this study will answer the 

question: are there enough existing underground natural gas storage and transmission 

pipelines to transport and store hydrogen for the extreme case of meeting all of the hourly 

resolved annual electric demand by use of hydrogen energy storage in existing natural gas 

infrastructure alone? 

To determine the capacity of SoCalGas pipelines to accommodate hydrogen, the hydrogen 

energy storage system was modeled to facilitate integration of the 100 percent penetration of 
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renewable power sources into the electric power grid using existing natural gas infrastructure 

with the maximum storage capacity of 3,797,309,700 m3.   

For 100 percent renewable energy penetration, the calculated scaling factor for renewable 

power to match the demand exactly was found to be 6.77 with the assumption of only scaling 

solar PV installations throughout the SoCal (i.e., no change in wind power generation). This 

results in a maximum renewable energy generation of 138,720 GWh. An additional scaling 

factor to account for hydrogen energy storage system maximum and minimum pressure and 

flow constraints must be used on top of the 6.77 factor. The determination of this additional 

scaling factor requires the following: (a) store as much otherwise curtailed renewable power 

as hydrogen as possible, (b) allow for the hydrogen energy storage to always be in use (not 

completely depleted or completely charged), and (c) result in a fill level at the end of the year 

that is the same as the fill level at the beginning of the year.   

As shown in Figure D-3, for 6.77 scaling factor the hydrogen energy storage system depletes 

completely early in February and the fill level is very low at the end of the year. To address 

this, it was assumed that the hydrogen energy storage facility starts at half capacity and the 

scaling factor is varied from 1.35 to 1.6. The results of these simulations are shown in Figure 

D-4. Note that the factor of 1.6 is the optimum scaling factor due to the mentioned criteria 

which is the fill level at the end of the year is very close to the starting point. While the 1.6 

scaling factor does not fully discharge in the early months, which is good, it does result in the 

additional installation of solar PV that must be curtailed (whenever the hydrogen energy 

storage system is full) leading to higher overall cost. The factor of 1.6 was selected as the 

additional scaling factor on top of the 6.77 based on above conditions which results to the 

overall scaling factor of 10.83 and total renewable energy capacity of 216,452 GWh required 

to balance generation with demand throughout the year using a hydrogen energy storage 

system. 
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Figure D-3: Annual Hydrogen Energy Storage Capacity Starting at Full Capacity 

  

Source: University of California, Irvine and University of California, Los Angeles 

Figure D-4: Annual Hydrogen Energy Storage Capacity for Various Scaling Factors 
Starting at Half Capacity 

  

Source: University of California, Irvine and University of California, Los Angeles 
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To analyze the flow characteristics at the inlet of the pipeline a series of equations (continuity, 

momentum, energy) need to be solved. One dimensional, transient, and compressible flow is 

modeled with the following assumptions: 

• Isothermal flow: The change of temperature is negligible throughout the pipeline 

• Constant compressibility factor  

• The convective inertia term in the momentum equation is negligible 

• Horizontal pipe ( =0)  

By assuming isothermal flow, the energy equation drops, and momentum and continuity 

equations are solved in terms of mass flow rate 𝑚 =̇ 𝑟𝑢𝐴 and where 𝑟, 𝑢 𝑎𝑛𝑑 𝐴 are the density 

of the gas, velocity and the cross-sectional area of the pipe, respectively. The compressibility 

factor (Z) is a function of temperature and pressure but for the transient isothermal analysis it 

is adequate to take Z at the average system pressure and temperature (Kiuchi, 1994). 

According to Kiuchi, (1994) the effect of the convective inertia term in the momentum 

equation (second term in equation (3.2)) is much smaller than the others, and as a result it 

could be negligible. The continuity equation, momentum equation, compressibility factor (ideal 

gas law), and friction factor are expressed in the following forms (3.1 to 3.4), respectively 

(Abbaspour and Chapman, 2008; Kiuchi, 1994): 

¶𝑟

¶ 𝑡
+

¶(𝑟𝑢)

¶𝑥
= 0 

 

(3.1) 

¶(𝑟𝑢)

¶ 𝑡
+

¶(𝑟𝑢2)

¶𝑥
+

¶ 𝑝

¶𝑥
= −

𝑓𝑟𝑢|𝑢|

8
𝑝 𝐷 − 𝑟𝑔𝑠𝑖𝑛𝑞 

 

(3.2) 

 𝑝

𝑟
=

𝑍𝑅𝑇

𝑀
 

 

       (3.3) 

𝑓0.5 = −2log (
𝑒

3.7𝐷
+

2.51

𝑅𝑒 𝑓0.5
) 

(3.4) 

where r, 𝑢, 𝑝, 𝑓, 𝑍, 𝑇, 𝑅, 𝑀, 𝑅𝑒, 𝐷, e are the density of the gas, velocity, pressure, friction factor, 

compressibility, temperature, molar mass, Reynolds number, diameter of the pipe, and the 

roughness of the pipe, respectively. The friction factor is from the Coplebrook friction factor 

equation, which is an experimentally derived equation commonly used in the natural gas 

industry (Abbaspour and Chapman, 2008). In equation (3.2), as it was mentioned before,  is 

zero for the horizontal pipeline.  

  



 

D-11 

 

The simplified version of the continuity and momentum equations that result is written in 

terms of m  ̇as presented below (Abbaspour and Chapman, 2008; Kiuchi, 1994): 

¶𝑝

¶ 𝑡
+

𝑍𝑅𝑇

𝑀𝐴

¶𝑚̇

¶ 𝑥
= 0 

(3.5) 

¶𝑚̇

¶ 𝑡
+ 𝐴

¶ 𝑝

¶𝑥
= −

𝑓𝑍𝑅𝑇𝑚̇|𝑚̇|

2 𝐷 𝐴 𝑝
 

(3.6) 

A fully implicit finite difference method is used to solve the above equations which is time 

independent and conditionally stable, and also making it easier to take larger time steps 

compared to the time dependent explicit method (Kiuchi, 1994). The partial time derivative, 

the spatial derivatives, and the individual terms are given in equations (3.7 to 3.9), 

respectively, by (Abbaspour and Chapman, 2008; Kiuchi, 1994): 

¶𝑌

¶ 𝑡
=

(𝑌𝑖+1
𝑛+1 + 𝑌𝑖

𝑛+1 − 𝑌𝑖+1
𝑛 − 𝑌𝑖

𝑛)

2 ∆𝑡
+ 𝑂(∆𝑡)  

 

(3.7) 

¶𝑌

¶ 𝑥
=

(𝑌𝑖+1
𝑛+1 − 𝑌𝑖

𝑛+1)

∆𝑥
+ 𝑂( ∆𝑥2)  

 

(3.8) 

𝑌 =
(𝑌𝑖+1

𝑛+1 − 𝑌𝑖
𝑛+1)

2 
+ 𝑂( ∆𝑥2)  

(3.9) 

Y in the above equations represents mass flow rate 𝑚̇ and pressure (p). The pipeline is divided 

into N sections as it is shown in Figure 5. Therefore, it has N+1 nodes in the x direction and 

∆x is the distance between each of the nodes. The time step ∆t is defined between the old-

time level (n) and the new- time level (n+1). The number of unknowns comprising of 𝑚̇ and p 

at the new time level (n+1) is 2(N+1) can be reduced to 2N equations by setting boundary 

conditions. The Taylor expansion method is applied to solve the nonlinear term in the 

momentum equation.  

Figure D-5: Annual Hydrogen Energy Storage Capacity for Various Scaling Factors 
Starting at Half Capacity 

 

Source: University of California, Irvine and University of California, Los Angeles 

The initial condition is set to the steady state which basically means 
¶𝑝

¶ 𝑡
= 0 and 

¶𝑚̇

¶ 𝑡
=0. As a 

result, the second term in (3.5), 
¶𝑚̇

¶ 𝑥
 will be zero. Thus, at the initial steady state condition the 
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mass flow rate through the pipe will be constant. The simplified momentum equation 

expressed in (3.10) at the initial condition. Where 𝑝𝑖𝑛 and 𝑝𝑜𝑢𝑡 are pressure at the inlet and 

outlet of the pipeline respectively. Equation (3.10) shows the pressure drop from the inlet to 

the outlet is not linear under these initial conditions. 

𝑝𝑖𝑛
2 − 𝑝𝑜𝑢𝑡

2 = ∆𝑥 
𝑓𝑍𝑅𝑇𝑚̇|𝑚̇|

 𝑝𝐴2
 (3.10) 

For the current analyses, the pressure at the exit of the pipeline is maintained constant at 475 

psi: 𝑝(𝐿, 𝑡) = 475 𝑝𝑠𝑖. The mass flow rate at the inlet of the pipe is equal to the hydrogen 

produced from the PEMEC: 𝑚̇(0, 𝑡) = 𝑓(𝑡). Where f(t) is the mass flow profile. Figure 6 shows 

the information of pipelines used in the modeling.  

Figure D-6: SoCal Transmission Pipelines Used in Modeling 

 

Source: University of California, Irvine and University of California, Los Angeles 

As shown in Figures D-7 to D-10, the annual pressure fluctuation exceeds the maximum 

operation pressure which is 850 psi. In order to deliver all the hydrogen produced at the 

renewable sites to the underground storages more pipes will be needed. It was found that by 

using four main transmission pipelines owned by SoCalGas Company, only 40 percent of the 

hydrogen produced can be delivered to the underground fields without pressure going above 

the limit as it is shown in Figures D-11 to D-14. It should be noted that these results are only 

for the 100 percent renewable energy penetration to meet all electric demand in Southern 

California. Land-use requirement for solar PV installation to reach 100 percent renewable 

energy penetration in SoCal is summarized in Table D-2. SoCal solar generation in 2017 was 

19,138 GWh so to reach 100 percent renewable energy portfolio, 188,148 GWh additional 

solar energy needs to be generated. This amount of solar generation requires at least 526,815 

acres of land for 2-axis Concentrator photovoltaics (CPV).  

  



 

D-13 

 

Figure D-7: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through 
Pipe 1-2 

 

Source: University of California, Irvine and University of California, Los Angeles 

Figure D-8: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through 
Pipe 3-4 

  

Source: University of California, Irvine and University of California, Los Angeles 
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Figure D- 9: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through 
Pipe 5-6 

 

Source: University of California, Irvine and University of California, Los Angeles 

Figure D-10: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through 
Pipe 7-8 

  

Source: University of California, Irvine and University of California, Los Angeles 
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Figure D-11: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through 
Pipe 1-2 

 

Source: University of California, Irvine and University of California, Los Angeles 

Figure D-12: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through 
Pipe 3-4 

   

Source: University of California, Irvine and University of California, Los Angeles 
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Figure D-13: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through 
Pipe 5-6 

 

Source: University of California, Irvine and University of California, Los Angeles 

Figure D-14: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through 
Pipe 7-8 

 

Source: University of California, Irvine and University of California, Los Angeles 

Table D-2: Land Use Requirement for Different Solar PV Power Plants in SoCal 

Solar 

Technology 

Generation-weighted 

average land use 

(acres/GWh/yr) 

Acres Mile^2 
Length_Mile 

(L*L) 

Fixed 3.7 696149.38 1087.73 32.98 

1-axis 3.3 620889.99 970.14 31.14 

2-axis CPV 2.8 526815.74 823.14 28.69 

Source: University of California, Irvine and University of California, Los Angeles 



 

D-17 

 

The study set out to examine the capacity of existing natural gas infrastructure to facilitate 

integration of the 100 percent penetration of renewable power sources into the electric power 

grid in southern California. The study examined whether existing natural gas infrastructure 

would provide sufficient capacity to transport and store hydrogen for the extreme case of 

meeting all the electric demand by use of hydrogen energy storage in existing natural gas 

infrastructure alone. The hydrogen energy storage system was modeled to facilitate that 

integration using the existing natural gas infrastructure’s working capacity (of max. 3.8 billion 

m3). In the simulation, constraints of hydrogen delivery when the natural gas storage facilities 

are not next to the renewable energy resources (typically in the desert) are overcome.   

A key finding was that that the dynamics for transferring hydrogen to the underground storage 

resources through a long gas transmission pipelines and the dynamics associated with mass 

flow rate and pressure are reasonable for developing and operating a hydrogen energy 

storage system that can meet the electricity demand. However, only 40 percent of the 

hydrogen modeled to be produced at the renewable sites can be transferred along the 

examined (existing) four main transmission pipelines owned by SoCalGas Company to the 

underground storage fields without exceeding standard pressures.  

References  

Abbaspour, M., Chapman, K.S., 2008. Nonisothermal Transient Flow in Natural Gas Pipeline. J. 

Appl. Mech. 75, 031018. https://doi.org/10.1115/1.2840046 

Beaudin, M., Zareipour, H., Schellenberglabe, A., Rosehart, W., 2010. Energy storage for 

mitigating the variability of renewable electricity sources: An updated review. Energy for 

Sustainable Development 14, 302–314. https://doi.org/10.1016/j.esd.2010.09.007 

California Fuel Cell Partnership, 2016. Medium- & Heavy-duty Fuel Cell Electric Truck Action 

Plan for California.  

Djukic et al., 2015; Djukic, M.B., Sijacki Zeravcic, V., Bakic, G.M., Sedmak, A., Rajicic, B., 

2015. Hydrogen damage of steels: A case study and hydrogen embrittlement model. 

Engineering Failure Analysis 58, 485–498. 

https://doi.org/10.1016/j.engfailanal.2015.05.017  

E4Tech, 2015. The Fuel Cell Industry Review.  

González, A., McKeogh, E., Gallachóir, B.Ó., 2004. The role of hydrogen in high wind energy 

penetration electricity systems: The Irish case. Renewable Energy 29, 471–489. 

https://doi.org/10.1016/j.renene.2003.07.006  

Kiuchi, T., 1994. An implicit method for transient gas flows in pipe networks. International 

Journal of Heat and Fluid Flow 15, 378–383. https://doi.org/10.1016/0142-

727X(94)90051-5 

Maton, J.-P., Zhao, L., Brouwer, J., 2013. Dynamic modeling of compressed gas energy 

storage to complement renewable wind power intermittency. International Journal of 

Hydrogen Energy 38, 7867–7880. https://doi.org/10.1016/j.ijhydene.2013.04.030  



 

D-18 

 

Melaina, M.W., Antonia, O., Penev, M., 2013. Blending hydrogen into natural gas pipeline 

networks. a review of key issues. National Renewable Energy Laboratory.  

Mohammadi, A., Mehrpooya, M., 2018. A comprehensive review on coupling different types of 

electrolyzer to renewable energy sources. Energy 158, 632–655. 

https://doi.org/10.1016/j.energy.2018.06.073  

Myers Jaffe, A., Dominguez-Faus, R., Ogden, J., Parker, N.C., Scheitrum, D., McDonald, Z., 

Fan, Y., Durbin, T., Karavalakis, G., Wilcock, J., Miller, M., 2017. The Potential to Build 

Current Natural Gas Infrastructure to Accommodate the Future Conversion to Near-Zero 

Transportation Technology (Institute of Transportation Studies, Working Paper Series 

No. qt2tp3n5pm). Institute of Transportation Studies, UC Davis.  

Ogden, J., Jaffe, A.M., Scheitrum, D., McDonald, Z., Miller, M., 2018. Natural gas as a bridge 

to hydrogen transportation fuel: Insights from the literature. Energy Policy 115, 317–

329. https://doi.org/10.1016/j.enpol.2017.12.049  

Schiebahn, S., Grube, T., Robinius, M., Tietze, V., Kumar, B., Stolten, D., 2015. Power to gas: 

Technological overview, systems analysis and economic assessment for a case study in 

Germany. International Journal of Hydrogen Energy 40, 4285–4294. 

https://doi.org/10.1016/j.ijhydene.2015.01.123  

Wasim, M., Li, C.-Q., Mahmoodian, M., Robert, D., 2019. Mechanical and Microstructural 

Evaluation of Corrosion and Hydrogen-Induced Degradation of Steel. J. Mater. Civ. Eng. 

31, 04018349. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002560 


	ACKNOWLEDGEMENTS
	PREFACE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	EXECUTIVE SUMMARY
	Introduction
	Project Purpose
	Project Results
	Knowledge Transfer (Advancing the Research to Market)
	Benefits to California

	CHAPTER 1: Introduction
	CHAPTER 2: Project Approach
	2.1 Increasing Exposure of Energy Infrastructure to Climate Hazards
	2.1.1 Data
	2.1.2 Method
	2.1.2.1 Precipitation Intensity-Duration-Frequency Curves
	2.1.2.2 Change in Flood Hazard



	CHAPTER 3: Project Results
	3.1 Increasing Exposure of Energy Infrastructure to Climate Hazards
	3.1.1 Changes in Precipitation Intensity-Duration-Frequency Curves
	Figure 1: Change in 25-Year Intensity-Duration-Frequency Curves Under RCP4.5
	Figure 2: Change in 50-Year Intensity-Duration-Frequency Curves Under RCP4.5
	Figure 3: Change in 100-Year Intensity-Duration-Frequency Curves Under RCP4.5
	Figure 4: Change in 25-Year Intensity-Duration-Frequency Curves Under RCP8.5
	Figure 5: Change in 50-Year Intensity-Duration-Frequency Curves Under RCP8.5
	Figure 6: Change in 100-Year Intensity-Duration-Frequency Curves Under RCP8.5
	Figure 7: Change in Extreme Precipitation Return Periods  for Major Cities in California

	3.1.2 Changes in Inland Flood Hazard
	Figure 8: Change in Flood Hazard
	Figure 9: Change in Flood Hazard Over Leveed Region of California Under RCP4.5
	Figure 10: Change in Flood Hazard Over Leveed Region of California Under RCP8.5

	3.1.3 Changes in Inland Flood Hazard
	Figure 13: Change in Compound Hazard
	Figure 14: Compound Hazards Density Distribution
	Figure 15: Distribution Natural Gas Pipeline Runoff Exposure
	Figure 16: Natural Gas Pipeline Wildfire Exposure

	3.1.4 Change in Exposure of Gas Pipelines to Climate Hazard
	Figure 17: Length of Natural Gas Pipeline in Leveed Area
	Figure 18: Number of Power Plants in Leveed Area
	Figure 19: Natural Gas Pipeline Exposure to Flood Hazard in Leveed Area
	Table 1: Levee Systems That Protect Highest Length of Natural Gas Pipeline
	Figure 20: Natural Gas Pipeline Exposure to Coastal Storm
	Figure 21: Natural Gas Pipeline Exposure to Tidal Flooding
	Figure 22: Natural Gas Pipeline Exposure to Coastal Storm and Sea Level Rise Compound Flooding
	Figure 23: Power Plants Exposure Matrix for Los Angeles County



	CHAPTER 4: Knowledge Transfer Activities
	CHAPTER 5: Conclusions/Recommendations
	CHAPTER 6: Benefits to Ratepayers
	REFERENCES
	APPENDIX A-1: Detailed Method
	APPENDIX A-2: Tables of Precipitation Intensity-Duration-Frequency
	Table A-1: 25-yr Return Period Intensity-Duration-Frequency curves based on historical records (NOAA) and future climate (RCP 4.5 and RCP 8.5).
	Table A-2: 50-yr Return Period Intensity-Duration-Frequency curves based on historical records (NOAA) and future climate (RCP 4.5 and RCP 8.5).
	Table A-3: 100-yr Return Period Intensity-Duration-Frequency curves based on historical records (NOAA) and future climate (RCP 4.5 and RCP 8.5).

	APPENDIX B-1: Regarding Twenty-First Century Temperature Changes Over California: 9-km Hybrid Downscaling
	Acronyms
	Abstract
	1. Introduction
	2. Methods
	2a. Dynamical downscaling
	Figure B1-1: Elevation (m) and model setup in this study with two one-way nested WRF domains (labeled D01 and D02) at resolutions of 27 and 9 km

	2b. Statistical Downscaling

	3. Results
	3a. Evaluating Hybrid Model Performance
	Figure B1-2: Elevation (m) and model setup in this study with two one-way nested WRF domains (labeled D01 and D02) at resolutions of 27 and 9 km
	Figure B1-3: (top) WRF March warming patterns (℃). (bottom) StatWRF March warming patterns

	3b. Value Added from Downscaling
	Figure B1-4: Temperature changes between 2081–2100 and 1981–2000 for (top) linearly interpolated GCM ∆T (℃) averaged from 31 RCP8.5 GCMs, and (bottom) as in (top), but for StatWRF ∆T (℃)

	3c. Impact of Different Greenhouse Gas Emissions Scenarios
	Figure B1-5: StatWRF ∆T warming estimations in California between 2041-2060 and 1981-2000 periods and between 2081-2100 and 1981-2000 for RCP4.5 and RCP8.5


	4. Summary
	References

	APPENDIX B-2: Regarding 1981–2014 90-m Temperature Simulations and End-of-21st-Century 90-m Temperature Simulations
	Acronyms
	I. Introduction
	Figure B2-1: Study domain’s a) elevation, b) canopy cover fraction, and c) land cover type in 90-m resolution. Abbreviations in c) represent Water body (Wtr), Developed (Dvl), Barren (Brr), Forest (Frs), Shrubland (Shr), Herbaceous land (Hrb), Planted...

	II. Methodology
	1. Selection of Global Circulation Models
	Figure B2-2: Mean changes of surface air temperature (∆Ta) and daily precipitation (∆PPT) between future GCM simulations (2081–2100 with scenario RCP 8.5) and historical baseline (1981–2000)

	2. Fine-scale Downscaling Technique
	3. Model performance evaluation
	Figure B2-3: Comparison of Ta between observations collected in CIMIS sites and model estimates: a) all data from October, 1991 to September 2001, b) monthly mean. Data are averaged across all 137 CIMIS sites


	III. Overall Pictures of Downscaled Air Temperature
	1. Temperature change in winter months
	Figure B2-4: Average air temperature in winter months (December, January, and February): a) historical and b–f) projected temperature change from selected GCMs

	2. Temperature change in summer months
	Figure B2-5: Average air temperature in winter months (June, July, and August): a) historical and b–f) projected temperature change from selected GCMs

	3. Temperature changes in big cities
	Figure B2-6: a) Mean air temperature for winter months (December-February, blue dots) and summer months (June-August, red dots) during the historical time period for major cities in State of California. b) Projected temperature changes from GCMs. The ...


	VII. Data Description
	1. Data files
	2. Data format


	APPENDIX C: Regional Climate Symposia Summary
	Participation
	Speakers and Panelists
	Inland Deserts Symposium
	Los Angeles Region Symposium
	San Joaquin Valley Climate Symposium
	Central Coast Climate Symposium
	Contact



	APPENDIX D: Dynamic Modeling of Grid-Scale Hydrogen Energy Storage Using the Natural Gas System
	I. Approach
	a. Method
	b. Model Components
	The Implications of Renewable and Demand Power
	SoCal Natural Gas Underground Storage and Transmission Pipelines
	Table D-1: Southern California Gas Company Natural Gas Underground Storage
	Figure D-1: SoCalGas System Map
	Figure D-2: Schematic of the Hydrogen Energy Storage System



	II. Results
	Figure D-3: Annual Hydrogen Energy Storage Capacity Starting at Full Capacity
	Figure D-4: Annual Hydrogen Energy Storage Capacity for Various Scaling Factors Starting at Half Capacity
	Figure D-5: Annual Hydrogen Energy Storage Capacity for Various Scaling Factors Starting at Half Capacity
	Figure D-6: SoCal Transmission Pipelines Used in Modeling
	Figure D-7: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through Pipe 1-2
	Figure D-8: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through Pipe 3-4
	Figure D- 9: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through Pipe 5-6
	Figure D-10: Annual Pressure Fluctuation for 100% Hydrogen Delivered Through Pipe 7-8
	Figure D-11: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through Pipe 1-2
	Figure D-12: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through Pipe 3-4
	Figure D-13: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through Pipe 5-6
	Figure D-14: Annual Pressure Fluctuation for 40% Hydrogen Delivered Through Pipe 7-8
	Table D-2: Land Use Requirement for Different Solar PV Power Plants in SoCal
	References



