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PREFACE 

The California Energy Commission’s (CEC) Energy Research and Development Division 

supports energy research and development programs to spur innovation in energy efficiency, 

renewable energy and advanced clean generation, energy-related environmental protection, 

energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 

Public Utilities Commission to fund public investments in research to create and advance new 

energy solutions, foster regional innovation and bring ideas from the lab to the marketplace. 

The CEC and the state’s three largest investor-owned utilities—Pacific Gas and Electric 

Company, San Diego Gas & Electric Company and Southern California Edison Company—were 

selected to administer the EPIC funds and advance novel technologies, tools, and strategies 

that provide benefits to their electric ratepayers. 

The CEC is committed to ensuring public participation in its research and development 

programs that promote greater reliability, lower costs, and increase safety for the California 

electric ratepayer and include: 

• Providing societal benefits. 

• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost. 

• Supporting California’s loading order to meet energy needs first with energy efficiency 

and demand response, next with renewable energy (distributed generation and utility 

scale), and finally with clean, conventional electricity supply. 

• Supporting low-emission vehicles and transportation. 

• Providing economic development. 

• Using ratepayer funds efficiently. 

Intraurban Enhancements to Probabilistic Climate Forecasting for the Electric System is the 

final report for Contract Number EPC-15-070 conducted by Altostratus Inc. The information 

from this project contributes to the Energy Research and Development Division’s EPIC 

Program. 

For more information about the Energy Research and Development Division, please visit the 

CEC’s research website (www.energy.ca.gov/research/) or contact the CEC at 916-327-1551. 

 

http://www.energy.ca.gov/research/
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ABSTRACT 

Probabilistic climate forecasts for the electric system are currently produced using climate 

models at relatively coarse resolutions and observations from sparse networks of 

meteorological monitors, mostly at airports. The forecasts and analyses do not take into 

account the fine-scale intraurban variations in microclimates resulting from effects of urban 

land use, heat or cool islands, and intraurban heat transport, or future changes. Existing 

building energy modeling practices also do not take these effects into account.  

This project developed a method for creating probabilistic fine-scale microclimate 

(temperature) zones in California, focusing on summer conditions in the Los Angeles region 

and the San Francisco Bay Area. The method was applied to current and future climates and 

land use. Forecasting errors and uncertainties were reduced by improving performance of the 

urban Weather Research and Forecasting model. Model validation used observational weather 

data from a dense network of automated weather monitoring stations as well as weather 

reporting used in aviation and by meteorologists.  

The project found that the magnitudes of intraurban temperature variations are larger than 

the temperature differences across boundaries of the existing climate zones adopted by the 

Energy Commission, sometimes by severalfold. The results suggest that redrawing the current 

climate-zone boundaries in urban areas could provide more accurate forecasting for the 

electric system, and optimize allocation of generating resources. The project reduced the 

mean urban temperature forecasting error by up to 3.2°F (1.8°C) in the San Francisco Bay 

Area (up to 46 percent reduction in error) and up to 1.4°F (0.8°C) in the Los Angeles region 

(up to 33 percent reduction in error). Conservatively assuming an average improvement of 

0.9°F (0.5°C) in forecasting peak temperatures in Californian cities, this translates into a more 

accurate allocation of approximately 500 megawatts in generating capacity in the California 

Independent System Operator service territory.  

Keywords: Climate zones; intraurban microclimates; Land use; Meteorological modeling; 

Probabilistic forecasting; Urban climate 

Please use the following citation for this report: 

Taha, Haider. 2021. Intraurban Enhancements to Probabilistic Climate Forecasting for the 
Electric System. California Energy Commission. Publication Number: CEC-500-2021-003. 
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EXECUTIVE SUMMARY 

Introduction 
Probabilistic decadal, seasonal, and short-term climate forecasts for the electric system are 

typically produced with climate models at relatively coarse resolutions (3 to 10 kilometers) and 

observations from sparse networks of meteorological monitors, mostly at airports. New 

technologies and models can increase the granularity of climate forecasting and offer the 

potential for greater accuracy in planning for current and future demands on California’s 

electric grid.  

The foundation for current forecasts and models includes 16 climate zones defined in the 

California Energy Commission’s 1995 publication, California Climate Zone Descriptions for New 
Buildings, which formed the basis for the state’s Building Energy Efficiency Standards to 

conserve and efficiently use energy resources in residential and nonresidential building 

construction. Because building standards, not climate, prompted the creation of climate zones, 

definitions were derived from spatial properties and domains guided by factors other than, and 

in addition to, climate. For ease of enforcement, the California Energy Commission has 

maintained climate zone boundaries fairly consistent with city and utility jurisdictional boundaries 

and avoided creating pockets within a climate zone.  

However, many climate zones contain microclimates that resemble a different climate. These 

microclimates have widely varying characteristics and thus different energy needs. Current 

forecasts and observational analyses do not consider the fine-scale intraurban variations in 

microclimates that result from the effects of urban land use, localized heat or cool islands, and 

intraurban heat transport, or their respective changes in the future. Nor are these effects 

considered in prevailing building energy modeling practices.  

A demand exists for a method to create probabilistic fine-scale intraurban microclimate 

(temperature) zones in California based on observations and fine-scale atmospheric modeling. 

Such a method is desirable for current and future climates, as well as for changing land-use 

conditions, to reduce errors and uncertainties in climate forecasting for the electric system. 

The advent of increased computing power, more accurate fine-resolution atmospheric and 

land-surface models, a higher density of observational weather networks, and powerful data 

management and processing tools erases the need for climate zones to be large and 

contiguous. These new technologies can help to optimize energy system allocations, as well as 

energy modeling. 

Project Purpose 
The main goal of this project was to demonstrate that improvements in model performance 

and creation of probabilistic fine-scale microclimate (temperature) zones that consider the 

variations in intraurban climates can improve planning and forecasting for California’s electric 

grid. Improved forecasting and planning would also optimize the allocation of generating 

resources and increase the grid’s resilience to short- and long-term climate variations. By 

extension, such improvements would reduce greenhouse gas emissions and improve thermal 

environmental conditions. 
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A parallel goal was to reduce urban-climate forecasting errors and uncertainties related to the 

electric system by improving performance of the urban Weather Research and Forecasting 

(uWRF) model.  

Project Approach 
Using a much finer grid size (500 meters to 2 km), the project developed a method for 

creating current and future fine-scale microclimate (temperature) zones (with length scales 

ranging from 5 to 15 km), focusing on summer conditions in the Los Angeles region and the 

greater San Francisco Bay Area.  

To improve uWRF meteorological-model performance, Altostratus Inc. applied study-modified 

and customized urban parameterizations and representations in the atmospheric and land-

surface modules of uWRF. Three configurations were established to track incremental 

improvements in performance: (1) a reference state, obtained by running the Weather 

Research and Forecasting modeling system as commonly done in weather forecasting, without 

invoking any specific urban parameterizations; (2) a second meteorology state, obtained by 

running uWRF with the standard urban parameterizations, as often done by urban-climate 

modelers; and (3) a third state, obtained by running uWRF with the Altostratus Inc. study-

specific modifications to input (bottom-up approach for surface characterizations) and model 

parameterizations.  

Following the establishment of atmospheric-model performance, simulations were carried out to 

develop microclimate (temperature) zones for current and future climates. For current climate, 

Altostratus Inc. used observational data from a dense network of mesonet and metar weather 

stations to characterize the fine-scale microclimate variations. Mesonets are automated 

weather monitoring stations that observe mesoscale meteorological phenomena, mesoscale 

being an intermediate scale between weather systems and microclimates, while metar are 

weather monitoring networks used in aviation. Future-climate zones were developed based on 

a combination of observations and fine-scale meteorological modeling.  

The project then used the improved uWRF model, along with the fine-scale observations, to 

quantify the magnitudes of intraurban temperature variations. This included effects of localized 

heat and cool islands and compared them to those of the current forecasting zones adopted 

by the California Energy Commission to demonstrate the improvements in electric grid 

planning and forecasting and in more area- and site-specific energy modeling and calculations.  

A technical advisory committee provided feedback that was incorporated during the project. 

Committee members included Yu Hou and Susan Wilhelm from the California Energy 

Commission (CEC), Brian D’Agostino of San Diego Gas & Electric/Sempra, William Dean from 

the California Environmental Protection Agency, Ash Lashgari of the California Air Resources 

Board, and David Fink from Climate Resolve. 

Project Results 
The results demonstrate that it is critical to account for intraurban variability in microclimates 

when forecasting and planning for the electric system.  A comparison of the fine-scale 

temperature zones with the forecast climate zones currently used by the CEC in planning for 
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the electric system and in building energy modeling showed that the intrazone variability in 

temperature was considerable and could be several-fold larger than the inter-zone differences.  

The project’s application of study-modified and customized urban parameterizations and 

representations in the atmospheric and land-surface modules of uWRF did yield improvements 

in performance. The project reduced temperature forecasting error with improved uWRF 

modeling by up to 3.2°F (1.8°C) in the San Francisco Bay Area and up to 1.4°F (0.8°C) in the 

Los Angeles region. Studies have shown that 1.8°F (1°C) of peak temperatures is equivalent to 

approximately 500 to 1000 megawatts of power. Thus, even a 0.9°F (0.5°C) reduction in 

forecasting error systemwide could translate to a reduction or reallocation of approximately 

500 megawatts (MW) in generating capacity.  

The project results suggest that redrawing climate zone boundaries and/or adopting fine-scale 

microclimate zones, using improved urban modeling techniques that better represent urban 

areas in atmospheric models, would benefit the electric system by improving planning and 

forecasting for California’s electric grid and the allocation of generating resources, as well as 

benefit the creation of weather files for building energy modeling.   

Knowledge Transfer 
Knowledge generated in this project was provided to interested parties via several pathways. 

During execution of the contract, progress and results were shared with members of the 

Technical Advisory Committee. Presentations and webinars were also given to various 

audiences in addition to the California Energy Commission, including California air districts, the 

California Environmental Protection Agency, utilities, local and city governments, and public 

health agencies. Results were also made available in summaries, memos, scientific meetings, 

and technical papers. Certain data products from the project can also be made available upon 

request on the Altostratus Inc. file transfer protocol site. 

Knowledge developed in this project can assist in planning and reducing vulnerability of the 

electric grid to changes in climate in short and long terms, as well as to future changes in 

urban land use. California’s investor-owned utilities (IOUs) have expressed interest in the 

methodology developed in this project, and in the fine-scale climate/temperature zones 

generated for current and future years. The IOUs also are interested in potentially integrating 

this approach in their planning tools, and in undertaking future work in this area. 

Benefits to Ratepayers 
Knowledge generated in this project can benefit California ratepayers by helping to optimize 

the allocation of generating resources. Conservatively assuming an average improvement of 

0.9°F (0.5°C) in forecasting peak temperatures within the California Independent System 

Operator service territory, the improvement translates into a more accurate allocation of 

approximately 500 MW in generating capacity, which is equivalent to output from one to three 

large power plants. The improvement in allocation accuracy can be twice as large, according 

to study findings. These more optimized allocations translate into savings that can be passed 

on to the ratepayers. In addition to monetary savings, a more optimized grid performance can 

result in lowered emissions of greenhouse gas and air pollutants. 

 



 

 

4 

 

 

 

 



 

 

1 

CHAPTER 1:  
Introduction and Objectives 

Probabilistic decadal, seasonal, and short-term climate forecasts for the electric system are 

typically produced with climate models at relatively coarse resolutions, for example,  

3-10 kilometers (km), and observations from sparse networks of meteorological monitors, 

mostly at airports. These forecasts and observational analyses do not explicitly consider the 

fine-scale intraurban variations in microclimate that result from effects of varying urban land 

use, heat or cool islands, and intraurban heat transport or their changes in the future. Nor are 

these effects considered in current building energy modeling practices (that is, in the creation 

of weather files).  

For forecasting and planning purposes related to building energy use, the California Energy 

Commission (CEC) defines 16 or 20 climate zones (Kavalec et al., 2009; CEC, 2017) that are 

generally coarse and with spatial properties and domains that are guided by a number of 

factors other than and in addition to climate (see Figure 1). Of the two shown in Figure 1, the 

16-zones scheme (right) is more climate-responsive than the 20-zones scheme (left) that 

follows city or utilities boundaries relatively more than climate characteristics.  

Because the existing climate zones used in probabilistic decadal and short-term forecasts for the 

electric system, as well as in energy modeling, were spatially coarse and inclusive of a myriad 

of various microclimates, a demand exists for methodology to create probabilistic fine-scale 

intraurban microclimate (temperature) zones in California based on observations and fine-scale 

atmospheric modeling. This is desirable for current and future climates, as well as for changing 

land-use conditions, to reduce errors and uncertainties in climate forecasting for the electric 

system. In this project, the intraurban enhancements to probabilistic forecasting and to the 

CEC climate zones were developed for summer months, focusing on the Los Angeles region 

and the greater San Francisco Bay Area. This was done based on observations, that is 

development of synthetic, representative months, and on fine-scale modeling to account for 

current conditions, and future changes in climate and land use. The CEC climate zones 

depicted in Figure 1 were used as reference for comparison with the proposed fine-scale 

intraurban zones developed based on observations and modeling. 

Thus, the main objectives in this study were to: 

• Identify weather data sources and mesonet1 monitor locations in the selected study 

areas and acquire data as needed 

• Analyze the observed meteorology, and characterize the intraurban variations in 

microclimates at the weather-stations’ network scales, focusing on air temperature 

during summer months of recent years 

 
1 Mesonets are automated weather monitoring stations that observe mesoscale meteorological phenomena, 

mesoscale being an intermediate scale between weather systems and microclimates. 
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• Develop characteristic or synthetic months based on observational weather data from 

the most recent years (for example, 2013—2015) 

• Analyze observed meteorology in terms of energy-relevant metrics, for example, 

cumulative temperature metrics (degree-hours), peaks (maxima), and dips (minima) at 

stations and point-forecast locations of interest 

• Recast the observational weather data for assimilation into the meteorological model, 

and for carrying out quantitative model performance evaluation 

• Configure the atmospheric model (Weather Research and Forecasting, WRF) and its 

urbanized parameterizations (in the urbanized Weather Research and Forecasting, 

uWRF) for the specifics of the regions selected in this study, including application of 

suitable, best-performing urban parameterizations 

• Modify and customize the uWRF model, its input, and parameterizations as required for 

this specific application 

• Develop the meteorological and surface characterizations inputs to the model for 

current climates, and existing land use and land cover (current conditions) 

• Carry out atmospheric modeling of current conditions 

• Carry out quantitative model performance evaluation (MPE) and compare the 

performance of the modified uWRF to that of the standard model 

• Develop future-climate meteorological input to WRF and uWRF, via dynamical 

downscaling of climate models focusing on summer months 

• Develop characterizations of future land-use/land-cover and urban extents 

• Carry out simulations of future climates and future land-use/land-cover conditions; 

recompute future-year intraurban variations in climate indicators 

• Use the observational data analysis and temperature zoning (clustering), along with 

modeling results as the basis for development of statistical correlations or descriptive 

relations between temperature at any mesonet station and a reference point, such as 

forecast locations, metars, or CEC climate-zone stations 

• Develop fine-resolution temperature zones in each area and corresponding correlations, 

and compare to existing CEC climate zones. 
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Figure 1: Building Energy Climate Forecast Zones  

       

Left: newer scheme, 20 zones. Right: older scheme, 16 zones.  

Source: CEC, California Energy Maps (CEC 2017; Kavalec et al., 2009). 
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CHAPTER 2: 
Project Approach 

2.1 Observational Meteorological Data 
Several datasets were identified, evaluated for use in this study, and acquired as suitable. 

Datasets were examined at multiple spatial resolutions and geographical coverages, including 

both point and gridded data. The following observational meteorology datasets were 

considered for use in this study. Overlap existed, sometimes completely, among various 

datasets and, in such cases, only a subset was used in this analysis. 

• Meteorological Assimilation Data Ingest System (MADIS, madis-data.ncep.noaa.gov): A 

repository of extensive weather datasets developed and maintained by the National 

Oceanic and Atmospheric Administration/National Centers for Environmental Prediction 

(NOAA/NCEP). It consists of and synthesizes data from various providers and, as such, 

was used mainly and heavily in this study. 

• URBANET/National mesonet: An urban-monitors dataset by the National Centers for 

Environmental Prediction that can be partially accessed via MADIS (depending on 

access privileges). 

• National Weather Service/NOAA Cooperative Observer Program (COOP): A dataset of 

annual averages and daily maximum and minimum temperatures and precipitation 

(nws.noaa.gov/om/coop/). 

• Daymet (daymet.ornl.gov and urs.earthdata.nasa.gov): Gridded daily datasets at 1 km 

resolution of parameters including, for example, daily maximum and minimum air 

temperature, humidity, and precipitation. The data is prepared and maintained by the 

Oak Ridge National Laboratory. 

• WeatherBug (weather.weatherbug.com): A commercial dataset consisting 

overwhelmingly of citizen weather observing program (CWOP) monitors. While the 

coverage and the spatial resolution of the monitoring network are relatively high, data 

quality can be difficult to ascertain and/or control via post-processing. 

• Weather Underground (wunderground.com): A commercial dataset covering swathes of 

urban areas at relatively higher coverages and resolutions in some parts, but, as with 

the WeatherBug datasets, the quality is not consistently checked and most monitors are 

privately owned; that is, CWOP, and therefore not always subject to World 

Meteorological Organization (WMO)-standard siting criteria, maintenance, and/or 

calibration. 

• NOAA MesoWest (www.weather.gov/wrh/): Map-based surface meteorology (point 

observations). Areas covered in California include the San Francisco Bay Area, 

Sacramento, San Diego, Los Angeles region, and the Fresno—Bakersfield areas. 

MesoWest also provides historical data (climate and daily weather information), as well 

as specific weather-station data.  

• PRISM Climate Group (prism.oregonstate.edu) and PRISM UCAR 

(climatedataguide.ucar.edu): Gridded historical meteorology datasets. 
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• NCAR (U.S. National Center for Atmospheric Research) datasets 472.0: Hourly historical 

weather observations at airports or near airways. The dataset is developed and 

maintained by NCAR, and also made available for use as input to atmospheric models. 

This dataset also is useful in model performance evaluation. 

• Mesowest mesonet (mesowest.utah.edu/): Mesonet data covering most of California 

and other western states. This dataset also is included in the MADIS system. 

• NOAA daily datasets (Livneh et al., 2015): National gridded datasets of daily 

temperature maxima and minima, and other daily variables, such as precipitation, 

based mainly on the NOAA COOP observations. Available for several decades to present 

(2013), with a spatial resolution of 6 km (data.ncdc.noaa.gov). 

• California Irrigation Management Information System (CIMIS): A dataset developed 

mainly for agricultural applications with limited observations in urban areas. 

• Network-specific California datasets: Data from various California agencies, including 

the Air Resources Board, Air Quality Management Districts (of relevance to this project: 

the South Coast Air Quality Management District, Bay Area Air Quality Management 

District, and the San Joaquin Valley Air Pollution Control District). 

• Utilities-specific mesonet: PG&E and SDG&E mesonets (Pacific Gas & Electric; San Diego 

Gas & Electric). 

• California Climate Data Archive, CALCLIM (calclim.dri.edu): A climate monitoring and 

data access website for the State of California. It is sponsored by the CEC as a joint 

effort with the Scripps Institute of Oceanography and the Western Regional Climate 

Center (WRCC). CALCLIM lists many of the same networks found in MADIS and other 

data sources listed above. Other useful climate datasets at WRCC can be accessed from 

wrcc.dri.edu/coop-inventory/ and wrcc.dri.edu/climate-maps. 

Figure 2 shows a geographical search window for weather stations that was defined as shown 

by the white polygon. This search area encompassed the study regions of interest in this 

project, including the San Francisco Bay Area, the Fresno-Bakersfield area, and the Los 

Angeles region. From MADIS, the number of monitors with valid data in this search area was 

about 1,400. This total did not include stations from the Weather Underground and Weather 

Bug networks, as they were not used in this study, although some of these stations may be 

included in the MADIS datasets. The number of monitors (mesonet and metar2 stations) in the 

study-defined analysis domains of the San Francisco Bay Area was ~245 and, in the Los 

Angeles region, it was ~330 depending on reporting (these analysis domains are shown in 

Figure 2). In addition, several upper-air/radiosonde sites were available in each of these 

regions.  

Data acquired from each monitor included variables of interest, such as air temperature, dew 

point, relative humidity, wind speed, wind direction, wind gusts, solar radiation, pressure, and 

precipitation. In this application, observed air temperature, dew point, and humidity were at 2 

meters (m) (6.5 feet) above ground level (AGL) in most cases; whereas, wind direction and 

speed were either at 6.1 or 10 m (20 or 32 feet) AGL, in general. Upper-air information were 

 
2 Metar are weather monitoring networks used in aviation. 
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also acquired, including radiosonde data from NOAA’s National Center for Environmental 

Information. Radiosonde sites within the search window defined above are located at 

Vandenberg Air Force Base, Edwards Air Force Base, Los Angeles International Airport (LAX), 

Oakland International Airport (OAK), Fresno Yosemite International Airport (FAT), San Diego 

International Airport (SAN), and Point Mugu Air Force Base. Figure 2 shows the locations of 

weather stations (mesonet, metars, airways, and radiosonde sites) windowed over the areas 

of interest in this study.  

Figure 2: Search Window for Observational Data (Meteorological Monitors) 

 

           
Top: Overall study area 

Bottom left: locations of weather stations in the Los Angeles region (approximately 330 stations). Bottom 

right: locations in the San Francisco Bay Area (approximately 245 stations). 

Source: Altostratus Inc. 

In addition to their use in detailed analysis of observed meteorology, the acquired datasets 

were also recast for use in model performance evaluation, including time series, maxima, 

minima, bias, error, and index of agreement (Taha and Freed, 2015). The data were also 

reformatted for input to the meteorological model, that is in four-dimensional data 

assimilation. The WRF model (Skamarock et al., 2008) was also configured in this study for 

running with the NOAA/NCEP Global Forecast Model for short-term, days-ahead localized 

forecasting. Thus, for this additional purpose, a streamlined routine for acquiring Global 

Forecast Model data in real time from NCEP/NCAR and use in WRF was also implemented. For 

long-term decadal modeling, dynamical downscaling of climate model output was carried out 

with the urbanized WRF model (uWRF), as discussed later in this report. Observational data 

were quality checked to ensure suitability. MADIS allowed for various levels of quality check 

based on (1) static, station-specific checks, and (2) spatial analysis of observations at the 

target monitor relative to nearest-neighbor stations (analysis) which, in this case, generally 

included some four to six stations surrounding the target (buddy check). Thus, the full hourly 
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meteorological datasets (for June, July, August, and September of 2013, 2014, and 2015) 

were filtered further to produce secondary quality-checked datasets that were then used in 

subsequent analysis and in model performance evaluation. 

2.2 Land-Use/Land-Cover Data and Preparation of Surface Input 
to Urbanized Weather Research and Forecasting  

2.2.1 Land-Use/Land-Cover Data Sources 

To characterize the land use, land cover (LULC), physical, and geometrical properties of the 

surface, the following datasets were identified and used in this project: 

• 30-m National Land Cover Data (NLCD), including Land Use/Land Cover (LULC), 

vegetation cover, and impervious surfaces (MRLC, 2006) 

• 30-m United States Geological Survey (USGS) Anderson Level-II LULC classification 

(Anderson et al., 2001), including urban and nonurban areas 

• Area-specific LULC, following the Anderson USGS Level-IV classification (Anderson 

et al., 2001), obtained from the cities and counties in the study areas 

• Fine-scale, area-specific building footprints and geometry obtained from cities and 

counties in the study areas 

• Google Earth urban morphological and land-cover data (canopy layer) 

• 1-m area-specific roof albedo from satellite imagery (Lawrence Berkeley National Lab) 

(Ban-Weiss et al. 2015) 

• 1-m area-specific urban morphological and geometrical data from the National Urban 

Datasets and Portal Tool (N/WUDAPT; Ching et al., 2009) 

• 1-m Earth Define/CALFIRE urban tree-canopy cover (www.earthdefine.com). 

To prepare the surface-characterization input to uWRF, the subsequent steps were followed: 

• Obtained additional fine-resolution LULC and building-footprint datasets for several 

counties in the study areas. These included the counties of Kern, Fresno, San Francisco, 

Santa Clara, Contra Costa, Alameda, San Mateo, Los Angeles, Orange, San Bernardino, 

Riverside, and Ventura. Additional information was also acquired from associations of 

governments in the Los Angeles region and the San Francisco Bay Area (Southern 

California Association of Governments, Association of Bay Area Governments). 

• Used the LULC information to derive various parameter inputs to the meteorological 

model (uWRF) for various schemes that simulate the urban canopy layer as well as for 

nonurban areas. Urban parameters included building and vegetation frontal-, plan-, and 

top-area densities, roughness length, view factor, albedo, soil moisture content, shade 

factor, and other parameters as specific to each modeling scheme. 

• Performed analysis of urban-morphology data for buildings, structures, and vegetation 

(based on Google Earth and National Urban Database and Access Portal Tool datasets) 

for various urban land-cover categories. These datasets along with building footprint 

information were used in the calculations of parameters for input to the land-surface 

models. The morphological categories were also cross-walked to LULC categories. 
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• Vectorized a 1-m raster tree-cover dataset obtained from EarthDefine/CALFIRE and 

used in development of certain model-input parameters related to vegetation such as 

shade factor, soil moisture, and roughness length to complement those derived based 

on LULC and urban-morphology characteristics. 

• Developed future-year land-use input to uWRF based on projection scenarios 

(Bierwagen et al. 2010; Thorne et al., 2012) and USGS LUCAS datasets (Sleeter et al., 

2015) in addition to cross-referencing among various city-specific LULC datasets and 

NLCD 2011/USGS GIRAS Level-II and Level-IV classes (Anderson et al., 2001) for use 

as extrapolation templates in data-sparse areas. 

The available datasets were merged, after processing, on a grid cell-by-cell basis to develop a 

detailed bottom-up surface characterization input to the atmospheric and land-surface models. 

Because of the large amount of data generated in these tasks, this section presents only a few 

random small samples, as shown in Figure 3, from the various activities carried out in the 

characterization of LULC and urban morphology (Figure 1 through Figure 13 in Appendix B 

provide additional examples). The gridded land-cover and morphology information was then 

used to derive meteorological-model input parameters, including urban fraction, albedo, shade 

factor, soil moisture, roughness length, anthropogenic heat flux, and other relevant canopy-

layer descriptors. 

Figure 3: Examples from Land Use, Land Cover Analysis  

 

 

Top left: Sample detail of Los Angeles County land-use classifications (Downtown Los Angeles is the 

area predominantly color-coded green in this figure) data source: SCAG. Right: San Francisco County 

building footprints, red rectangle is the downtown San Francisco area, data source: Association of Bay 

Area Governments. Bottom: Urban tree cover (1-m resolution) in a subdomain of the Los Angeles region 

(data source: EarthDefine/CALFIRE). 

Source: Altostratus Inc. 
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2.2.2. Development of Surface Input to Urbanized Weather Research and 
Forecasting  

Based on the LULC analysis, fine-scale urban surface physical and geometrical properties input 

to the urbanized WRF meteorological model (uWRF) was generated in two manners: (1) for 

areas explicitly covered by particular LULC and/or morphometric datasets, the surface 

properties were developed directly from these data; and (2) for areas that were not covered 

by one or more datasets, characterizations were done indirectly. In the latter case, correlations 

were developed between highly resolved LULC classes and building morphometric properties, 

such as height, area, frontal-area density, probability distribution of building area with height, 

and so on. For example, in the Los Angeles County alone, there were about 130 LULC classes, 

more than 2 million LULC patches, and more than 3 million buildings (thus, more than 6 trillion 

points for the development of such correlations). 

With GIS, centroids were assigned to each LULC patch to more easily correlate with specific 

buildings in each area and, thus, derive certain properties of interest. The correlations were 

then used as a basis for computing geometrical, roughness, and drag-related input parameters 

to uWRF in each area. Figure 4 is a random example from the analysis of building properties 

versus LULC classes, in this case, average building plan area and average building height 

within LULC patch 1122 (Figures 14.A through 14.L in Appendix B provide additional examples 

of such correlations). 

The calculations were applied to present years and repeated for developing future-year land-

use and land cover scenarios. Data were then merged to develop gridded model input 

parameters including: LULC coverage (percentage); roof albedo; roof area; mean building 

heights; mean building floor areas; top-, frontal-, and plan-area densities for buildings; 

probabilities of building areas at each of 5-m vertical intervals from surface to 40+ m AGL; 

vegetation cover; soil moisture; roughness length; and drag coefficients. Figure 5 is an 

example from this analysis (additional examples can be found in Figures 15.1 through 15.16 in 

Appendix B). 

Figure 4: Snapshot from Analysis of Land Use, Land Cover and Building Properties  

 

This example is from the Agoura Hills area of Los Angeles County. Left: LULC 1122 (duplexes, triplexes, 

and condominiums), average building area (m2) at ground level. Right: LULC 1122 average building 

height (m). 

Source: Altostratus Inc. 
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Figure 5: Examples from Land Use, Land Cover and Urban Morphology Analysis  

 

Left: Arbitrary example for an area southwest of Downtown Los Angeles. Background colored tiles 

represent LULC and the small dark squares represent tree canopy cover >15 percent. Right: Arbitrary 

example for the San Francisco Bay Area: grid-cell mean building height (light to dark color corresponds 

to low to tall buildings). 

Source: Altostratus Inc. 

2.2.3. Development of Future Land Use 

As part of the task of modeling future climates, the LUCAS USGS land-use projections (Sleeter 

et al., 2015) for years 2015, 2030, 2050, and 2100 for the business-as-usual (BAU) case were 

adopted in this study. Although there were other scenarios available, such as BAU high and 

BAU low, the BAU scenario selected here is a middle-of-the-road situation representing likely 

trends in urbanization. A small sample from this analysis is shown in Figure 6 (Figures 16.1 

through 16.12 in Appendix B provide additional examples from this analysis). 

The LUCAS land-use dataset was originally acquired as raster layers that were then vectorized 

in this project and recast to the modeling grids of the study areas as shown in the examples 

below. The figures depict the changes in urban land use in future years — here for 2015 (as 

reference), 2050, and 2100. The projected future changes in urban land cover were used in 

this study to revise the thermo-physical properties input to the land-surface and urban 

modules of the modified uWRF model to capture future-year conditions (in addition to the 

changes in climate fields, that is, the downscaled projections of meteorology corresponding to 

those years). The composition and surface physical characteristics of the new urban areas 

(expanded to in 2050 and 2100) were assumed to be an extension of and having similar 

properties to the urban areas closest to the current boundaries where the urban expansion 

would occur. 

2.3 Meteorological Modeling 
Meteorological modeling in this project was carried out with the WRF system (Skamarock et al., 

2008). The urban modules (uWRF) and land-surface model (LSM) in WRF were updated and 

customized in this project for the specifics of fine-scale intraurban modeling of the selected 

study regions. The model was modified to (1) ingest the bottom-up surface characterizations 

developed in this study (discussed in Section 2.2), (2) to trigger the urban parameterizations 

at grid cells based on physical-properties criteria (not LULC criteria as in the standard WRF), 
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and (3) modifications to parameterizations so that calculations of roughness, drag, and other 

properties are wind-direction-dependent. 

Figure 6: San Francisco Bay Area and Los Angeles Region Urbanization 

 

 

San Francisco Bay Area (top) and Los Angeles region (bottom) urban land use in 2015 (red). Green color 

represents additional areas urbanized by 2050 (left) and yellow is additional areas urbanized by 2100 

(right). Data generated based on Sleeter et al. (2015). 

Source: Altostratus Inc. 

Three current-climate meteorological states were simulated: (1) a reference state, based on 

often-used standard modeling approaches and configurations in WRF, excluding any urban 

parameterizations, (2) a standard urbanized modeling approach, that is, standard WRF-urban, 

typically used by urban climate modelers, and (3) study-specific customized uWRF 

meteorology for comparison with the reference state and evaluation of improvements in model 

performance relative to the standard WRF-urban. For the reference state, some of the more 

common options the model was configured with include (all these are explained in the WRF 

model documentations): 

• Kain-Fritsch cumulus parameterizations 

• MYJ PBL scheme with prognostic TKE 

• Nonurban physics 

• NOAH LSM surface physics, prognostic soil temperature and moisture 

• RRTM longwave radiation transfer scheme, multiple bands, trace gases 

• Dudhia shortwave physics, downward integration, clouds, scattering, clear-sky 

• Smagorinsky horizontal diffusion K diagnosed from 3D deformation of the wind field 

• WSM3 microphysics cloud water and rain 
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For study-specific uWRF (number 3, above), the following additional options were used: 

• Urban physics: AREAMOD, mod-UCM, mod-BEP (Altostratus Inc. modified approaches) 

• Altostratus Inc. urban schemes trigger and meshing with nonurban cell components 

• BouLac/MYJ PBL schemes 

• Updated NOAH LSM parameters 

• Bottom-up and improved LULC and morphology characterization/model input, Level-IV, 

NLCD, NUDAPT-based characterizations (as discussed above) 

• Future-climate downscaling via uWRF (years and RCP combinations); fine-resolution 

dynamical downscaling 

• LUCAS future land-use and land-cover projections, as discussed above 

For a discussion of these various options and configurations, the reader is referred to Taha 

(2017), Taha and Freed (2015), and Taha et al. (2018). Figure 7 shows the nested-grid model 

configuration used in this project. The study-modified urbanized WRF model (uWRF) was 

applied at the innermost, finest-resolution four grids, that is 2-km and 500-m resolutions, 

corresponding (from north to south) to the San Francisco Bay Area, Fresno, Bakersfield, and 

the Los Angeles region. In this report, most of the discussion focuses on the San Francisco 

and Los Angeles regions. The geographical extent of the innermost grids for the Los Angeles 

and San Francisco Bay Area domains were shown earlier in Figure 2. Figure 8 is an example 

from the WRF output for the reference-state meteorology, depicting the simulated air 

temperature at 2 m AGL. 

Figure 7: Weather Research and Forecasting and Urbanized Weather Research and 
Forecasting Modeling Grids Applied in Study  

 

Horizontal grid resolutions are: 54, 18, 6, 2, and 0.5 km (the latter not shown in the figure). 

Source: Altostratus Inc. 
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Figure 8: Weather Research and Forecasting Model Reference-State Simulation-
Result Examples 

  

 

Examples are for the 2-km grid for four sample 1500 PDT periods in June and July 2015 representing 2-m 

air temperature for the Los Angeles region (top) and the San Francisco Bay Area (bottom). 

Source: Altostratus Inc. 

The simulations were carried out with an overlapping scheme where 17 days at a time were 

simulated (and the first two, spin-up days discarded), then another overlapping 17 days were 

simulated (overlapping with the last two days of the preceding interval), and the two first spin-
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up days discarded, and marching on until reaching the end of the summer season being 

modeled. The reasons for splitting the simulations into overlapping intervals were to: 

• Provide an ensemble of model runs as the basis for developing probabilistic correlations 

and error estimates (deviations from ensemble means) for each region (ensembles are 

across years, months, and weeks). This was equivalent to running the meteorological 

model with a set of perturbed (varying) initial conditions to provide ensembles for a 

probabilistic forecast. 

• Provide successive correction of the simulations toward reanalysis. 

• Take into consideration that two weeks (~15 days) is also generally the accepted limit 

for deterministic predictability (deterministic forecasting limits), that is, a two-week 

period is the optimum length to minimize the growth of errors from initial conditions 

(typically occurring in longer runs). 

• Capture upper-air signals (from reanalysis and observational data) that did not exist or 

were lost during model integration (if relying solely on a single set of initial conditions), 

hence the necessity to re-initialize the model so as to recapture those upper air signals. 

• Model performance that was found to be better with overlapping runs than long runs 

with cold starts. 
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CHAPTER 3: 
Project Results 

3.1 Observational Characterizations 
Station-by-station analysis was undertaken for each study domain (up to ~330 stations or 

more in the Los Angeles region and up to ~245 stations or more in the San Francisco Bay 

Area, depending on reporting), including computing cumulative metrics, degree-hours (DH) or 

degree-hours per day (DH/day) at each monitor, with or without thresholds, as well as stations 

maxima, minima, and other metrics (an example from this analysis is shown in Figures 1.A 

through 1.L in Appendix C). In addition, domain-wide characterizations of the observations 

were also carried out, including a statistical evaluation of the distributions of the DH/day 

metric over the mesonet networks in the study areas. (Figures 2.A through 2.I, in Appendix C, 

are examples.)  

The interquartile ranges (IQR) corresponding to the observational data analyzed in this task 

(and shown in Figures 1 and 2 of Appendix C) are summarized in Table 1. The IQR are used 

here as an indicator to the spread in DH/day values over each of the study regions. The 

DH/day quartiles were also used as one of several bases in developing temperature zones and 

spatial analysis discussed later in this report. 

Table 1: Means and Interquartile Ranges of Degree Hours/Day in Study Areas  

Mo./Yr. 

Fresno-Bakersfield 
Region 

Los Angeles Region 
San Francisco Bay 

Area 

Mean IQR Mean IQR Mean IQR 

6-2013 616 34 488 67 432 84 

7-2013 700 46 536 76 445 125 

8-2013 636 41 539 84 441 74 

9-2013 559 40 534 71 440 41 

6-2014 613 35 485 55 430 85 

7-2014 687 44 558 65 472 103 

8-2014 653 52 552 69 456 77 

9-2014 609 36 565 63 455 54 

6-2015 638 42 510 70 442 88 

7-2015 648 37 524 61 472 71 

8-2015 646 32 579 64 484 56 

9-2015 592 38 570 45 481 47 

DH/day (°C·hr/day); non-threshold DH/day metric. 

Source: Altostratus Inc. 
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The following observations were made: 

• The regional differences in climate, as expected, are evident from the mean values 

showing the Fresno-Bakersfield region as warmest (means in the 600s °C·hr/day or 

1800s °F·hr/day), the Los Angeles region as second (means in the 500s °C·hr/day or 

1600s °F·hr/day), and the San Francisco Bay Area as the cooler of the three regions 

(means in the 400s °C·hr/day or 1400s °F·hr/day). 

• The IQR, on the other hand, showed a reverse order in general, with the Fresno-

Bakersfield region having the smallest IQR (30s and 40s°C·hr/day), the Los Angeles 

region coming in second, with IQRs mostly in the 60s and 70s °C·hr/day, and the San 

Francisco Bay Area with the largest IQR, but also with considerable variability. The 

explanation rested in the characteristics of the geographical locations: the Fresno-

Bakersfield region is inland and relatively uniform across the domain, and hence has a 

smaller IQR. The Los Angeles region is a vast expanse from coastal areas to inland 

deserts (urban climate archipelago) and, as such, has a higher IQR. Finally, the San 

Francisco Bay Area, another large urban climate archipelago, has the most variability in 

intraurban weather as it ranges from colder coastal areas, milder bay areas, to inland 

regions in the central valley, hence the larger IQR. 

• The spread (IQR) changed in smaller levels in both the Fresno-Bakersfield and Los 

Angeles regions compared to the San Francisco Bay Area. 

• The variations in the regional weather across the months also differed from one area to 

another: 

• In the Fresno-Bakersfield domain, the DH/day mean increased from June to July, is 

highest in July, then decreased to August, and then to September (and was consistent 

across the years). The highest mean was in July.  

• In the Los Angeles region, the general order was an increase from June to July to 

August, peaking in August, and then decreasing in September. The highest mean was 

in August (although it was different in 2014 when the peak month was September). 

• In the San Francisco Bay Area, the order was such that the mean DH/day increased 

from June to July (peaked in July), then came down in August and September. 

However, there was practically no difference between the months of August and 

September in terms of the means in the Bay Area—and in 2015, the hottest months 

were August and September. 

• The variations in IQR were more difficult to characterize and there did not seem to be a 

systematic pattern. However, one feature that stood out was the IQR in the San 

Francisco Bay Area, which was very large in July and very small in September. 

3.1.1 Initial Temperature Zoning (Clustering) 

Based on the analysis of observational surface meteorological data, several fine-scale 

temperature zones and subzones were developed within each of the study regions. Each zone 

or subzone encompassed a number of mesonet stations and could be represented by 

(correlated to) one or more spatial surrogates, or handshake points. The quartile ranges are 

summarized in Table 2. This initial temperature and DH/day zoning represented a first-level 

classification and characterization of intraurban climate variations.   
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Table 2: Quartiles of Degree-hour Per Day at Mesonet Stations 

Region/Date Min Q1 Median Q3 Max 

LA 6-2013 361 455 492 522 628 

LA 7-2013 428 499 535 575 690 

LA 8-2013 383 497 545 581 712 

LA 9-2013 312 502 547 573 677 

LA 6-2014 343 457 486 513 615 

LA 7-2014 428 526 563 591 687 

LA 8-2014 346 520 557 589 692 

LA 9-2014 341 537 576 600 715 

LA 6-2015 403 475 511 546 647 

LA 7-2015 377 493 530 555 648 

LA 8-2015 459 547 581 611 682 

LA 9-2015 378 556 580 602 696 

SF 6-2013 293 391 441 475 579 

SF 7-2013 295 379 454 504 618 

SF 8-2013 334 405 444 479 568 

SF 9-2013 341 420 446 462 541 

SF 6-2014 296 388 446 473 580 

SF 7-2014 342 419 485 523 610 

SF 8-2014 353 416 461 493 574 

SF 9-2014 367 428 457 483 566 

SF 6-2015 309 398 453 487 591 

SF 7-2015 365 439 475 510 601 

SF 8-2015 372 458 491 514 602 

SF 9-2015 359 458 489 506 576 

Tables are for all mesonet stations in the study regions (LA: Los Angeles region; SF: San Francisco Bay 

Area), for 2013 through 2015 and June through September, as identified in the first column. (DH/day in 

units of °C hr/day). 

Source: Altostratus Inc. 

3.1.2 Nonthreshold Degree-Hours Analysis 

The goal of computing nonthreshold cumulative metrics was to compare, within each region 

and time period, the relative spatial variations in temperature and derived quantities. Based on 

the analysis of the temperature field, several fine-scale temperature zones and subzones 

(clusters) were developed within every study region. Each temperature zone or subzone 

contained a number of mesonet stations that were correlated to one or more surrogates or 

handshake points, such as the CEC’s climate zone’s representative weather stations. 
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Thus, degree-hour metrics were computed for each monthly period, and average degree-hour 

per day metrics were derived (DH/day in units of °C·hr/day). Based on the analysis presented 

in this and the following sections, it was deemed possible, at least semi-quantitatively, to 

identify tiers or levels of temperature zones: (1) the first tier included temperature zones that 

were persistent across months and years, (2) a second tier included zones that were semi-

permanent, but covered major areas in the domain, and (3) a third tier included temperature 

zones that were inconsistent in terms of signal, that is, they tended to change substantially 

from one interval to another. In Appendix D, further discussion is provided along with figures. 

In the following discussion (and in Figures 1.A through 1.I in Appendix D), the temperature 

zones are labeled as z_MMMYY-#L, where z refers to the region, that is, LA (for Los Angeles 

region), SF (for San Francisco Bay Area), and FB (for Fresno-Bakersfield region), MMM is 

month (JUN, JUL, AUG, or SEP), YY is year (13, 14, or 15), # is the cluster number within each 

region and month, that is, first through fifth quantile intervals of the domain and month’s 

temperature range (values for # are 1, 2, 3, 4 and 5) and L is a letter indicating 

noncontiguous similar temperature zones, that is, subzones. Thus, L can take on values of a, 

b, c, d, and e, each of which identifying a subzone within each temperature zone or cluster. 

The matrix of possible combinations of clusters and subzones is shown diagrammatically in 

Figure 9. Note that this matrix was based on the analysis of observational data only; the 

modeling task (discussed later) will result in more resolved (additional) categories of # and L. 

Figure 9: Temperature Subzones from Observational Data Spatial Analysis 

 

Source: Altostratus Inc. 

Because the discussion of each temperature cluster, month, region, and level separately was 

extremely lengthy and tedious, only the first month of each region (June 2013) is discussed as 

an example to provide a general idea regarding the clusters, their extents, and geographical 

representations. The possible combinations of clusters, as defined in Figure 9, are shown in 

Figures 1.A through 1.I in Appendix D. 

Some general observations were made with respect to the month-to-month variations in the 

temperature zones and subzones in the Los Angeles region and the San Francisco Bay Area: 

• Clusters generally retained their characteristic spatial patterns but moved closer to or 

farther away from the coastline. 
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• Clusters bundled together and formed more contiguous, larger clusters or could split 

into a number of subclusters, sometimes forming isolated islands. 

• In some cases, the clusters covered smaller or larger areas even as they retained their 

general spatial patterns; for example, the coastal cluster (band) became wider or 

narrower, or completely disappeared in some cases. 

• The urban-climate archipelago effects and on-shore warming signals were evident in 

the spatial patterns of temperature subzones. In the case of Los Angeles region, this 

was seen as westerly, southwesterly, and southerly gradients in temperature. 

To provide a quantitative definition of the clusters’ boundaries and ranges (temperature 

zones), Table 3: Los Angeles Region Cluster Ranges (quantiles of DH/day; °C·hr/day) and 

Table 4 list the quantiles and intervals for each month and year considered in this analysis. 

Table 3: Los Angeles Region Cluster Ranges (quantiles of DH/day; °C·hr/day) 

 

z = Los Angeles region; cluster ranges (quantiles of DH/day; °C·hr/day). 

Source: Altostratus Inc. 

3.1.3 Threshold-Specific Degree-Hours Analysis 

The goal of computing threshold-specific cumulative metrics was to facilitate direct inter-

comparisons across various regions as well as various time periods within each region. While 

any threshold could be used for this purpose, T > 72°F (T > 22.2°C) was selected as an 

example in this discussion. This represented one of many common temperature thresholds 

used by the electric utilities as a basis to calculate cooling degree hours. Thus, a cutoff value 

of 533 DH/day (°C·hr/day) was used in this analysis: 72.0°F × 24 hours = 1728°F·hr/day 

(22.2°C × 24 hours = 533°C·hr/day). 

Figures 1.A through 1.I in Appendix E are provided for this example (the contouring of the 

threshold is done in reverse color coding, that is, areas with higher than 533 DH/day are 
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unshaded and those below the threshold are masked). The reason for this reverse color coding 

is to outline the outer boundaries of the observational data-analysis domain, that is the spatial 

extent of mesonet and metar stations in each study area.  

Table 4: San Francisco Bay Area (z=SF) Clusters Ranges (quantiles of DH/day; 
°C·hr/day) 

 

San Francisco Bay Area; cluster ranges (quantiles of DH/day; °C·hr/day).  

Source: Altostratus Inc. 

Los Angeles Region  

For all three years (2013, 2014, and 2015), the geographical area above the threshold started 

out small in June, increased in size in July and August, and then somewhat decreased again in 

September. This cyclical pattern was to be expected as it followed the monthly changes in 

heat, typically peaking in August and beginning to decrease afterward. In June, the areas 

above the threshold were confined to the east basin (EB) and other parts of the Inland Empire 

(IE), including Riverside, Moreno Valley, Hemet, and Beaumont. In July, the area over the 

threshold expanded to additionally include Highland, San Bernardino, Rancho Cucamonga, 

Fontana, Riverside, Corona, Perris, Lake Elsinore, Murrieta, and Temecula. In some cases, for 

example, July 2014, this area also merged with parts of the west basin. During July, the area 

above the threshold also included San Fernando Valley and central parts of the domain, such 

as Whittier, Norwalk, Fullerton, Anaheim, and Pomona. In the months of August and 

September, most of the Los Angeles region was above the threshold, except for a coastal band 

that varied in width from year to year—relatively wider in 2013, narrower in 2014, and very 

narrow in 2015, indicating the latter being the warmer year of the three in that area. (Refer to 

figures 1.A through 1.C in Appendix E.) 
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San Francisco Bay Area  

The San Francisco Bay Area is generally below the threshold at all times, except for some 

small areas in the eastern parts of the domain during certain months. For example, in July 

2013, the only areas above the threshold were in the northeastern part of the domain, 

including the cities of Brentwood, Oakley, Antioch, Pittsburg, and Bay Point. In July 2014, that 

area expands to also include Byron and the mountains to its south. In August and September 

2013, the entire observational analysis domain in the San Francisco Bay Area was below the 

threshold. In 2014, during the months of June, August, and September there were no areas 

above the threshold—only in July. These were the same zones as in July 2013, plus a large 

area covering desert, agriculture, and mountains stretching from east of Livermore/Altamont 

Pass all the way south to east of Santa Clara Valley. In 2015, all four months had a small area 

in the northeast of the domain above the threshold. As in July 2013, these areas included 

Brentwood, Oakley, Antioch, Pittsburg, and Bay Point. Refer to figures 1.D through 1.F in 

Appendix E. 

Of note, an area being under the threshold did not necessarily imply that its temperature 

never exceeded 72°F (22.2°C). In some cases, this indicated that the exceedance during 

daytime was offset at night, thus resulting in a sum of less than 533 DH/day. The daytime-

high temperatures exceeding 72°F (22.2°C) were evident in Section 3.1.4, (see the values 

listed in Table 5 and Table 6). Furthermore, the threshold used here is only an example. 

3.1.4 Analysis of Temperature Maxima 

The purpose of evaluating afternoon conditions was to generally assess the temperature field 

characteristics near the time of the peak in each region and period, as well as to evaluate 

whether the geographical locations of these peak temperatures were consistent across years 

and months. While daytime maximum temperature at any given location can generally occur 

anytime between 1200 and 1800 local standard time (LST), depending on weather conditions 

and land-surface properties, in large urban areas, such as the urban climate archipelagos of 

Los Angeles and San Francisco Bay Area, various zones can peak at different times and, 

therefore, it may not be very informative to compare them simultaneously for the purpose of 

this discussion. Thus, a uniform time stamp, for example, 1400 PDT (Pacific Daylight-Saving 

Time), was used for intraurban comparisons of the peak daytime temperature zones (Appendix 

F provides Figures 1.A through 1.I and additional information to this discussion). 

Los Angeles Region 

In the Los Angeles region (Figures 1.A through 1.C in Appendix F), several observations were 

made based on the analysis of 1400 PDT temperatures. The first was that the on-shore 

warming tendency was evident (as well as the urban climate archipelago effect) as positive 

temperature gradient away from the western and southern coasts. Areas with higher than 

domain-mean temperatures were generally consistent across the months and years, and while 

there were variations in the spatial patterns from one period to another, four areas (subzones 

A—D) were relatively consistent with high peak temperatures: 

• Subzone A encompassed most of the EB ranging from San Bernardino in the north to 

Temecula in the south. The boundaries of subzone A varied from one time period to 

another, but its geographical position was consistent across all months and years 

considered in this analysis. 
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• Subzone B represented the most downwind part of the west basin, ending at the Santa 

Ana Mountains. Although this subzone was relatively small and with low urbanization 

levels, it nevertheless was consistent in terms of peaking temperatures and was 

separated from subzone A by the Santa Ana Mountains. 

• Subzone C was another consistent area of higher peak temperatures. It comprised 

(from east to west) the areas of Claremont, Pomona, San Dimas, Glendora, Diamond 

Bar, Azusa, Irwindale, West Covina, Arcadia, and East Pasadena. 

• Subzone D represented mainly the San Fernando Valley and mostly its western part. 

In Table 5, the values of the 1400 PDT temperature quantiles and the corresponding intervals 

are summarized for the Los Angeles region. To provide an idea of the 1400 PDT temperature 

spread in the domain, an inter-quantile range, IQR (defined for the purpose of this discussion 

as the difference between the 5th and 2nd quantiles), is computed. Across the three years in 

Table 5, the IQR for June is 13.5°F, 12.8°F, and 13.7°F (7.5°C, 7.1°C, and 7.6°C), 

respectively. For the month of July, the IQR is 14.2°F, 12.9°F, and 11.7°F (7.9°C, 7.2°C, and 

6.5°C), and for the month of August it is 15.3°F, 13.5°F, and 13.1°F (8.5°C, 7.5°C, and 

7.3°C), respectively. For the month of September, the IQR is 12.9°F, 12.6°F, and 10.6°F 

(7.2°C, 7.0°C, and 5.9°C), respectively.  

Table 5: Los Angeles Region Cluster Ranges  

 

Los Angeles region; cluster ranges (quantiles of 1400 hours, Pacific daylight time; temperature in 

°Celsius.) Also refer to figures 1.A through 1.C in Appendix F. 

 Source: Altostratus Inc. 

San Francisco Bay Area 

In the San Francisco Bay Area’s urban-climate archipelago (Figures 1.D through 1.F in 

Appendix F), the on-shore temperature gradients were less obvious than in the Los Angeles 

region. However, this warming tendency could be detected in the east and south bays as well 

as in the Santa Clara Valley as shore-parallel temperature gradients. As with the Los Angeles 

region discussed above, there were some areas of higher than domain-mean temperatures in 
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the San Francisco Bay Area that were relatively consistent across the months and years 

examined in this study: 

• Subzone A encompassed the north-eastern region of the analysis domain, including the 

areas of Discovery Bay, Brentwood, Oakley, Antioch, Pittsburg, and Bay Point. 

• Subzone B ran roughly in a north-south direction, including (from north to south) the 

areas of Clayton, Concord, Walnut Creek, Alamo, Diablo, Danville, Black Hawk, San 

Ramon, Dublin, Pleasanton, and Livermore. 

• Subzone C comprised mainly the south and southwestern parts of Santa Clara Valley, 

including the areas of Cupertino, Saratoga, Campbell, and Cambrian Park, as well as 

Morgan Hill, farther to the south. 

• Subzone D was a relatively smaller area to the west of Santa Clara Valley including the 

cities of Palo Alto, Mountain View, Los Altos, and parts of Sunnyvale. 

In Table 6, the 1400 PDT temperature quantiles and corresponding intervals are summarized. 

As was done above, an inter-quantile range, IQR (defined for the purpose of this discussion as 

the difference between the 5th and 2nd quantiles) is computed. Across the years 2013, 2014, 

and 2015, the IQR for June is 13.1°F, 13.1°F, and 13.5°F (7.3°C, 7.3°C, and 7.5°C), 

respectively. For the month of July, the IQR is 16.7°F, 14.4°F, and 11.8°F (9.3°C, 8.0°C, and 

6.6°C), respectively. In August, the IQR is 11.7°F, 13.6°F, and 10.6°F (6.5°C, 7.6°C, and 

5.9°C), and for September, it is 7.7°F, 10.9°F, and 9.1°F (4.3°C, 6.1°C, and 5.1°C), 

respectively.  

Table 6: San Francisco Bay Area Cluster Ranges  

 

San Francisco Bay Area; cluster ranges (quantiles of 1400 hours, Pacific daylight time; temperature in 

°Celsius.) Also refer to figures 1.D through 1.F in Appendix F. 

Source: Altostratus Inc. 
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3.1.5 Analysis of Temperature Minima 

The goal of evaluating 0200 PDT temperatures was to assess the characteristics around the 

times of the lows in each region and period and evaluate whether the geographical locations 

of the minima were consistent across years and months. The lowest diurnal temperatures, 

depending on land use and land physical properties and local climate, typically occur just 

before sunrise. Here, 0200 PDT was selected for discussion as a uniform time interval across 

all domains and periods for the sake of direct inter-comparability and also because it was a 

time when there still may have been activity. 

Figures 1.A through 1.I in Appendix G provide additional information, where, in each figure, 

the following information is shown: 

• Mesonet stations are depicted with small circles representing 0200 PDT air temperature 

averaged for the month. 

• Metar stations are shown with triangles and represent the 0200 PDT average air 

temperature for the month at those locations. 

• Mesonet stations clusters (temperature zones and subzones) based on the six quantiles 

(five intervals) of average 0200 PDT air temperature for the given month.  

Los Angeles Region 

In the Los Angeles region, several observations were made based on examination of the 0200 

PDT temperature field. The on-shore warming tendency was much less detectable at night, 

relative to daytime/peak temperature hours (Section 3.1.4), or was completely nonexistent. 

The temperature field at 0200 PDT was disorganized relative to that during the daytime. While 

zones A, B, C, and D of 1400 PDT air temperatures (Section 3.1.4) were still identifiable at 

0200 PDT, there were many more areas throughout the domain with 0200 PDT high 

temperatures. 

In particular, the west basin and coastal areas were as warm as other areas in the Los Angeles 

region at this hour. For example, an area in the west basin stretching from downtown Los 

Angeles all the way south to Anaheim, Orange, and Santa Ana, was as warm (at 0200 PDT) as 

subzones A—D and sometimes even warmer. Thus, while the daytime on-shore gradient in 

temperature toward inland locations near the foothills and the EB was evident, the nighttime 

distribution of 0200 PDT temperature was relatively more uniform throughout the Los Angeles 

region. Thus, while subzones A—D appeared to consistently have higher temperatures 

whether during daytime or nighttime, the west basin saw high temperatures only during night 

hours (relative to other parts of the region).  

In Table 7, the values of the 0200 PDT temperature quantiles and the corresponding intervals 

are summarized for the Los Angeles region. To provide an idea of the spread of 0200 PDT 

temperature across the domain during different time intervals, an inter-quantile range, IQR 

(defined here as the difference between the 5th and 2nd quantiles), is discussed. Across the 

three years listed in Table 7, the IQR is 3.6°F, 4.3°F, and 3.2°F for June (2.0°C, 2.4°C, and 

1.8°C), respectively. For July, the IQR is 3.9°F, 3.4°F, and 3.9°F (2.2°C, 1.9°C, and 2.2°C), 

and for August it is 3.9°F, 3.2°F, and 3.4°F (2.2°C, 1.8°C, and 1.9°C). For September, the IQR 

is 3.9°F, 3.6°F, and 3.7°F (2.2°C, 2.0°C and 2.1°C), respectively. As expected, the IQR ranges 
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are much smaller (one fourth to one third) during the nighttime than during the day, such as 

at 1400 PDT, indicating more uniform temperatures at night. 

Table 7: Los Angeles Region Cluster Ranges  

 

Los Angeles region; cluster ranges (quantiles of 0200 hours, Pacific daylight time; temperature in 

°Celsius.) Also refer to figures 1.A through 1.C in Appendix G.  

Source: Altostratus Inc. 

San Francisco Bay Area 

In the San Francisco Bay Area, the following observations were made: 

• Subzones A and C were relatively still persistent, relative to daytime positions, while 

subzones B and D either no longer existed or were different in spatial extent (compare 

with figures in Appendix F). 

• Subzone A was larger in coverage than during daytime, extending south to the hills east 

of Fremont, Milpitas, and San Jose. In addition, a new area of high 0200 PDT 

temperatures emerged over the cities of Fremont and Milpitas. Here, a caveat 

mentioned earlier is recalled relating to lack of observations over the mountains and, 

thus, that the temperature zones in these areas could be fictitious. 

• Subzone C was unchanged in position relative to the daytime peaks (1400 PDT), 

however, the spatial pattern was observed to change from one period to another. 

Table 8 summarizes the values of the 0200 PDT temperature quantiles and corresponding 

intervals for the San Francisco Bay Area. The spread of 0200 PDT air temperature across the 

domain during different time intervals is evaluated with an inter-quantile range, IQR (again, 

defined for the purpose of this discussion as the difference between the 5th and 2nd 

quantiles). Across the three years in Table 8, the IQR for June is 3.9°F, 4.3°F, and 4.5°F 

(2.2°C, 2.4°C, and 2.5°C), respectively. For July, it is 5.2°F, 4.6°F, and 3.6°F (2.9°C, 2.6°C, 

and 2.0°C), respectively. For the month of August, the IQR is 3.7°F, 3.4°F, and 3.2°F (2.1°C, 

1.9°C, and 1.8°C), and for September, it is 3.9°F, 3.7°F, and 3.9°F (2.2°C, 2.1°C, and 2.2°C), 
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respectively. As expected, and mentioned earlier, the IQR ranges are much smaller (about one 

third) during the nighttime than during the day. 

Table 8: San Francisco Bay Area Cluster Ranges  

 

San Francisco Bay Area; cluster ranges (quantiles of 0200 hours, Pacific daylight time; temperature in 

°Celsius.) Also refer to figures 1.D through 1.F in Appendix G. 

 Source: Altostratus Inc. 

3.1.6 Development of Observational Characteristic Months and Coarse-scale 
Temperature Zones 

Based on the identification of persistent, semi-persistent, and inconsistent tiers or levels of 

temperature zones, as discussed in Sections 3.1.2 – 3.1.5, a final product from the 

observational data analysis in this project, based on clustering the temperature tiers, was the 

development of characteristics or synthetic months that included probabilistic temperature 

zones. This product was based on the nonthreshold DH/day metric that was defined earlier. 

The objective was to create a representative month for each of June, July, August, and 

September (JJAS) based on the three years analyzed. In other words, the product is a 

characteristic or synthetic June, July, August, and September for each region based on the 

observations from years 2013—2015.  

Arriving at a characteristic month for temperature in each study region consisted of the 

following three steps (A, B, and C): 

(A) First, a logical (Boolean) union of each temperature subzone from each month was 

formed via spatial analysis with GIS tools. Thus, unlike the temperature zones discussed 

in Section 3.1.2 (and shown in Figures 1.A through 1.I in Appendix D) that were month-

specific and spatially consistent in terms of boundaries of DH/day quantile intervals, an 

inclusive union of each temperature subzone in each month (across the years) was 

developed here. For example, subzones LA_JUN13-5a in Appendix D (seen in Figure 1.A, 

top left graph), LA_JUN14-5a (seen in Figure 1.B, top left graph), and LA_JUN15-5a (seen 

in Figure 1.C, top left graph) were combined (Boolean union, Ս) to produce a new 
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inclusive subzone at that geographical location (in this example, this was in the eastern 

basin of the Los Angeles region). Thus, the resulting new inclusive subzone in this 

example was: 

 (LA_JUN13-5a)  Ս  (LA_JUN14-5a)  Ս  (LA_JUN15-5a) (1) 

(B)  Second, a logical (Boolean) intersection (Ո) within each of the inclusive subzones 

resulting from step A above was done as follows: a) an area resulting from the 

intersection of all three subzones (one subzone per month from each year) was first 

defined to which b) are added the intersections of any two subzones outside of that area. 

Steps a and b (pattern recognition) resulted in a new characteristic subzone. Thus, in this 

example, the characteristic subzone was defined as the total area of the following 

combinations (i, or ii, or iii) depending on which of the subzones actually overlapped in 

each direction around the central intersection subzone: 

 [ (LA_JUN13-5a)  Ո  (LA_JUN14-5a)  Ո  (LA_JUN15-5a) ]  +   

  [ (LA_JUN13-5a)  Ո  (LA_JUN14-5a) ] (2) 

 [ (LA_JUN13-5a)  Ո  (LA_JUN14-5a)  Ո  (LA_JUN15-5a) ]  +   

  [ (LA_JUN14-5a)  Ո  (LA_JUN15-5a) ] (3) 

 [ (LA_JUN13-5a)  Ո  (LA_JUN14-5a)  Ո  (LA_JUN15-5a) ]  +   

  [ (LA_JUN13-5a)  Ո  (LA_JUN15-5a) ] (4) 

The union and intersection processes (discussed above) to generate a characteristic 

subzone via pattern recognition are explained schematically in Figure 10, using three 

hypothetical subzones A, B, and C. In this figure, the inclusive subzone is delineated with 

the black dashed line and the characteristic subzone is delineated with the dashed brown 

line. 
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Figure 10: Development of Characteristic Temperature Subzone 

 

Figure depicts subzones for each month across three years. 

Source: Altostratus Inc. 

Thus, in this example, the desired characteristic subzone is shown in brown (including 

both the brown hatch area and nonhatch brown area) and also delineated with the dashed 

brown line. It is defined as: 

 [ A  Ո  B  Ո  C ]  + A Ո B + C Ո B + A Ո B + C Ո A + A Ո B + C Ո B + A Ո C (5) 

The first term (in brackets) represents the hatched area (in Figure 10), which is the 

equivalent of what was defined earlier as a persistent or permanent  tier (in Section 

3.1.2), and the remaining terms of Equation 5 represent the individual brown-colored 

parcels surrounding the hatched area (in this example, clockwise from top right). The 

repetitions of some terms in Equation 5 occur because there were cases with more than 

one overlap area between any two of the three subzones A, B, and C. Thus, the final areas 

(characteristic subzones) used in producing the synthetic or characteristic months were 

the areas denoted by the entire brown background and outlined by the dashed brown line. 

This process was repeated for all subzones in all regions and all months. 

Thus, the characteristic subzone resulting from the above example (Equations 2, 3, and 4) 

was LA_jun_i5_a seen in the eastern part of the domain in Figure 1.1 in Appendix H. The 

resulting characteristic subzones for all the study regions and the months of June, July, 

August, and September are shown in Figures 1. through 1.40 in Appendix H. The 

temperature subzones in these figures are labeled zz_MMM_i#_L, where zz, MMM, #, and 

L are as defined earlier in Section 3.1.2 (this analysis was not undertaken for the Fresno-

Bakersfield region because of the sparse network of monitors. 

(C)  The final step involved superimposing all of the characteristic temperature subzones and 

meshing them together in a mosaic to produce the synthetic, month-representative 
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temperature zones. Thus, the product of this step was a characteristic month for each of 

June, July, August, and September, for each region, and over the span of the three years 

examined in this analysis. This is shown in Figures 11.A through 11.H, below, for the Los 

Angeles region and the San Francisco Bay Area. The color-coded dots in these figures 

were intentionally staggered to allow for visually discerning the overlap among the 

characteristic subzones in each month. The reason why overlap exists is because each 

temperature zone was calculated probabilistically from a different set of three months (not 

as single consistent months such as done earlier in Section 3.1.2 and shown in Figures 1.A 

through 1.I in Appendix D).  

In the context of this analysis, a synthetic month represents a probabilistic characterization of 

that month and its intraurban temperature field. Thus, Figure 11 shows five quantiles of 

degree-hours (DH) for each synthetic month, that is the clustering of temperature zones in the 

Los Angeles and San Francisco Bay Area regions based on observational data from metar and 

mesonet stations networks. The stations shown as black triangles on each figure were a small 

subset from the observation networks for use in solar radiation and cloud-cover 

characterizations to evaluate overcast conditions in coastal and inland areas. Accumulated 

solar radiation, as will be discussed later, was computed at each of these stations and used in 

the development of correlations. 

While there were dominant and persistent features in the spatial patterns in both regions (as 

seen in Figure 11), and the general spatial features were relatively unchanged from one month 

to another, some observations were made as follows. It is to be noted here that the DH scales 

are not similar across the figures and that the figures were meant to show relative, not 

absolute spatial patterns of temperature; for example, whereas the red color indicated the 

warmest quantile (fifth interval) in all months, the absolute temperature within this zone 

differed from one month to another). The same also applied to all other quantiles. 

Los Angeles domain (Figures 11.A through 11.D): 

• Variations occurred in the coastal zones 1 and 2 (white and blue dots) relative to one 

another, such that in July, zone 1 (white) was at its widest, and zone 2 (blue) at its 

narrowest (indicating a large temperature gradient near the coastline), although in 

September, zone 1 was nearly nonexistent and zone 2 as at its widest extent (indicating 

smaller temperature gradients near the coast and the penetration of a relatively more 

uniform air mass farther onshore in September). 

• Zone 3 (green) was relatively unchanged in extent throughout the four months, 

although its boundaries and shapes changed from one month to another. 

• Zone 4 (yellow) was smallest (narrowest transition zone) in June, indicating a sharper 

transition in the climate between the west and east basins, but became wider in August 

and September, thus suggesting a milder (smaller gradient) transition from the west 

basin to the eastern one. 

• Zone 5 (red) in the IE was large and relatively unchanged in June through August, but 

became relatively smaller in September. 
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Figure 11(A-D): Current-Climate, Observations-Based Coarse-Level Intraurban 
Variability in Temperature – Los Angeles Region 

 

Observational DH/temperature zones: Synthetic June (A), July (B), August (C), and September (D) in the 

Los Angeles region. Quantiles from coolest to warmest: white, blue, green, yellow, and red. 

San Francisco Bay Area (Figures 12.A through 12.D): 

• In general, there was less month-to-month variation in the spatial patterns of 

temperature zones in the San Francisco Bay Area relative to those in the Los Angeles 

region. 

• Some month-to-month variations could be seen in the East Bay (especially in the area 

from Richmond to San Leandro) in terms of the relative spatial extent of zones 1 and 2 

(white and blue dots). 

• There were some changes near the southwestern part of the domain, but did not occur 

in urban areas. 

• Zone 3 (green) was relatively unchanged through the months, except for a notable 

difference in August (Figure 11.G) where this zone extended to the southeast along the 

eastern hills in San Jose. 

• Similarly, zone 4 (yellow) was relatively unchanged except for August when it is at its 

narrowest. 
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Figure 12 (A-D): Current-Climate, Observations-Based Coarse-Level Intraurban 
Variability in Temperature – San Francisco Bay Area 

 

Observational degree hours/temperature zones: Synthetic June (A), July (B), August (C), and 

September (D) in the San Francisco Bay Area. Quantiles from coolest to warmest: white, blue, green, 

yellow, and red. 

Source: Altostratus Inc. 

3.2 Modeling Results and Characterizations 

3.2.1 Current Climate 

Atmospheric modeling with the study-modified uWRF was undertaken to evaluate intraurban 

variations in microclimate. Figure 13 provides a random example snapshot from the analysis of 

model results for current climate (2013—2015) for the Los Angeles and San Francisco Bay 

Area regions (Figures 17.1 through 17.36 in Appendix B provide a complete set of results and 

additional information for other hours). 

The example in Figure 13, below, represents degree-hour (DH) totals for all hours in the given 

intervals (in units of °C·hr), that is, total degree-hours over 15 days of 24 hours in each given 

interval. The graphs are plotted with 500 DH spacing relative to a reference value of 1000 DH. 

The range is 1000 to 12000 DH. 
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Figure 13: Model Results Snapshot for Current Climate for the Los Angeles Region 
and San Francisco Bay Area  

 

Intervals 1—7, 2015, Los Angeles region, DH total, all hours per 15 days, based on 2-m air 

temperature, uWRF/modUCM, 500 DH spacing relative to a reference value of 1000 DH. 

Range 1000 to 12000 DH (ºC·hr). 

 

Intervals 1—7, 2015, San Francisco Bay Area, DH total, all hours per 15 days, based on 2-m air 

temperature, uWRF/modUCM2, 500 DH spacing relative to a reference value of 1000 DH. Range 1000 to 

12000 DH (ºC·hr). 

Source: Altostratus Inc. 
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3.2.2 Improved Model Performance 

One of the objectives in this project was to improve meteorological-model performance by 

applying study-modified and recent improvements in urban parameterizations and 

representations in the atmospheric and land-surface modules of the urbanized WRF modeling 

system. The goal was to reduce errors in current and future weather forecasts for the electric 

system as well as to develop finer-scale and more accurate intraurban climate zones. As 

discussed in the introduction to this report, an error of 1.8°F (1°C) is equivalent to ~500—

1,000 megawatts (MW) of generation, systemwide, in the California Independent System 

Operator service territory (CAISO 2007; Davis et al. 2004; Herter et al 2005). Thus, even 

small, sub-degree improvements in the forecast can translate into considerable savings in 

generation, namely, more accurate allocation of resources. 

Modifications were carried out in this study to further improve model performance beyond the 

current capabilities of the WRF modeling system. As introduced earlier in the report, three 

configurations, or states, were established to track incremental improvements in performance: 

(1) a reference meteorology state, which is obtained by running the WRF modeling system as 

commonly done by meteorological modelers and forecasters, without invoking any urban 

parameterization, (2) a second state obtained by running WRF with the standard urban 

parameterizations as often done by urban-climate modelers, and (3) a third state obtained by 

running urban WRF with the Altostratus Inc. study-specific modifications to input (bottom-up 

approach), parameterizations, and model as discussed elsewhere in this report. 

Table 9 and Table 10 summarize the improvements in WRF model performance using the 

Altostratus Inc.-modified version of uWRF in this study. The tables show improvements in 

model performance for the most important parameter in this study, air temperature, for the 

San Francisco Bay Area and Los Angeles regions, respectively. In each table, column 1 

provides the year and interval (two-week intervals discussed in Section 2.3) and columns 2—5 

are the metrics for the reference state. The metrics include mean bias and mean error 

computed for each of T2 and Tair. Both of these temperatures are at 2 m (6.5 feet) above 

ground level, but computed in different manners. T2 is computed based on surface 

temperature and a vertical heat-transfer coefficient in the atmosphere, while Tair is computed 

by interpolating between surface temperature and the prognostic temperature at the lowest 

level of the atmospheric model. Hence, Tair can be thought of as being more representative of 

a four-dimensional prognostic temperature field that also includes the effects of heat transport 

from one area to another, whereas T2 is more representative of a diagnostic air temperature. 

Columns 6—9 and 10—13 represent the changes (relative improvements) in these metrics as a 

result of applying uWRF (urban parameterizations). Columns 6—9 show improvements in 

performance for the standard uWRF relative to standard nonurban WRF. Columns 10—13 

show the improvements in model performance using the Altostratus Inc.-modified uWRF 

relative to the standard nonurban WRF. The tables show that the Altostratus modifications to 

uWRF have resulted in marked improvements in performance over both the standard 

nonurban WRF and the standard uWRF model (also see Figure 14 and Figure 15, discussed 

below). 

The modeling results suggest that T2 is the better representative of temperature in the Los 

Angeles domain, and that Tair is the better representative in the San Francisco Bay Area and, 
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as such, each will be used accordingly in this performance evaluation. Thus, as can be seen in 

columns 10—13 of the tables, the modifications and modeling in this study improved WRF 

performance as follows (for mean bias, changes of over 100 percent in the tables mean a 

switch in sign relative to the reference state, but is reported as 100 percent below): 

• For the San Francisco Bay Area domain: whereas the standard WRF-urban improves air 

temperature mean bias by 2—100 percent and mean error by 0—12 percent relative to 

the standard nonurban WRF, the Altostratus-modified WRF-urban improves mean bias 

by 19—100 percent and mean error by 2—46 percent relative to standard nonurban 

WRF. This is more than double (in some cases almost four times better than) the 

improvement relative to the standard WRF-urban. 

• For the Los Angeles domain: whereas the standard WRF-urban improves air 

temperature mean bias by 27—100 percent and mean error by 5—21 percent relative to 

the standard nonurban WRF, the Altostratus-modified WRF-urban improves mean bias 

by 45—100 percent and mean error by 10—33 percent relative to standard nonurban 

WRF. Again, this is about double the improvement relative to the standard WRF-urban. 

In absolute terms, these improvements are as follows:  

• The reductions in the temperature mean bias for the San Francisco Bay Area domain 

are between 0.7°F and 3.4°F (0.4°C and 1.9°C), and for mean error, the reductions are 

between 0.1°F and 3.2°F (0.06°C and 1.8°C).  

• For the Los Angeles region, reductions in the temperature mean bias range from 1.3°F 

to 2.6°F (0.77°C to 1.46°C), and the reductions in the mean error range from 0.5°F to 

1.44°F (0.3°C to 0.8°C).  

Thus, in the context of the aforementioned equivalence of 1°C ≈ 500 – 1,000 MW, the 

improvements in model performance, that is error reduction, are quite noteworthy (even 

though these are local, and not systemwide effects).  

Table 9: Model Performance Improvements Using Modified, Customized uWRF in 
Greater San Francisco Bay Area 

 

Source: Altostratus Inc. 
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Table 10: Model Performance Improvements Using Modified, Customized uWRF in 
Greater Los Angeles Area 

 

Source: Altostratus Inc. 

Figure 14 and Figure 15 depict an example of model performance evaluation (to quantify 

performance improvements and forecasting accuracy) at the locations of mesonet stations in 

each study domain. The change in temperature forecast error is given as a percent of the 

reference-state error at each weather station. Figure 14 shows an example of improved 

forecasting in the Los Angeles region (example is for 2013, interval 4). In this case, model 

performance worsens at a very small number of stations (6). At all other stations (225), 

performance improves considerably. Note that while the scale in the figure is from -100 

percent to +100 percent, the actual range in this example is -72.9 percent to +44.8 percent. 

Figure 15 shows an example of improved forecasting in the San Francisco Bay Area (example 

is for 2013, interval 1). In this case, model performance improves dramatically at 150 stations, 

but worsens at a small number of stations (10). The actual range is -80.2 percent to +88.9 

percent. 

Figure 14: Improved Forecasting Example in Los Angeles Region 

 

The change in error is given as a percent of reference-state error at each station. Yellow squares 

represent the locations of EPW weather-file stations (used in existing building energy modeling) in each 

region. 

Source: Altostratus Inc. 
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Figure 15: Improved Forecasting Example in San Francisco Bay Area 

 

The change in error is given as a percent of reference-state error at each station. Yellow squares 

represent the locations of EPW weather-file stations (used in existing building energy modeling) in each 

region. 

Source: Altostratus Inc. 

3.2.3 Development of Fine-Scale Temperature Zones Based on Model Results 

The current-climate temperature zones (discussed in Section 3.1.6) were created based on 

observations from mesonet and metar stations networks. The future-climate zones, discussed 

here, were developed based on both observations and model results from the urbanized WRF, 

as discussed earlier. Current climate zones based on model also were generated for reference 

purposes and for characterizing the changes into the future. In the following sections, the 

general characteristics of model climate zones are presented. 

To avoid potential issues with bias (Sun et al., 2015) when computing future-climate conditions 

based on present-day climate-model results, this study mapped the changes (perturbations) 

obtained from the uWRF-downscaled simulations onto observed current-climate conditions, 

namely the averages of 2013—2015 for each synthetic month. In other words, this was similar 

to the concept of relative reduction factor used in air quality modeling of attainment of the 

eight-hour ozone standard, except (1) it was applied here to temperature (not ozone), and (2) 

it was not a reduction. It was also similar to the approach used in bias-correcting climate 

models (Bruyere et al., 2014), one of which was used in this study (CCSM4). This will also be 

discussed in the following sections. 

Similar to Sun et al. (2015), who found that the best temperature descriptor in the Los Angeles 

region was a combination of 2/3 surface temperature and 1/3 air temperature, this study 

showed, as discussed above in Section 3.2.2, that the variable T2 from the uWRF model was 

the better indicator (producing better MPE in the Los Angeles region) than air temperature. On 

the other hand, the modeling also shows that air temperature (4-D prognostic temperature) is 

the better indicator in the San Francisco Bay Area, Fresno, and Bakersfield regions. Thus, 

these different temperature indicators were used according to their corresponding regions in 

this analysis. 

At the time scales and spatial resolutions of most global climate studies, including those of the 

Intergovernmental Panel on Climate Change (IPCC), the tendencies in temperature are 

generally monotonic and positive, that is, temperature tends to increase with year and higher 
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representative concentration pathways (RCP), which are greenhouse gas concentration 

scenarios adopted by the IPCC. However, this study examined much finer spatiotemporal 

scales, that is kilometer-scale intraurban and intra-seasonal, hourly temporal resolutions. As 

such, perturbations of different signs around the generally increasing temperature mean 

became noticeable. That is, at the shorter time intervals and the finer resolutions, both 

increases and decreases in temperature occurred (compared to present conditions). This was 

seen, for example, in Table 11 as discussed next. Furthermore, when accounting for the 

effects of changes in urban land-use in future years (in addition to changes in climate) which 

was not often done in climate studies, a certain amount of cooling also occurred, because of 

the introduction of urban vegetation canopy cover, which in some cases was higher than 

vegetation cover in the nonurban surroundings that may have included desert, rangeland, or 

agriculture. 

3.2.4 Threshold Exceedance 

As there are several ways to evaluate intraurban variability in climate under current conditions 

and its change in the future, one simple indicator to begin the analysis with is temperature 

exceedance above some threshold. For example, a threshold of 95°F (35°C) has been used by 

utilities and researchers alike, such as Sun et al. (2015), to identify excessive heat events and 

to assess energy demand—thus it is used here as an example to demonstrate changes in the 

temperature field.  

To do so, the number of stations (mesonets and metars) with 15-day average maximum daily 

temperature (~1500 PDT) greater than 95°F (35°C) was computed. For each of the time 

intervals one through seven listed in Table 11, in each year, the 15-day average of the 

maximum daily temperature was computed at each station, and if that average exceeded 95°F 

(35°C), then it counted as one station above the threshold (thus this 15-days basis is a more 

stringent criterion than computing exceedance as number of days, that is on a daily basis). 

Then, the total number of stations above this threshold was calculated and referred to as 

exceedance in the following discussion. 

This is summarized in Table 11, where the values for current are based on observational 

analysis, that is, averages over years 2013—2015 for stations with valid observations (the 

results at each station were weighted by the number of hours with valid observations). The 

values for years 2050 and 2100 were computed using the bias-corrected approach discussed 

above; they were calculated by adding perturbations predicted by the model (uWRF) to the 

observations in the current climate. This was a unique approach (and unlike other studies 

where the absolute fields from model were used for the base year as well) in that it minimized 

potential errors from model bias. Thus, equation 6 was applied at each station location for 

every hour: 

 Tfuture   =   Tpresent_obs   +   (Tfuture_model – Tpresent_model)  (6) 

where the difference computed by the last two terms (in parentheses) is the perturbation in 

temperature obtained from the fine-resolution, modified uWRF model. 

Figure 16 shows a small sample for this analysis for interval 6 listed in Table 11. Weather 

stations where the 15-day average of daily maximum temperature is greater than 95°F (35°C) 

are color-coded in red. The purpose of this figure is to show, spatially, where the exceedances 



 

 

38 

listed in Table 11 occurred in each study domain (Figures 18.A through 18.J in Appendix B 

provide additional information for other intervals and years). 

Table 11: Stations with 15-Day Average Daily Maximum Temperature > 35°C  

 

Int 1: June 1—15, Int 2: June 16—30, Int 3: July 1—15, Int 4: July 16—31, Int 5: August 1—15, Int 6: August 
16—31, Int 7: September 1—15. 

Source: Altostratus Inc. 
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In the Los Angeles region (top two images in Figure 16), observational data from the 

monitoring networks indicated that in the current climate, only a few scattered areas (12 

stations) in the IE (east basin) were above the threshold. These sparse areas were located in 

the eastern and southern parts of the EB. In the San Gabriel Valley, only one station exceeded 

the threshold (located in Azusa). Except for these stations, the Los Angeles domain, overall, 

including east and west basins, as well as the San Fernando Valley, was below the threshold. 

In the 2050 RCP 4.5 projection of this interval (top right, Figure 16), a much larger area is 

above the threshold, including all of the IE, areas in San Gabriel Valley, Glendale, Pasadena, 

and central and western San Fernando Valley (112 stations above the threshold). In the 2100 

RCP 4.5 projection of this same interval (not shown), the areas above the threshold were 

similar to those in 2050, but with a smaller number of stations above the threshold (86). In 

the 2050 RCP 8.5 projection of interval 6 (not shown), the spatial pattern of areas exceeding 

the threshold was similar to that of the 2050 RCP 4.5 projection, with most of the exceedances 

in the IE, but with relatively more stations over the threshold (26 instead of 12). Finally, in the 

2100 RCP 8.5 projection of this interval (not shown), exceedances were throughout the IE 

(east basin), San Gabriel Valley, San Fernando Valley, and surrounding areas. The number of 

stations exceeding the threshold in this scenario was 143. In this scenario also was the first 

appearance of exceedances in the quasi-coastal areas of the west basin, including in areas 

that are in generally mild climates, such as cities of Bellflower, Paramount, La Mirada, Whittier, 

Yorba Linda, Mission Viejo, and Irvine. 

Figure 16: Exceedances Above 95°F (35°C), Los Angeles Region and San Francisco 
Bay Area 

 

 

Top row, Los Angeles region; Bottom row, San Francisco Bay Area. Stations with 15-day average maximum 

temperature > 35°C are color-coded red. Left: Interval 6 (August 15—31 years 2013—2015 averages based 

on observations; Right: Interval 6, year 2050 RCP 4.5 (based on observations + modeling).  

Source: Altostratus Inc. 
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In the San Francisco Bay Area domain, and as seen in the bottom of Figure 16, the current 

conditions (based on observational data) exhibited no exceedances above the 35°C threshold. 

This is still the case in the 2050 RCP 4.5 projection of this interval (bottom right of Figure 16). 

In the 2100 RCP 4.5 projection (not shown) a very small area (two stations) exceeded the 

threshold in the city of Tracy. In the 2050 RCP 8.5 projection, as in the 2050 RCP 4.5 case, no 

exceedance above the threshold existed in the San Francisco Bay Area. However, in the 2100 

RCP 8.5 projection (not shown), a large area (20 stations) was above the threshold, including 

cities of Tracy, Antioch–Discovery Bay, Martinez, Concord-Clayton, Pleasant Hill, Walnut Creek, 

Danville, Blackhawk, Dublin-Livermore, and Morgan Hill (also see Figure 18 in Appendix B). 

3.2.5 Comparison with CEC Climate Zones 

In this section, the probabilistic fine-resolution intraurban temperature zones (developed in 

this study) are compared to the existing climate zones adopted by the CEC (16-zone scheme 

discussed in Chapter 1). The goal is to demonstrate the potential for improvement by possibly 

redrawing the boundaries of the current CEC climate zones or by considering new zones that 

are finer in scale (as discussed in the following sections). To provide a basis for comparisons, 

fine-scale temperature zones are first discussed here based on observational data from 

existing mesonet and metar networks in each area. Then, the temperature zones based on 

model will be discussed later in following sections. 

In Figure 17, examples of all-hour averages in temperature are presented (the same exercise 

can be carried out for peak hours, minima, or any other selected time interval and some 

examples are shown in following sections). Figure 16 shows observational synthetic months 

2013—2015 (units of DH/day, non-threshold, and the ranges are provided in a caption 

beneath each figure). Figure 17.A through Figure 17.D show the Los Angeles region; Figure 

17.E through Figure 17.H are for the San Francisco Bay Area. In each figure, the colored 

Thiessen polygons reflect the DH/day metric for each station location, while the thick black 

lines show the existing CEC building climate zones superimposed on the domain of interest. 

Arrows indicate the difference (°C) between all-hour average temperatures of (across) the 

indicated CEC climate zones (obtained from CZ weather files for corresponding climate zones 

and month). The CEC climate zones are numbered on each figure, corresponding to the 

weather files that represent them. 

To evaluate whether the intraurban variability in temperature at the finer scales are 

meaningful, the variations in all-hours temperature (computed from DH/day) were compared 

to the inter-zone temperature differences across each CEC climate zone for the month of 

interest. The arrows across each pair of CEC climate zones (in Figure 17) indicate the 

differences between the all-hours temperature averages (for the month) of each of the 

indicated pairs of climate zones. In other words, the arrows show the difference across the 

boundaries of each CEC climate zones pairs so it can be compared to the magnitudes of 

intraurban temperature variability within each of the two zones in the pair. These differences 

were computed by averaging all-hours temperatures in the weather files corresponding to 

each zone for the month in question. Table 12 lists the all-hours averages of air temperature 

in each CZ file for the given region and month. 

Thus, while Figure 17 (A through H) shows the spatial characteristics of the intraurban (intra-

zone variations) relative to inter-zone variations (across CEC climate zones), Table 13 and 



 

 

41 

Table 14 provide the ranges of these temperature differences for the Los Angeles and San 

Francisco Bay Area domains. In each of these two tables, the top row identifies the CEC 

climate zones across which the differences are calculated, and within which the ranges of 

intraurban (intra-zone) variability are given for each month.  

Table 12: All-hours Average Temperature in CEC Building Climate Zones  

 

Temperatures are °F averaged from climate-zone weather files of corresponding zone and month. Only 

zones of interest of the 16 California climate zones are listed in this table. 

Source: Altostratus Inc. 

To explain how Table 13 and Table 14 are interpreted, the following random example is 

provided for the yellow-highlighted cells in Table 13. In this example, for the month of June in 

the Los Angeles domain, the value 0.52°C (in row 3) is the difference between the all-hours 

average temperature (in June) in CEC zone 6 and the all-hours average temperature in CEC 

zone 8 (as indicated by the two-way arrow in row 1). Thus the value 0.52 is positioned at the 

center of the cell, midway between the two ends of the arrow to indicate that this is a cross-

boundary temperature difference, in this case, across CEC climate zones 6 and 8. Next, the 

two values 2.36 and 3.54 in row 4 are the intra-zone (intraurban) variations within each 

respective CEC climate zone, computed from mesonet and metar stations in the area. That is, 

2.36°C is the range of variations in all-hours temperature average within CEC zone 6, and 

3.54°C is the range of variations in all-hours temperature average within CEC zone 8. Thus in 

this example, the intra-zone (intraurban) variability in all-hours temperature averages within 

each of the two CEC zones (6 and 8) is several times larger than the cross-boundary 

temperature difference of 0.52 (4.5 to 6.8 times larger, respectively), suggesting that there is 

reasonable basis to redraw the existing CEC climate zone boundaries or introduce finer-

resolution zones in this area, which was one objective of this study. In a similar manner, 

comparisons of row 4 to 3 (for June), row 7 to 6 (for July), row 10 to 9 (for August), and row 

13 to 12 (for September) are repeated for each set of temperature zones. It can be concluded 

that except for a very few cases, that the intraurban fine-scale variations in temperature 

(within each CEC climate zone) are of the same magnitude or substantially larger than the 

inter-climate zone (across CEC zones) variations in temperature. Thus, this justifies at least 

some consideration in the future for the use of revised summer climate zones such as the ones 

discussed here. 

Furthermore, because there is large intraurban variability in temperature (intra-zone), for 

example, up to ~14.4°F (8°C) in the Los Angeles domain and up to ~9°F (5°C) in the San 

Francisco Bay Area domain, there is potential (at least in theory) to better allocate resources 

meaningfully, if utilities considered such intraurban temperature zoning in their forecasts and 
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long-term planning for electricity. For example, using data from Garcia-Cerrutti et al. (2010), 

the daily peak demand (megawatts, MW) sensitivity to daily peak temperature (max631)3 in 

investor-owned utilities4 service territory is computed as follows (for years 2008—2010) on the 

average: 

 For PG&E: 360 MW/°F (648 MW/°C) 
 For SCE: 320 MW/°F (576 MW/°C) 

 For SDG&E: 63 MW/°F (113 MW/°C) 

Thus, the intraurban (intra-zone) temperature variability discussed above, and shown in rows 

4, 7, 10, and 13 of Table 13 and Table 14, is very important and should be accounted for in 

some fashion in planning and forecasting for the electric system. Other analysis (Davis et al., 

2004) estimates even larger sensitivities for the California Independent System Operator peak 

temperature versus demand: 1,000 MW/1°C peak temperature (but not based on 631). Thus, 

the improved accuracy in allocating generating resources could actually by twice as large from 

improved model performance and establishment of new temperature zones as proposed here. 

Table 13: Comparison of Inter- and Intra-Zone Temperature Variability in Los 

Angeles Domain  

 

In °C based on observational data from mesonet and metar networks. 

Source: Altostratus Inc. 

  

 
3 max631 temperature is defined by Garcia-Cerrutti et al. (2010) as 60 percent of today’s peak temperature + 30 

percent of yesterday’s peak temperature + 10 percent of peak temperature from two days prior. 

4 Investor-owned utilities (IOU) are managed by the California Independent System Operator and comprised of 

PG&E, SCE, and SDG&E) 
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Table 14: Comparison of Inter- and Intra-Zone Temperature Variability in San 
Francisco Bay Area Domain  

 

In °C based on observational data from mesonet and metar networks. 

Source: Altostratus Inc. 

Figure 17: Inter- and Intra-Zone Differences in All-Hours Temperature Averages 

(Los Angeles Region and San Francisco Bay Area) 

 

Range (light color to dark): 376—631°C·hr/day; each interval change in color is equivalent to a change of 

4.1°F (1.18°C) in all-hour average temperature for June. 

 

Range (light color to dark): 392—637°C·hr/day; each interval change in color is equivalent to a change of 

2.03°F (1.13°C) in all-hour average temperature for July. 
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Range (light color to dark): 395—654°C·hr/day; each interval change in color is equivalent to a change of 

2.16°F (1.20°C) in all-hour average temperature for August. 

 

Range (light color to dark): 345—642°C·hr/day; each interval change in color is equivalent to a change of 

2.47°F (1.37°C) in all-hour average temperature for September. 

 

Range (light color to dark): 215—591°C.hr/day; each interval change in color is equivalent to a change of 

2.15°F (1.75°C) in all-hour average temperature for June I, Range: 307—601°C.hr/day; each interval 

change in color is equivalent to a change of 2.45°F (1.36°C) in all-hour average temperature for July (F). 
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Range (light color to dark): 357—590°C·hr/day; each interval change in color is equivalent to a change of 

1.94°F (1.08°C) in all-hour average temperature for August (G), Range: 64—576°C·hr/da); each interval 

change in color is equivalent to a change of 4.27°F (2.37°C)in all-hour average temperature for 

September H. 

Source: Altostratus Inc. 

3.2.6 Temperature Changes from Current to Future Climates 

This section provides a discussion of how the temperature field (based both on observations 

and modeling) changes in future climate and land use. This can also form the basis for 

proposing new intraurban climate (temperature) zones for the study areas, such as the San 

Francisco Bay Area and Los Angeles region. Figure 18 (A through L), below, shows snapshot 

examples from this analysis as averages over JJAS (other times, areas, and years are shown in 

Figures 19.1 through 19.36 in Appendix B). 

Of note: 

• The temperature fields presented in Figure 18 (and 19 in Appendix B) resulted from 

applying the Altostratus-modified uWRF model (modifications discussed earlier) in 

dynamically downscaling the CCSM4 climate-model fields, running the localized 

simulations with uWRF, and accounting for the effects of both changes in climate and in 

land use in the future (the latter based on the USGS LUCAS projections presented 

earlier). 

• To develop the perturbations in 2050 or 2100 relative to current climate, the same RCP 

scenario was used (in the model) for current years (for example, 2015) as for the future 

years. To compute, for instance, the changes in 2050 RCP 4.5 relative to current 

climate, the model used current years, 2015 in this case, with a corresponding RCP of 

4.5 as the basis to compute the differences. This ensured consistency across the 

scenarios and years when quantifying changes relative to current conditions. 

• The temperature field plotted in these figures is in units of degree-hours per hour 

(DH/H), hence it represents an all-hours averaged temperature (°C) including all day 

and night hours throughout the calculation periods (intervals). The DH/H metrics 

represents long-term averages in each interval and thus provides a probabilistic 

assessment of the changes in intraurban temperature zones (along with perturbations 

and standard error to be discussed further below). 
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The examples shown in Figure 18 are changes by the year 2050 relative to current climate, for 

RCP 4.5 and 8.5, and for all hours, 0300 PDT, and 1500 PDT averages over JJAS. These are 

model-predicted air temperature changes for the Los Angeles region and the San Francisco 

Bay Area. The light blue background in each figure depicts the urban land-use extent at the 

corresponding year (2050 in this example) and the small circles represent the locations of the 

mesonet stations where the model results are computed. 

It is important to recall that these are changes (such as warming) predicted at each weather 

station location in 2050 or 2100 relative to its conditions in current climate. Thus, this is 

relative local change at each station location, or area, not a change across different regions. In 

other words, if a certain location appears to have larger warming than another (as shown in 

the figures), that does not necessarily mean that the location has become warmer (in absolute 

terms) relative to other areas but, rather, that it warmed relatively more than those other 

locations. 

Some observations on the spatial characteristics of temperature changes (across all periods 

and including all-hours, 1500 PDT, and 0300 PDT averages) are as follows: 

Los Angeles region (some examples shown in Figure 18 A, B, E, F, I, and J): 

• The higher elevations (San Gabriel, San Bernardino, San Jacinto, and the Santa Ana 

Mountains) are consistently impacted by increased temperatures, but to varying 

degrees. This is mainly because of the shallower boundary layer at those elevations. 

Thus, changes in temperature are more noticeable in those areas, because of more 

limited vertical mixing. In 2050 (relative to current climate), there is a more pronounced 

contrast between the warming at the higher elevations and warming elsewhere in the 

domain. In 2100, that contrast becomes either moderate or nonexistent in some cases, 

indicating a more mixed temperature-change field in 2100 relative to 2050, possibly as 

a result of increased venting. 

• The northern mountains range (San Gabriel–San Bernardino Mountains) and areas 

nearby warm up more, relative to other parts of the domain, at the times of the 

nighttime minimum temperature than during the daytime. 

• The coastal areas see warming under the RCP 4.5 scenario in 2050 and 2100 (relative 

to current climate), but no substantial warming in the RCP 8.5 scenario for either 2050 

or 2100. Again, it is possible that this is a result of a reverse coastal cooling effect as 

discussed in Lebassi et al. (2011) and Taha (2017). 

• Compared to warming in other parts of the domain, the west basin’s (WB) semi-coastal 

and coastal areas warm more during the night than during the day. 

• The EB/IE areas see warming in all scenarios but with different magnitudes compared 

to other areas in the domain. The eastern and southern parts of the IE warm up 

consistently more than the rest of the IE or relative to other areas in the domain. 

• San Fernando Valley (SFV) and San Gabriel Valley (SGV) generally see increased 

temperatures except for RCP 4.5 in 2050 (relative to current climates). In certain cases, 

such as RCP 8.5 2100, SFV sees larger local warming than SGV. 

• The WB generally warms up in all cases, but to varying degrees. In RCP 4.5 2050, the 

WB sees larger warming than EB/IE and other areas surrounding the WB. 
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• The San Pedro–Long Beach–Whittier–East Los Angeles (SLWELA) heat plume is 

generally warmer than its surroundings in the rest of the WB through all scenarios. In 

some cases (RCP 4.5 2100 and RCP 8.5) the SLWELA plume warms up more than the 

rest of the WB and also sees more warming than in SFV and SGV. 

San Francisco Bay Area (some examples shown in Figure 18 C, D, G, H, K, and L): 

• RCP 4.5 for year 2050 is the only scenario where the Santa Clara Valley proper (floor) 

warms up the most in the domain. In all other scenarios and years, it is the mountains 

surrounding the valley that warm up the most. In these conditions, however, there is a 

U-shaped warming pattern (following the valley’s outline) with increased temperatures 

in the NW—SE direction, away from the bay and toward Gilroy, especially during the 

times of the daily maximum temperature. 

• In most scenarios, the eastern and southern parts of the San Francisco peninsula warm 

up more than its western part, as the latter is influenced by proximity to the Pacific 

Ocean. 

• The area from San Francisco International airport (SFO) to Palo Alto warms up 

dramatically in various scenarios, particularly during the times of the daily maximum 

temperature. 

• Other areas that warm up considerably in this domain include Pittsburg-Antioch–

Discovery Bay, East Concord, and Walnut Creek. 

• Areas that warm up the least are the western parts of the San Francisco peninsula and 

the Richmond-Berkeley-Oakland strip closest to the bay, because they are influenced by 

the wind flow pattern from the ocean and the Golden Gate, respectively. 

• The Tracy-Manteca area, as well as San Rafael, often see larger warming than some 

other parts of the domain 

Table 15 provides a summary of domain-wide ranges of temperature change. In coastal areas 

(Los Angeles region and San Francisco Bay Area), a few small negative values in the table may 

be attributable to the reverse coastal cooling effect that is a consequence of increased inland 

air temperature (Taha 2017; Lebassi et al., 2011), as discussed above. Note that there are no 

negative changes in temperature in the Fresno region. It is also to be noted that (1) the 

cooling (negative values) is small compared to the warming, as seen in Figure 18 (and Figures 

19.1 through 19.36 in Appendix B), and (2) that it is limited to smaller areas, although the 

warming is dominant throughout the domains. 

Results in Table 15 also indicate, in general, that the minimum temperatures rise relatively 

more than the maximum daily temperatures, which is in line with most current research 

findings. However, it’s to be borne in mind that the results here are from a much higher-

resolution observational-modeling characterization compared to other efforts. As shown in 

Figure 18 (and 19.1 through 19.36 in Appendix B), and in the summary notes above, certain 

areas (intraurban variations) in the domain indeed are affected by larger nighttime warming. It 

can also be seen in Table 15 that, in general, temperature increases with RCP scenario and 

year. Finally, the largest range of warming among the three regions is seen in the Fresno 

domain. 
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Table 15: Range of Temperature Change for Years 2050 and 2100 Relative to 
Current Climate  

 

Domain-wide; DH/H in °C as averages over June, July, August, and September.  

Source: Altostratus Inc. 

This table corresponds to the ranges shown in Figures 19.1 through 19.36 in Appendix B, as 

well as the examples shown in Figure 18. 

Figure 18: Changes in Model Temperature Field Averaged for Four Months 
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Temperature (DH/H) differences (2050 – 2015) averaged for June, July, August, and September for all 

hours, 0300 PDT, and 1500 PDT. Left column: RCP 4.5; Right column: RCP8.5. Other intervals and year 

2100 differences are provided in Figure 19 in Appendix B. 

Source: Altostratus Inc. 
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3.2.7 Mean Departures from California Energy Commission Climate-Zone 
Stations 

3.2.7.A Mean Departures from California Energy Commission Climate-Zone Stations 

in Current Climate 

In this section, the probabilistic intraurban variability in climate (focusing on temperature) is 

characterized in terms of mean departures (from values at handshake points) and 

perturbations (standard error) around the mean departures. 

In Section 3.2.5, absolute observed temperatures at each station in the domain were used to 

construct synthetic-month DH/day metrics and compute all-hours average temperatures at 

each station and for each synthetic month. The ranges of these all-hours temperature 

averages were then compared to temperature from CZ weather files representing CEC climate 

zones. That is, the intra-zone variations in all-hours averages were compared to inter-zone 

(cross-boundary) all-hours average differences in temperature across CEC climates zones. 

In this section, the analysis for current climate still relied on observational data from metar 

and mesonet stations, but temperature differences (not absolute) were used to characterize 

intraurban variability relative to CEC weather stations (as an example of handshake or 

reference points). That is, the observed hourly temperatures at a selected CEC station and at 

each mesonet and metar stations in the domain were used to develop the correlations 

discussed here. Note that the temperature at the CEC stations (used in these calculations) 

were the actual hourly observed temperatures corresponding to the periods of interest, not 

temperatures from a CZ weather file as was done in Section 3.2.5. 

Thus, this section presents the development of correlations among each and all mesonet 

station locations and the CEC climate-zone stations (three CEC stations in the Los Angeles 

region, and two in the San Francisco Bay Area), used here as handshake points. The 

correlations were developed as mean departures from the CEC-stations values and a 

perturbation (standard error) around that mean departure, as defined below in equations 7 

and 8. The handshake points, of course, could be any other point or metrics of interest—here 

the project used the CEC climate-zone stations to show the improvements targeted in this 

study as well as for comparison with results presented in Section 3.2.5.  

The first step in developing the temperature correlations among various weather stations and 

the handshake points and in developing the intraurban microclimate zones was to split the 

variables (temperature differences) by solar radiation. This was done to isolate periods of 

cloudiness throughout the domains or during times of coastal stratus (in the San Francisco Bay 

Area and Los Angeles domains) and account for them separately when developing the 

correlations. The daily accumulated solar radiation was calculated (in this project) from sunrise 

to 1500 PDT each day at weather stations reporting solar radiation observations (these 

stations were shown in Figure 11). This analysis resulted in the ordering of mesonet stations 

from inland-most to coastal-most locations, focusing on stations in urban areas (analysis not 

shown in this report). 

Following this step, correlations were developed at each of the mesonet stations locations in 

each study region. The correlations were developed in each temperature zone relative to 

handshake points, that is metars or CEC climate-zone stations, and were grouped by 
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accumulated solar radiation in each temperature zone and for each synthetic month (that is, 

June, July, August, and September across years 2013—2015). 

The correlations discussed in this section were based on observations from the monitor 

networks in the study regions. In following sections, similar correlations are presented based 

on modeling of current years, future climates, and land-use scenarios to develop summer 

temperature zones as probabilistic intraurban climate characterizations. The correlations are 

presented here as mean departures and perturbations within each temperature zone relative 

to CEC climate-zone stations. 

Thus, for air temperature: 

𝑇𝑎𝑖𝑟𝑖,𝑧,𝑚,𝑠,𝑡  =   𝑇𝑎𝑖𝑟𝑀𝑧,𝑚,𝑠,𝑡  +   ∆𝑇𝑖,𝑧,𝑚,𝑠,𝑡  +   ∆𝑇𝑖,𝑧,𝑚,𝑠,𝑡
′                (7) 

𝑇𝑎𝑖𝑟𝑖,𝑧,𝑚,𝑠,𝑡  =   𝑇𝑎𝑖𝑟𝐶𝐸𝐶𝑛𝑧,𝑚,𝑠,𝑡  +   ∆𝑇𝑛𝑖,𝑧,𝑚,𝑠,𝑡  +   ∆𝑇𝑛𝑖,𝑧,𝑚,𝑠,𝑡
′                (8) 

where:  

Tair  The forecast temperature, that is, to be characterized at the mesonet station i. 

TairM The temperature averaged over metar stations in a temperature zone (z). Thus, 

this is not only a temporal average over the period t, but also a spatial average 

over the metars located in a temperature zone (z) (see Figures 20.A through 

20.E in Appendix B). 

TairCECn The temperature at each CEC climate-zone station (n), averaged over period t 
(but not averaged spatially—that is, each mesonet station was correlated to one 

CEC station, n, at a time, separately). The CEC stations in the Los Angeles region 

are KLGB, KBUR, and UCRC1 and in the San Francisco Bay Area, they are KOAK 

and KSJC.  

   The mean departure of temperature at the mesonet station i (averaged over t) 
from the mean of the metar temperatures (TairM). 

 ’ Standard error of temperature differences around the mean departure (range of 

temperature perturbations around the mean T). 

n  The mean departure of temperature at the mesonet station i (averaged over t) 
from the CEC station n temperature (TairCECn). 

n’ Standard error of temperature differences around the mean departure (range of 

temperature perturbations around the mean Tn relative to a CEC station n). 

The departure means and perturbations were computed at the 95 percent confidence interval. 

The subscripts in the equations have the following meanings: 

i Station index (ID) of the mesonet station whose variables are correlated to variables at 

metars or CEC climate-zone stations. 

z Temperature zone (1—5), within each study region (see Figures 20.A through 20.E in 

Appendix B), in which the correlations were established, that is, the zone where the 

mesonet stations (i) and metar stations were located (note that CEC climate-zone stations 
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are located throughout the domain and may or may not be in the temperature zone under 

consideration). The temperature zones were developed earlier in this project. 

m Synthetic month (over years 2013—2015), that is, a representative June, July, August, and 

September for which the correlations were established. 

s Accumulated solar radiation at representative stations in the temperature zone being 

considered. Accumulated solar radiation was categorized into ratio ranges of 1—33 

percent, 34—66 percent, and 66—100 percent relative to the highest solar radiation value 

in each region (most often San Bernardino in the Los Angeles area and Livermore/Tracy in 

the San Francisco Bay Area). The goal was to group the correlations into various solar 

heating regimes as indicated by daily accumulated radiation from sunrise to 1500 PDT. 

t The time interval for which the correlations were established—thus t can be the hour of the 

daily maximum temperature (e.g., 1500 PDT), the hour of the minimum (e.g., 0500 PDT), 

or all hours included (full 24 hours per day).  

The same approach was applied to other variables including station pressure, wind speed, 

humidity, and accumulated solar radiation. Equations such as 7 and 8 served as the basis for 

developing finer-scale intraurban probabilistic microclimate zones. These equations describe 

the extent of intraurban climate variability that was not captured by the existing climate zones 

(for example, CEC 16 or 20 climate zones), the magnitude of such variability, and the potential 

improvements that can be attained if such finer-scale zones were adopted in energy planning 

and forecasting for the electric system, which is one of the stated goals of this project. 

Figure 19.A through Figure 19.F represent an example from this analysis for the Los Angeles 

domain (similar analysis was done for other regions). These figures are essentially a graphic 

representation of the equations above (in this example, equation 8). Figure 19 A, C, and E 

depict the mean departure of temperature, that is Tn in equation 8, whereas Figure 19 B, D, 

and F showed the perturbations around these mean departures (standard error), that is, Tn’ 
in equation 8 at the 95 percent confidence interval. These examples are for departures and 

perturbations at the time of the daily maximum temperature for the synthetic month of June 

relative to three CEC stations in the Los Angeles domain, that is, KLGB (A and B), KBUR 

(C and D), and UCRC1 (E and F). These examples are only for accumulated solar radiation 

calculated in the range of 66—100 percent as defined above. For other solar radiation ranges, 

the information is provided in the companion datasets (see description of datasets at the end 

of this document). 

The figures show the large intraurban temperature variability relative to any given CEC station 

currently used in planning or forecasting for the electric system (recall that these were based 

on observations). For example in Figure 19.A, the information provided suggests that relative 

to CEC station KLGB (Long Beach), the coastal stations could be up to 5.4°F (3°C) cooler on 

average at 1500 PDT (in June), but that the rest of the domain is much warmer, for example, 

up to 10.8°F (6°C) warmer in SFV, SGV, EB, and IE. The perturbations around the mean 

departures (Figure 19.B), in this case are relatively small (less than ±1.8°F (±1°C) throughout 

most of the domain) except for a few polygons near the higher elevations with perturbations 

of up to ±2.7°F (±1.5°C) and a single polygon at 8.1°F (4.5°C) (likely an outlier). The 

information on perturbations (standard error) defines the level of confidence in the computed 

departures (at CI 95 percent) and is also of value in probabilistic forecasting. 
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Figure 19: Mean Temperature Departures and Corresponding Standard Errors  

 

Departures and standard errors (C) computed at mesonet stations relative to CEC climate zone stations, 

averaged for the month of June. 

Source: Altostratus Inc. 

Relative to KBUR (Burbank), see Figure 19.C, the coastal areas are up to 7.2°F (4°C) cooler 

and the inland-most areas (IE) are up to 9°F (5°C) warmer. The corresponding standard error 

field (Figure 19.D) shows relatively small values (small perturbations) of less than ±0.9°F 

(±0.5°C) throughout most of the domain, except for a few polygons near the coast and the 

higher elevations where the perturbations reach up to ±1.8°F (±1°C). 

Relative to UCRC1 (UC Riverside), as seen in Figure 19.E, most of the domain is either similar 

to or cooler, except for a few polygons in IE that are warmer. The coastal areas could be up to 

9°F (5°C) cooler and the IE can be up to 5.4°F (3°C) warmer. The standard error (Figure 

19.F) is relatively low in the domain, in the range of ±0.9—1.8°F (±0.5—1°C), except for a 

few areas near the coastline and near the higher elevations where it could be as high as 

±2.7°F (±1.5°C).  
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Based on this and similar analysis for other time periods, stations, and regions, the spatial 

properties of intraurban variability in temperature was defined. This exercise was repeated for 

every month, CEC station, solar radiation range, domain, and time period. Because of the 

large number of figures and data files, they are not included in this report but, rather, in the 

appendixes. 

A large number of figures can be generated to depict the various combinations of solar 

radiation ranges, metar handshake points and CEC reference stations, synthetic months, times 

of day, hourly averages, mean departures of the variables, perturbations around the mean 

(standard error), and so on. To keep the discussion relatively compact, the following sections 

present results relative to only one CEC reference station per domain (KLGB for Los Angeles 

region and KOAK for the San Francisco Bay Area), provide only mean temperature departures 

from the CEC climate-zone stations (perturbations are provided in the appendixes), show 

correlations only for solar radiation range of 67—100 percent, and only for hours 0500 and 

1500 PDT (that is, at the times near the minima and maxima). All times, CEC stations 

reference points and metars, solar radiation ranges, and metrics not shown here are included 

in the companion datasets. 

Thus, while all-hours averages were used in Section 3.2.5 as examples for comparing inter-

zone and intra-zones variabilities, in the following sections the intraurban variations are 

discussed for the averages near the times of temperature minima and maxima. 

Departures at Time of Nighttime Minimum 

Figure 20.A through Figure 20.H depict the mean departures near the time of the daily 

minimum temperature relative to CEC station KLGB (for Los Angeles region) and relative to 

CEC station KOAK (for the San Francisco Bay Area). In the Los Angeles region (Figure 20.A 

through Figure 20.D), the range of mean temperature departures from CEC climate zone 

station KLGB was -16.3°F to +3.1°F (-9.09°C to +1.75°C) in synthetic observational June, 

from -13.4°F to +3.9°F (-7.45°C to +2.20°C) in July, from -16.1°F to +4.6°F (-8.97°C to 

+2.55°C) in August, and from -15.8°F to +3.8°F (-8.80°C to +2.12°C) in September. Thus the 

across-region temperature range was 19.5°F, 17.3°F, 20.7°F, and 19.6°F (10.84°C, 9.65°C, 

11.52°C, and 10.92°C) in synthetic observational June, July, August, and September, 

respectively. In the figures, it is evident that no particular spatial pattern exists (at the time of 

the minimum) across these months. For example, there is no contrast between the western 

and eastern parts of the region, nor in areas such as SFV or SGV.  

In the San Francisco Bay Area (Figure 20.E through Figure 20.H), the range of mean 

temperature departures from CEC climate zone station KOAK was from -6.4°F to +5.6°F 

(-3.56°C to +3.12°C) in synthetic June, from -7°F to +8.7°F (-3.89°C to +4.83°C) in July, 

from -8°F to +4.7°F (-4.49°C to +2.65°C) in August, and from -6.8°F to +1.8°F (-3.82°C to 

+1.00°C) in September. Thus the across-region temperature range was 12°F, 15.7°F, 12.8°F, 

and 8.6°F (6.68°C, 8.72°C, 7.14°C, and 4.82°C) in synthetic June, July, August, and 

September, respectively. As seen in the figures, the areas surrounding the bay were generally 

warmer than areas to the southwest of the domain (coast) and east of the Richmond, 

Berkeley, and Oakland Hills, which was expected around the time of nighttime lows. 
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Figure 20: Current-Climate Mean Departures in Temperature Near Time of Daily 
Minimum Temperature 

 

 

Departures (C) from stations KLGB and KOAK for the Los Angeles region and San Francisco Bay Area, 

respectively, averaged for June, July, August, and September. 

Source: Altostratus Inc. 
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Departures at Time of Daytime Maximum 

Figure 21.A through Figure 21.H depict the mean departures near the time of the daily 

maximum temperature. As before, the examples shown are for synthetic observational months 

in each region (Los Angeles and San Francisco Bay Area) only for accumulated solar radiation 

67 percent—100 percent and relative to only one CEC climate-zone station (KLGB for Los 

Angeles region and KOAK for San Francisco Bay Area). All other times and conditions are 

provided in the appendixes. 

In the Los Angeles region (Figure 21.A through Figure 21.D), the range of mean temperature 

departures from CEC climate zone station KLGB is -9.1°F to +17°F (-5.07°C to +9.48°C) in 

synthetic observational June, -9.9°F to +16.4°F (-5.53°C to +9.16°C) in July, --11°F to 

+15.1°F (-6.15°C to +8.43°C) in August, and -13°F to +12.8°F (-7.24°C to +7.15°C) in 

September. Thus, the across-region temperature range is 26.1°F, 26.4°F, 26.2°F, and 25.8°F 

(14.55°C, 14.69°C, 14.58°C, and 14.33°C) in synthetic June, July, August, and September, 

respectively. These ranges are notably larger than the ones at the time of the temperature 

minimum (discussed above). In general, the range at 1500 PDT is roughly 7.2°F (4°C) larger 

than at 0500 PDT. The figures also indicate that a spatial pattern exists in which the contrast 

between the west and east basins is considerable and much more demarcated. In addition to 

the fact that the IE is substantially warmer than the coastal and quasi-coastal areas in the 

west basin, the SFV and SGV also are much warmer than their surroundings. Areas in the 

central parts of the IE are generally cooler than areas to the north, east, and south parts of IE. 

Another observation is that the range (~26.1°F (~14.5°C)) across the region is relatively 

unchanged for all months, regardless of the lower and upper bounds. In other words, the 

range is shifted up or down from one month to another (at 1500 PDT), but is relatively 

unchanged. 

In the San Francisco Bay Area (Figure 21.E through Figure 21.H), the range of mean 

temperature departures from CEC climate zone station KOAK is -11.9°F to +19.9°F (-6.65°C to 

+11.1°C)  in synthetic June, -11.5°F to +22.8°F (-6.42°C to +12.7°C) in July, -9.8°F to 

+18.5°F (-5.46°C to +10.29°C) in August, and -10.1°F to +13.6°F (-5.65°C to +7.56°C) in 

September. Thus, the across-region temperature range is 31.9°F, 34.4°F, 28.3°F, and 23.7°F 

(17.75°C, 19.12°C, 15.75°C, and 13.21°C) in synthetic observational June, July, August, and 

September, respectively. These ranges are more than double those at 0500 PDT (discussed 

above). As seen in the figures, the reverse of the 0500 PDT pattern is true, that is, the areas 

around the bay are coolest than other areas in the domain (again, this is as expected for the 

time of maximum temperatures). The spatial pattern is relatively similar across the four 

months, in which the warmest areas are found in Palo Alto, southwest Santa Clara Valley, 

Pittsburg–Discovery Bay, East Concord–Walnut Creek, Dublin-Livermore, and Tracy-Manteca. 
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Figure 21: Current-Climate Mean Departures in Temperature Near Time of Daily 
Maximum Temperature 

 

Temperature departure from stations KLGB and KOAK for the Los Angeles region and San Francisco Bay 

Area, respectively, averaged for June, July, August, and September. 

Source: Altostratus Inc. 
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Population-Weighted Departures at Time of Daytime Maximum 

Population-weighted mean departures at the time of the daily maximum were evaluated for 

the current climate (as well as future climates as will be discussed later). For the current 

climate, samples from the analysis are shown in Figure 22 (all other periods are included in 

the appendixes). 

The top two figures show the population-weighted departures for the Los Angeles region and 

the bottom two for San Francisco Bay Area. Figures at left are for synthetic June and at right 

for synthetic August (as examples). Thus, Figure 22.A is to be compared to Figure 20.A, Figure 

22.B compared to Figure 20.C, Figure 22.C compared to Figure 21.E, and Figure 22.D 

compared to Figure 21.G. Based on these comparisons, the following can be observed. 

In the Los Angeles region, the nonweighted departures in temperature are such that the IE, 

especially its northern, eastern, and southern parts, is distinctively much warmer than the rest 

of the domain (Figure 21.A and Figure 21.C). The eastern basin is clearly demarcated from the 

rest of the domain. The SFV and SGV areas also are warmer than their surroundings. On the 

other hand, the population-weighted temperature departures are such that the warmest areas 

in IE shift north toward the hills, that is, to San Bernardino, as well as to other areas near the 

foothills including SGV, Glendale, Pasadena, and SFV (Figure 22.A and Figure 22.B). In 

addition, downtown Los Angeles also becomes a warmer area than its surroundings, unlike in 

the nonweighted departures. 

In the San Francisco Bay Area, and except for cities closer to the central valley, such as 

Stockton and Tracy, the population-weighted departures in temperature are generally similar 

in pattern to the nonweighted departures. In both cases, the warmest areas include southwest 

and west Santa Clara valley, Pittsburgh-Antioch–Discovery Bay, and Dublin-Livermore. 

Figure 22: Population-Weighted Mean Departures in Temperature 

 

Source: Altostratus Inc. 
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3.2.7.B Mean Departures from CEC Climate-Zone Stations in Future Climate 

For future climates, equations 7 and 8 are modified by including an additional tendency term, 

as shown in equation 9, to develop probabilistic correlations at each metar and mesonet 

station in future conditions. This equation is for air temperature as the variable of interest 

(other variables are treated similarly). 

𝑇𝑎𝑖𝑟𝑖,𝑧,𝑚,𝑠,𝑡  =   𝑇𝑎𝑖𝑟𝐶𝐸𝐶𝑛𝑧,𝑚,𝑠,𝑡  +  ∆𝑇𝑛𝑖,𝑧,𝑚,𝑠,𝑡  +  ∆𝑆𝑛𝑖,𝑧,𝑚,𝑠,𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  +  ∆𝑇𝑛𝑖,𝑧,𝑚,𝑠,𝑡

′                (9) 

Thus, in equation 9, the term, Sn, is added to equation 8 (to account for future-climate 

changes in temperature) and is defined as the change in departure (from the mean) in future 

years (and RCP scenarios) relative to current climate at each station. This term is based on 

model, as discussed in Section 3.2.3—all other terms in the equation are based on 

observations. The term is obtained by running uWRF after downscaling the fields from CMPI5 

CCSM4 model. The CCSM4 data were obtained from NCAR (Monaghan et al., 2014). The 

downscaling process is described elsewhere, in Taha (2017) and Taha et al. (2018). 

Data files were generated for these equations and for each of the combinations under 

consideration in this study to create new microclimate (temperature) zones. Diagram 1, below, 

represents a file-naming scheme for datasets produced in this effort, and shows some of the 

possible combinations of data. Since this translates into a large number of files, equations, and 

figures, a small sample is included in this report as an example. Other figures corresponding to 

this section are provided in companion datasets A, B, and C.  

Diagram 1: File-naming Scheme 

 

Departures at Time of Nighttime Minimum 

The datasets corresponding to Diagram 1 for nighttime lows can be found in the appendixes. 

Departures at the time of the daytime maximum 

For reference, all figures related to the combinations shown in Diagram 1 at the times of the 

daily maximum are included in Appendix I and Appendix J. Here, only two examples are 

shown in Figure 23 (A through D), namely, for June and July, year 2050, RCP 4.5, for the Los 

Angeles (A, B) and San Francisco Bay Area domains (C, D). 

These figures are depictions of Equation 9 as applied to the combinations highlighted in 

Diagram 1. To keep the discussion relatively compact, only the solar range 67 percent —100 
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percent is plotted in these figures (all other ranges are provided in the appendixes). In this 

section, the ranges of mean departures and spatial patterns in future climate are compared to 

those of current climate.  

Table 16 and Table 17 summarize the ranges of mean departures (across the domain) relative 

to CEC climate zone stations (KLGB and KOAK) and for the conditions specified above. The 

tables also include a recap of current-climate conditions (shaded cells) for the sake of 

comparison with future conditions. To reiterate, the current-climate ranges are based on 

observational data, while future-climate ranges are based on observations and model results 

per equation 9. 

Figure 23:  Future-Climate Temperature Departures at Time of Daily Maximum 

 

Source: Altostratus Inc. 

For current climate, the range of mean temperature departures across the domain in the Los 

Angeles region (shaded cells in Table 16) is nearly constant—around 26.1°F (14.5°C) but is 

shifted up or down from one month to another. On the other hand, in the San Francisco Bay 

Area, the range across the domain (shaded cells in Table 17) actually varies considerably from 

one month to another in addition to shifting up or down. However, in the future climate in the 

Los Angeles region (Table 16), there is some notable variation in the ranges from one month 

to another, as well. 
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In the Los Angeles domain future climate, except for September (Table 16), the coolest mean 

departures in 2050, regardless of RCP scenario, are almost unchanged relative to current 

conditions (but note that this is relative departure, not absolute temperatures). For 2100 

(including September), the coolest mean departures are pointedly smaller than those of 

current climate (smaller negative numbers), suggesting an increase in temperature minima by 

2100, especially in the RCP 8.5 scenario. The warmest mean departures, on the other hand 

(including September), increase with year and RCP scenario, suggesting that at the times of 

the daily temperature peaks, it is the higher temperatures that are exacerbated further. This is 

in general agreement with findings by Taha (2017) that warmer weather exacerbates urban 

heat in California. 

Table 16: Ranges of Mean Temperature Departures — Los Angeles Region Relative 
to CEC Climate Zone Station KLGB at 1500 PDT  

 

Relative to CEC climate zone station KLGB at 1500 hours Pacific daylight time. 

*Current-climate is based on observational data only, that is, the synthetic months JJAS years 2013 – 

2015 as discussed earlier. The future-climate scenarios are based both upon observations and modeling, 

as explained by Equation 9. 

Source: Altostratus Inc. 

In future climate in the San Francisco Bay Area (Table 17), the ranges (across the domain) in 

years 2050 and 2100 and both RCP scenarios are consistently larger than the ranges of the 

corresponding months in current climate. The ranges monotonically increase in the order of 

2050 RCP 4.5, 2100 RCP 4.5, 2050 RCP 8.5, and 2100 RCP 8.5. The coolest mean departures 

in the San Francisco Bay Area have no identifiable pattern of change—some increase, some 

decrease. The only consistent pattern is the smallest negative value in 2100 RCP 8.5, 

suggesting the largest increase in temperature minima under those conditions. The warmest 

departures increase monotonically, except for September, in the order of 2050 RCP 4.5, 2050 

RCP 8.5, 2100 RCP 4.5, and 2100 RCP 8.5. 
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In terms of the spatial patterns, the following observations can be made (see Figure 23.A 

through Figure 23.D): 

In the Los Angeles region, in general, there are variations at the fine scales (weather stations 

and polygons shown in the figures), such that some areas warm up more than others and 

there are variations in spatial patterns. However, some of the dominant features appear to be 

relatively consistent, for example in north, east, and south IE, the SGV, and the SFV, are 

consistently warmer than other parts of the domain (this can also be seen through the months 

of JJAS in Appendix I). 

Similarly, in the San Francisco Bay Area, there also are spatial variations from one year and 

scenario to another, but the dominant features appear to be consistent: Palo Alto, southwest 

Santa Clara Valley, Pittsburg–Discovery Bay, East Concord–Walnut Creek, Dublin-Livermore, 

and Tracy-Manteca, are consistently warmer than other parts of the domain (this can also be 

seen in Appendix J). 

Table 17: Ranges of Mean Temperature Departures — San Francisco Bay Area 
Region Relative to CEC Climate Zone Station KOAK at 1500 PDT 

 

Relative to CEC climate zone station KLGB at 1500 hours Pacific daylight time. 

*Current-climate is based on observational data only, that is, the synthetic months JJAS years 2013 – 

2015 as discussed earlier. The future-climate scenarios are based both upon observations and modeling, 

as explained by Equation 9. 

Source: Altostratus Inc. 

Population-Weighted Departures at Time of Daytime Maximum 

Population-weighted mean departures at the time of the daily maximum were also evaluated 

for future climate scenarios, as shown in the following example figures (all other periods are 

included in Appendixes H and I). The examples in Figure 24 (A through D) are for year 2050 

and RCP 4.5 only. These figures can be compared to Figure 23 (A through D), respectively. 
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The shifts in the spatial patterns caused by population-weighting are similar to those occurring 

during current climates. Thus, in the Los Angeles region, the nonweighted departures in 

temperature in 2050 RCP 4.5 are such that the northern, eastern, and southern parts of the IE 

are distinctively much warmer than the rest of the domain (Figure 23.A and Figure 23.B). The 

SFV and SGV areas also are warmer than their surroundings. However, the population-

weighted temperature departures (Figure 24.A and Figure 24.B) are such that the warmest 

areas in IE shift north toward the foothills in San Bernardino, SGV, Glendale, Pasadena, and in 

SFV. Downtown Los Angeles and surrounding areas also become warmer than in the 

nonweighted departures. In the San Francisco Bay Area (Figure 24.C and Figure 24.D), the 

population-weighted departures in temperature are generally similar in pattern to the 

nonweighted departures. In both cases, the warmest areas include southwest and west Santa 

Clara valley, Pittsburgh-Antioch–Discovery Bay, and Dublin-Livermore. 

Figure 24: Population-Weighted Mean Temperature Departures at Time of Daily 
Maximum in Future Climate 

 

Source: Altostratus Inc. 

Departures at All Hours 

These can be found in the companion datasets. 
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CHAPTER 4: 
Conclusions and Recommendations 

This project demonstrated that improvements in meteorological model performance and the 

creation of probabilistic fine-scale micoclimate (temperature) zones that account for variations 

in intraurban microclimates can improve planning and forecasting for California’s electric grid. 

Improved forecasting and planning would optimize the allocation of generating resources and 

increase the grid’s resilience to short- and long-term climate variations. By extension, such 

improvements would also reduce greenhouse gas emissions and improve thermal 

environmental conditions. 

Focusing on the Los Angeles region and the San Francisco Bay Area during summer months, the 

multi-faceted project did the following.  

• Developed and evaluated a method to characterize intraurban microclimate variability in 

the context of climate forecasting for the electric system. The method also accounted 

for the effects of long-term changes in urban land use by developing the corresponding 

input to the microclimate model in addition to the dynamically downscaled 

meteorological fields for future years. 

• Improved meteorological-model performance by applying study-modified and 

customized urban parameterizations and representations in the atmospheric and land-

surface modules of the urbanized Weather Research and Forecasting (uWRF) model. 

• Developed probabilistic fine-scale intraurban temperature zones as an enhancement to 

forecasting under current and future climates.  

Project Results 
Study results demonstrate that it is critical to account for the intraurban variability in 

microclimates, especially in urban areas, when forecasting and planning for the electric 

system.   

• A comparison of the fine-scale temperature zones with the forecast climate zones 

currently used by the California Energy Commission in planning for the electric system 

and in building energy modeling showed that the intra-zone variability in temperature 

was considerable and could be several-fold larger than the inter-zone differences.  

• Improvements to the uWRF model showed significant reduction in forecasting errors. 

Studies have shown that 1.8°F (1°C) of peak temperature is equivalent to 

approximately 0.5 to 1.0 Gigawatts of power. Thus, even a 0.9°F (0.5°C) reduction in 

forecasting error systemwide could translate to a reduction or reallocation of 

approximately 500 megawatts in generating capacity, the equivalent of one to three 

large power plants. With improved uWRF modeling, the project reduced temperature 

forecasting error up to 3.2°F (1.8°C) in the San Francisco Bay Area and up to 1.4°F 

(0.8°C) in the Los Angeles region.  
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• Simulations to develop microclimate zones for current and future conditions based on 

observational analysis and modeling suggest substantial intraurban variations in 

microclimate, as shown in Figure 25.  

Figure 25: Proposed Temperature Zones Versus Current CEC Forecast Climate 
Zones 

 

 

Proposed temperature zones are lettered; climate zones currently used for forecasting by the 

California Energy Commission are numbered. The top figure represents the Los Angeles region; the 

bottom figure, the San Francisco Bay Area. This example is for synthetic observational August all-

hours averages, nonthreshold. The proposed fine-scale zones are structured at intervals equal to the 

trans-boundary (across boundary) temperature differences in corresponding climate zone weather 

files (all-hour averaged temperatures from climate zone file for the month). 

Source: Altostratus Inc  
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Project Recommendations 
Before 2016, forecasting and planning for California’s electric system are based on 16 climate 

zones identified in 1995 as a foundation for California’s building energy standards. After 2016, 

the electricity demand forecast geography changed to 20 zones. Those climate zones do not 

account for the multitude of microclimates that exist within them and for the fine-scale 

variations and different energy needs in these microclimates. Current practice in energy 

forecasting has not considered the effects of urban land use, localized heat or cool islands, and 

intraurban heat transport, or their respective changes in the future, in planning for the electric 

grid. Nor are these effects considered in current building energy modeling practices. The 

advent of increased computing power, improved and more accurate fine-resolution atmospheric 

and land-surface models, and higher density of observational weather networks, as well as 

powerful data management and processing tools, eliminate the restrictions for climate zones to 

be large and contiguous and offer more precise data for electricity forecasting and planning.  

Based on the results from modeling and observational analysis, the project recommends that:   

• Current climate-zone boundaries be redrawn or that fine-scale zones (such as those 
shown in Figure 25) be created and adopted, using the proposed method, in planning 

for the electric system and in building energy modeling and calculations.  

• Climate forecasting for electricity, as well as for energy modeling, be done at finer 
scales and at the site-specific resolutions that improved models and new technologies 
allow.  

Incorporating California’s multiple intraurban microclimates and using improved modeling will 

provide more accurate and precise weather data for forecasting and planning for electricity 

that will optimize allocations for the electric grid and increase its resilience to short- and long-

term climate variations. By extension, such improvements would also reduce greenhouse gas 

emissions and improve thermal environmental conditions. 

The method developed in this study can be used to create microclimate zones at different 

thresholds, spatial resolutions, or zone boundaries as deemed suitable for specific applications.  

In follow-up efforts, the zones developed in this study can serve as the basis to create fine-

scale, site-specific weather files for input to energy modeling and calculations of current and 

future climates for the other seasons of the year, for full years, and for additional geographical 

areas in California. 
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LIST OF ACRONYMS 

Term/Acronym  Definition 

AFB Air Force base (radiosonde) 

AGL above ground level 

AMSL above mean sea level 

BAAQMD Bay Area Air Quality Management District 

CDD cooling degree-days 

CDH cooling degree-hours 

CEC California Energy Commission 

CIMIS California Irrigation Management Information System 

CWOP Citizen Weather Observing Program 

CZ climate zone 

DH/day degree-hours per day 

DHPD degree-hours per day (in figures/graphs) 

EB east basin 

GIS geographical information system 

IE Inland Empire 

IQR inter quantile range (defined specifically for the discussions) 

JJAS June, July, August, and September 

LAX Los Angeles International Airport (radiosonde) 

LST local standard time 

LULC land-use/land-cover 

MADIS Meteorological Assimilation Data Ingest System 

METSTAT meteorological statistical model performance evaluation tool 

METAR METeorological Aerodrome Reports 

MPE model performance evaluation 

NCAR U.S. National Center for Atmospheric Research 

NCEP National Centers for Environmental Prediction 

NLCD national land cover data 

NOAA National Oceanic and Atmospheric Administration 

OAK Oakland International Airport (radiosonde) 

PDT Pacific Daylight Saving Time 

PG&E Pacific Gas and Electric 

QGIS Quantum Geographical Information System 
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Term/Acronym  Definition 

SCAQMD South Coast Air Quality Management District 

SDG&E San Diego Gas & Electric 

SFO San Francisco International Airport (radiosonde) 

SFV San Fernando Valley  

SGV San Gabriel Valley 

SJVAPCD San Joaquin Valley Air Pollution Control District 

UCI urban cool island 

UHI urban heat island 

uWRF urbanized versions of WRF 

WB west basin 

WMO World Meteorological Organization 

WRF Weather Research and Forecasting model 
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APPENDICES 

Appendices A-J are available upon request under separate cover (Publication Number CEC-

500-2021-XXX-ADA-J) by contacting Susan Wilhelm, Susan.Wilhelm@energy.ca.gov. 
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