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PREFACE 

The California Energy Commission’s Energy Research and Development Division supports 

energy research and development programs to spur innovation in energy efficiency, renewable 

energy and advanced clean generation, energy-related environmental protection, energy 

transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 

Public Utilities Commission to fund public investments in research to create and advance new 

energy solutions, foster regional innovation and bring ideas from the lab to the marketplace. 

The California Energy Commission and the state’s three largest investor-owned utilities—Pacific 

Gas and Electric Company, San Diego Gas & Electric Company and Southern California Edison 

Company—were selected to administer the EPIC funds and advance novel technologies, tools, 

and strategies that provide benefits to their electric ratepayers. 

The Energy Commission is committed to ensuring public participation in its research and 

development programs that promote greater reliability, lower costs, and increase safety for the 

California electric ratepayer and include: 

• Providing societal benefits. 

• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost. 

• Supporting California’s loading order to meet energy needs first with energy efficiency 

and demand response, next with renewable energy (distributed generation and utility 

scale), and finally with clean, conventional electricity supply. 

• Supporting low-emission vehicles and transportation. 

• Providing economic development. 

• Using ratepayer funds efficiently. 

Nitrogen Oxide Sensor to Optimize Dispatchable Distributed Generation Systems is the final 

report for the Nitrogen Oxide Sensor to Optimize Dispatchable Distributed Generation Systems  
project (Contract Number EPC-15-062) conducted by University of California, Irvine. The 

information from this project contributes to the Energy Research and Development Division’s 

EPIC Program. 

For more information about the Energy Research and Development Division, please visit the 

Energy Commission’s research website (www.energy.ca.gov/research/) or contact the Energy 

Commission at 916-327-1551.  

http://www.energy.ca.gov/research/


iii 

ABSTRACT 

The increase in intermittent renewable sources has created a need for clean dispatchable 

generation sources that can quickly generate electricity to meet demand. Dispatchable 

generation devices include microturbines and reciprocating engines. They can be certified as 

low emission, but the certification process involves generating at full capacity. Often, only 

partial capacity generation is needed to meet demand, yet a means to ensure clean operation 

at partial capacity is needed. This project evaluated the viability of using low-cost automotive 

sensors for nitrogen oxides (criteria air pollutants typically generated from the combustion 

process) and oxygen to continuously monitor emissions performance of a 60-kilowatt 

microturbine generator. In this study, the generator operated over a programmed range of 

capacity for six months, during which sensors from UniNOx and NTK, two commercial 

manufacturers, were evaluated for durability and accuracy by comparing their readings to a 

referee instrument, Horiba PG-350. Results showed that both sensors were robust and did not 

exhibit significant errors. The NTK sensor proved to be more precise and was thus selected for 

integration into the 60-kilowatt engine operating system. The project team developed the 

necessary electronics and control algorithms and modified the engine control software to 

integrate both. Testing of active control of the engine operation using the sensor information 

led to a reduction of about 10 percent in nitrogen oxides compared to baseline emissions 

levels. The project demonstrated that using such sensors to attain performance to minimize 

emissions is feasible and relatively economical. 

Keywords: solid state sensor, NOx emissions, active control, microturbine generator, 

experimental study, durability, accuracy, dispatchable generation 

Please use the following citation for this report: 

Ehlig, Ryan and Vincent McDonell. University of California, Irvine. 2021. Nitrogen Oxide to 

Optimize Dispatchable Distributed Generation Systems. California Energy Commission. 

Publication Number: CEC-500-2021-006. 
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EXECUTIVE SUMMARY  

Introduction 
Within the past decade, California has experienced tremendous growth in renewable 

generation such as solar and wind as a result of the Renewables Portfolio Standard. Under 

Senate Bill (SB) 100, 60 percent of California’s power must be derived from renewable sources 

by 2030. Because renewable generation is intermittent in nature — wind is not always 

prevalent, and sunlight peaks in the daytime — dispatchable generation — sources that can 

start and generate electricity in a very short period of time — is important to ensure reliable 

availability of electricity. Such generation will be more critical to California’s energy system 

within the next several decades as the state adopts more intermittent renewable sources. 

Dispatchable generation devices such as microturbine generators and reciprocating engines 

represent a viable strategy for dealing with the intermittent nature of renewables. A 

certification procedure outlined by the California Air Resources Board facilitates timely 

deployment of “clean” (low polluting) distributed generation. These certification standards are 

developed for pollutant emissions produced when a generator operates at 100 percent 

capacity, also known as full load. But because these systems operate in a dispatchable 

manner, emissions performance at partial capacity also becomes important. Large, centralized 

generation units require equipment that uses highly specialized continuous emissions 

monitoring analyzers to monitor and report the emissions performance of those generating 

devices in real time. While appropriate for large-scale power generation systems, currently 

approved continuous emissions monitoring systems are not cost effective for distributed 

generation systems operating in a dispatchable manner. A potential cost-effective solution to 

real-time monitoring of distributed generation systems exists within the transportation 

industry. In particular, oxygen and nitric oxide sensors are commonly used in diesel vehicles. A 

question for the present work is whether those analyzers could monitor real-time distributed 

generation engine performance. Such sensors could also provide information enabling the 

engine to continually minimize emissions by monitoring load, fuel composition, and ambient 

conditions, as well as engine wear and tear. Ideally, the sensor information would be 

integrated directly into the engine control system.  

Project Purpose 
The goals of this project are to (1) assess the viability of solid state nitric oxide sensors from 

the transportation industry for monitoring the emissions performance of a distributed 

generation device, and if viable, (2) develop and integrate an emission reduction algorithm 

into the engine control system using the sensor information to minimize nitric oxide emission 

in real time.  

Project Approach 
This study used a Capstone C60 engine as the representative distributed generation device. 

The project team developed an exhaust duct test section to install and monitor the 

performance of two solid state nitric oxide sensors, from NTK and UniNOx®, over a six-month 

period. A referee instrument, HORIBA PG-350, provided true exhaust emission levels. The 

team also developed an extensive data acquisition network to capture and record data from all 

sensors and analyzers in a synchronized manner.  
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Project Results 
Both solid state sensors performed reliably over the six-month evaluation. Results indicated 

that the NTK sensor performed more comparably to the established referee instrument (PG-

350) than the UniNOx sensor in measuring NOx concentrations. The team developed and 

integrated a control algorithm with the engine system to improve the emission performance. 

The control algorithm showed the ability to actively reduce nitric oxide emissions at part load 

by approximately 10 percent. In general, this study provided proof of concept that these solid-

state sensors can be used reliably in distributed generation systems. Additional durability 

testing and evaluation of other brand sensors would provide further support for this 

technology. 

Technology Transfer 
The results from this study were disseminated in a number of ways. The project team orally 

presented at two technical conferences and presented a poster at the 2018 EPIC Symposium. 

The team also provided final report briefings to Capstone Turbine Corporation, Solar Turbines, 

and Emisense, companies that, along with other engine manufacturers or packagers, are the 

primary targets for the outcomes of the research. Each has expressed interest in potentially 

adopting the technology for use in its products. The team also reported results to the U.S. 

Department of Energy and Southern California Gas Company, either of which may be in a 

position to fund further work on the development or evaluation of these sensors. 

Because the tested sensors represent an inexpensive and viable approach to traditional 

continuous emissions monitoring analyzers for monitoring emissions from distributed 

generation devices, the current certification procedure for distributed generation systems 

could, ideally, be modified to include these sensors as monitoring tools. In terms of market 

potential, the specific system evaluated — microturbine generators — represents about 50 

megawatts of generation. The market for other systems including reciprocating engines and 

larger gas turbines is considerably higher. 

The cost to add the sensor system to a given engine is estimated to be about $2,000. This 

figure should decrease as the number of units with sensor systems increases. Because the 

sensor technology and control algorithm approach optimizes the engine parameters to reduce 

emissions and does not noticeably alter the performance or configuration of the device, the 

sensors represent a feasible and viable approach to improving the performance of distributed 

generation systems in California. 

Project Benefits 
Considering the estimated current 50-megawatt fleet of microturbine generators in California, 

a 10 percent reduction in nitric oxide emissions for each device outfitted with this sensor 

technology and control algorithm could translate to the elimination of more than 30 tons of 

nitric oxide each year. If the research can be applied to other technologies such as 

reciprocating engines and small gas turbines, this benefit will increase proportionately. 

Although emissions reduction is the primary benefit, other potential benefits include 

maintenance schedule optimization based on information from the sensors, which could save 

operations and maintenance service costs.  

Regarding further research, steps taken to reduce nitric oxide emissions often increase carbon 

monoxide emissions. Therefore, development of a similar sensor to measure carbon monoxide 
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emissions, along with the NOx sensor,would  provide a more comprehensive picture on 

emissions from dispatchable generation devices.  The current study inferred carbon monoxide 

emissions from extensive measurements; however, having explicit carbon monoxide emission 

data would help simultaneously address both nitric oxide and carbon monoxide emissions.  

Also notable is the fact that the estimated 50-megawatt fleet of microturbine generators is small 

compared to the fleet of reciprocating engines. Research evaluating the possibility of similar 

sensors in reciprocating engines to reduce nitrogen oxides would be worthwhile, particularly 

because reciprocating engine conditions are similar to those in automobiles.   
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CHAPTER 1:  
Introduction 

California is currently on track to have 60 percent of power generated from renewable sources 

by 2030. Because renewable generation is intermittent in nature —  wind is not always 

prevalent, and sunlight peaks in the daytime — dispatchable generation — sources that can 

start and generate electricity in a very short period of time — is important to ensure reliable 

availability of electricity. Dispatchable generation devices such as microturbine generators and 

reciprocating engines represent a viable strategy for dealing with the intermittent nature of 

renewables. A certification procedure outlined by the California Air Resources Board facilitates 

timely deployment of “clean” (low polluting) distributed generation. These certification 

standards are developed for pollutant emissions produced when a generator operates at 100 

percent capacity, also known as full load. But because these systems operate in a dispatchable 

manner, emissions performance at partial capacity also becomes important. Large, centralized 

generation units require equipment that uses highly specialized continuous emissions 

monitoring analyzers to monitor and report the emissions performance of those generating 

devices in real time. While appropriate for large-scale power generation systems, currently 

approved continuous emissions monitoring systems are not cost effective for distributed 

generation systems operating in a dispatchable manner. A potential cost effective solution to 

real-time monitoring of distributed generation systems exists within the transportation 

industry. In particular, oxygen and nitric oxide sensors are commonly used in diesel vehicles. A 

question for the present work is whether those analyzers could monitor real-time distributed 

generation engine performance. Such sensors could also provide information enabling the 

engine to continually minimize emissions by monitoring load, fuel composition, and ambient 

conditions, as well as engine wear and tear. Ideally, the sensor information would be 

integrated directly into the engine control system. 

As part of a research project funded by the California Energy Commission Grant EPC-15-062, 

the Combustion Lab at the University of California, Irvine (UCICL)  successfully completed 

three technical tasks to establish and demonstrate an inexpensive alternative to traditional 

continuous emissions monitoring systems (CEMS) capable of minimizing emissions in real-time 

for dispatchable generation devices. The objectives were to first establish the viability of using 

solid-state nitric oxide (NO) sensors commonly used in the diesel automotive industry as a 

robust and inexpensive alternative to traditional monitoring devices, and if viable, to develop a 

control strategy, coupled with the feedback of the solid-state sensor, capable of optimizing the 

emissions performance of the distributed generation (DG) device in real-time.  

Figure 1 shows the “duck curve” chart first published by the California Independent System 

Operator (California ISO) in 2013. 

  



 

6 

Figure 1: California Independent System Operator "Duck Curve" Chart 

 

Source: California Independent System Operator 

The figure clearly illustrates that as renewable energy penetration increases in California, the 

need for generating devices able to ramp up, ramp down, and perform quickly on command 

also will increase. By 2020, the risk of overgeneration will be high and increases in rotational 

speed and frequency beyond their capable limits could  damage generators. Thus local DG is 

necessary to alleviate pressure from increasing renewable penetration and to increase the 

flexibility of the grid.  

Table 1 and Table 2 show the certification requirements a DG device must meet before it can 

be sold commercially in California. Distributed generation emissions limits were first adopted in 

2003 and subsequently changed in 2007. To facilitate the deployment of clean distributed 

generation throughout California, emissions certification is conducted at 100 percent of full 

load for each device (Distributed Generation Certification Program, 2003)  Certification uses a 

traditional continuous emission monitoring analyzer to verify that emissions meet the 

established criteria. CEMS, defined by the Air Emissions Measurement Center, are “the total 

equipment necessary for the determination of a gas or particulate matter concentration or 

emission rate using pollutant analyzer measurements and a conversion equation, graph, or 

computer program to produce results in units of the applicable emission limitation or 

standard”(US EPA, 2018). Power generating devices with a nameplate capacity of 25 

megawatts electric (MWe) or greater require a traditional CEMS configuration with the ability 

to minimize the emissions of the operating device in real time. Because the specifications in 

Table 1 and Table 2 are only for full-load conditions and emissions are not continuously 

monitored during operation of the device, an inexpensive alternative to traditional CEMS 

(analyzer and other necessary equipment for monitoring and tuning of the engine) that 
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provides feedback to the engine to perform corrective action to reduce NO would be 

beneficial.  

Table 1: Emissions Standards for Distributed Generation 2003  

Pollutant 

DG Unit Not Integrated 
with Combined Heat and 

Power (a)(1) 

(lb/MW-hr) 

DG Unit Integrated 
with Combined Heat 

and Power (a)(1) 

(lb/MW-hr) 

Oxides of Nitrogen (NOx) 0.5 0.7 

Carbon Monoxide (CO) 6.0 6.0 

Volatile Organic Compounds 
(VOCs) 

1.0 1.0 

Particulate Matter (PM) An emission limit 

corresponding to natural gas 
with fuel sulfur content of 

no more than 1 grain/100 
scf (Standard Cubic Foot) 

An emission limit 

corresponding to 
natural gas with fuel 

sulfur content of no 
more than 1 grain/100 

scf 

Source: UC Irvine 

Table 2: Emissions Standards for Distributed Generation 2007  

Pollutant Emission Standard (lb/MW-hr) 

NOx 0.07 

CO 0.10 

VOCs 0.02 

Source: California Air Resources Board, Adapted from Ref. [2] 

Using inexpensive solid-state NO sensors to monitor emissions and mitigate nitric oxide  offers 

appreciable benefits to support California’s energy policy. The intermittent nature of 

renewables and their growing percentage in the share of generation devices in California’s 

Renewable Portfolio Standard suggest the need to re-examine and amend the certification 

procedure to accommodate DG devices. The successful completion of the technical tasks 

outlined in this report represent a viable approach to improving these standards and would 

vastly improve the current capability of emissions monitoring for DG devices.  

The following chapters encompass the three technical tasks conducted at UCICL to validate 

the use of solid-state NO sensors as an emissions control strategy and the calculated benefits 

for the California DG fleet from using the solid-state sensors.  
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CHAPTER 2: 
Evaluating Sensor Robustness 

2.1 Overview of Sensor Evaluation Testing 
The goal of the second technical task, from the CEC EPC-15-062 project outline, is as follows: 

“to establish the characteristics and operability of different candidate sensors as a function of 

time to determine the response time of the sensors.” This test will provide insight into how 

durable and reliable the candidate sensors are at accurately monitoring NOx levels in the 

exhaust. A “referee” analyzer will be used to document variation between the “actual” exhaust 

levels and those determined by the candidate sensors. Equipment with California Air Resources 

Board and/or South Coast Air Quality Management District (SCAQMD) approved measurement 

methods will be used. The University of California, Irvine Combustion Laboratory has such 

equipment available in the form of multi-gas analyzers, otherwise known as “reference” 

analyzers. 

To complete this second technical task, two different brands of the latest commercially 

available solid-state nitric oxide (NO) sensors were obtained (NTK sensor from Ford and 

UniNOx® sensor from Continental) and installed in the exhaust of a C-60 Capstone 

microturbine generator (MTG) testbed, which was used as a representative for DG devices. To 

prevent bias associated with the location of emissions measurements, the sensors were 

installed at different radial locations around the exhaust duct: 120° apart from each respective 

sensor in the same brand and 15° apart from each respective brand of sensor. A traditional 

“CEM-like” referee instrument (HORIBA PG-350) was used as a reference device for the 

sensors to compare against a representative “true” measurement. Data were collected and 

analyzed over a period of six to eight months in accordance with the procedures set forth in 

the proposed test plan (see EPC-15-062 Technical Task 2 Test ) to determine the sensor that 

best matched the output and characteristics of the referee analyzer according to: 

• Accuracy 

• Precision 

• Lower Detectable Limit 

• Fall Time (Lag Time) and Rise Time 

• Concentration Resolution 

2.2 Overview of Data Acquisition Network 
To initiate the testplan and to begin measuring nitric oxide concentration in the gas turbine 

testbed, four main components were needed: 

• Sensor electrical installation on the part of CoorsTek Sensors (six sensors total, 

including three UniNOx® and three NTK sensors from Ford) 

• Sensor test section for installing the sensors 

• C-60 turbine engine running and preprogrammed with a daily load profile to follow 

• DAQ (data acquisition) equipment working with PG-350 and sensors, LabVIEW VI 

working 
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The most difficult challenges that presented themselves were as follows: 

• Controlled environment for PG 

• -350 was located 150 feet from the test section, which presented a challenge with 

conventional USB signals. Bus-powered cables were not sufficient to transmit signals 

between sensors and DAQ computer at this length. 

• Length to engine from DAQ computer also presented a problem. This was also another 

150-foot length. Rainy season also presented challenges for C-60, which displayed 

faults on a regular basis.  

• Length from PG-350 to DAQ compared with sensors to DAQ led to problems with 

frequency of sampling. 

These were resolved in the following way:  

• Conventional bus-powered USB cables were insufficient to transmit data from the 

sensor CAN-USB box. Signal loss accumulated over the length to the test section from 

the DAQ room; instead, 150-foot CAT 5e cable was used. This was then connected to 

an RJ45 to DB-9 pin converter on either end. This was then connected to the CAN-USB 

converter that connected the sensors to the DAQ computer.  

• Resolved the same way problem 1 was resolved. Familiarity with C-60 rebooting 

process also helped fix this issue, especially during the rainy season.  

• Frequency of sampling was fixed by reducing to 0.1 Hertz (Hz) for all sensors. This fixed 

any issues regarding time-drift.  

Figure 2 shows the data acquisition network constructed to capture and record the sensor 

signals on a 24/7 basis. Refer to EPC-15-062 Technical Task 2 Test  for specific details 

regarding the sensor test section and for information on specific equipment used. Figure 3 and 

Figure 4 are pictures of the sensors and test section in which the sensors were installed. 

Figure 5 shows the gas turbine testbed used for this study. 

CoorsTek Sensors provided UCICL with the sensors as well as the proper equipment to power 

the solid-state sensors and send the signals to the DAQ computer in CAN-Bus protocol. This 

was converted to a USB signal using an NI-8473 CAN-to-USB converter. The sensor pinout 

(shown in Figure 6) was used to connect the sensor to the host PC as well as to power the 

sensors. This was achieved through the use of a sensor box with the PCB mounted inside. 

CoorsTek Sensors also provided UCICL with a LabVIEW 2015 VI, which served as a basis from 

which all data were received and stored. Data were collected at 0.1 Hz for most of the testing 

phase, and 1 Hz for Fall Time, Rise Time tests.  
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Figure 2: Communication Diagram 

 

Source: UC Irvine 

Figure 3: Sensors (UniNOx® left, NTK right) 

 

Source: UC Irvine 
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Figure 4: Sensor Section 

 

Source: UC Irvine 

Figure 5: Gas Turbine Testbed 

 

Source: UC Irvine 
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Figure 6: CAN Box Pinout 

 

Source: UC Irvine 

2.3 Engine Load 
The engine was run on a modified load profile to allow different levels of NO exposure. The 

C60 is a lean-premix combustion system that operates using six injectors that simultaneously 

turn on/off depending on the load that is being demanded (from 0-60 kW); two injectors are 

continuously firing at every load, and at various programmed load points an additional injector 

will fire. By using the injector staging, sensor signals were able to report a wide range of nitric 

oxide concentrations (approximately 190 parts per million by volume, dry (ppmvd), 15 percent 

O2), which were simultaneously compared against the reported PG-350 measurements. This 

enabled sensor characteristics to be measured across the entire operation regime of the 

Capstone C60 engine. Figure 7 shows the NO concentrations from the C60 as a function of 

load, and Figure 8 shows the modified load profile that was run on a daily basis. The load 

profile was programmed onto the engine software by using the Capstone Remote Monitoring 

Software (CRMS).  

The proposed test plan incorporated a load profile in which each subsequent load was run for 

five-minute intervals, with 20 kilowatts (kW) being the lowest set load; however, this 

presented two problems.  

• At 20 kW (three injectors firing in the combustor), a maximum of approximately 50 

ppmvd of NO was read by each sensor, which is significantly lower than what can be 

measured at 10 kW.  

• At five minutes for each load, only four minutes of available data was quantifiable as 

steady-state data that could be used for measuring sensor characteristics (20 points per 

load of available data and 323 points of available data at the lowest set load).  

CAN Signal Input Board 

w/ Host PC CAN Output

Sensor Box

Max: 8 Sensor Input
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By changing the lowest set load to 10 kW and by extending each set load by 10 minutes, the 

range of nitric oxide levels that were able to be measured increased (up to approximately 190 

ppmvd from 50 ppmvd) and the number of sampling points during each set load increased.  

Figure 7: Nitric Oxide/Nitrogen Dioxide (Uncorrected) vs. Load 

 

Source: UC Irvine 

Graph showing nitric oxide/nitrogen dioxide emissions versus electric load. 
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Figure 8: Capstone C-60 Load Profile  

 

Source: UC Irvine 

2.4 Data Analysis 
To fairly compare the data from the solid-state sensors with respect to the established referee 

instrument (HORIBA PG-350), several steps were required to account for the different 

measurement basis of the two devices and for any referee instrument drift. 

The PG-350 was calibrated once every four to five weeks (every one to two weeks later in the 

testing period) during the testing phase. The calibration results showed a maximum drift of 4 

– 5 ppm of NO over a 250 ppm span range for the PG-350; whereas, it showed a maximum 

drift of .3 percent O2 over a 25 percent span range. The drift that was found was then 

incorporated into a MATLAB1 code that was written to analyze the data taken. Linear drift 

behavior was assumed over the period between calibrations. 

Because the solid-state sensors measure on a wet basis compared to a dry-basis measured for 

the PG-350, fuel and air flow data were taken CRMS to find the theoretical water content in 

the exhaust of the gas turbine at any given load. The PG-350 requires sample conditioning so 

water condensate cannot harm the analyzer’s internal components or interfere with sample 

measurements. The air-to-fuel ratio was used to correct the sensors to a dry-basis from a wet-

basis. Appendix B shows the method of calculating water mole-fraction. The following 

equations were used to correct the O2 and NO readings of the solid-state sensors: 

𝑁𝑂𝑝𝑝𝑚𝑣𝑑 =
𝑁𝑂𝑝𝑝𝑚

1−𝑥𝐻2𝑂
  Equation 2.1 

 
1 High performance language for technical computing. 
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𝑂2 𝑝𝑝𝑚𝑣𝑑 =
𝑂2 𝑝𝑝𝑚

1−𝑥𝐻2𝑂
  Equation 2.2 

where xH2O is the mole fraction of water present in the exhaust 

Once corrected from wet to dry, the readings from all sensors and the reference analyzer were 

corrected to a standard 15 percent O2 concentration: 

𝑁𝑂𝑝𝑝𝑚𝑣𝑑,15% 𝑂2
= 𝑁𝑂𝑝𝑝𝑚𝑣𝑑 (

20.9−15

20.9−𝑂2,𝑝𝑝𝑚𝑣𝑑
)  Equation 2.3 

By incorporating transient data in the results, the project team found significant hysteresis due 

to the lag in response between the sensors (best response time between 4 and 5 seconds, 

which are shown in the results section) and the referee instrument (response time of 10 

seconds), the sample time delay due to the long sample train required to condition the sample 

for the PG-350 instrument, and the inherent differences between time averaging on the PG-

350 (60 minutes moving time average) compared to the raw data coming from the sensors. To 

generate a fair comparison of steady-state data, the transient data had to be removed from 

the averaging process within the steady-state conditions. After some careful evaluation of the 

data, this filtering process was accomplished by taking out 10 points during each transitional 

period when the load changed. An example of this can be seen in Figure 9 when the load 

changes from 19 kW to 10 kW.  

Figure 9: Transient Data 

 

Source: UC Irvine 

Error! Not a valid bookmark self-reference. shows the typical load profile used for a 

given day and the number of sample points available per load (minus the transient data). 

These data were used to find an average nitric oxide level per load, which was then used to 

calculate the sensor characteristics in the results section. For calculating all the sensor 

parameters, the data from each day for all instruments were sorted in ascending order based 

on the PG-350 NO readings. This step simplified the method in which calculations are done. 

Data were sorted in upscale direction (load going up), downscale direction (direction of load 

going down), and both (combined data). Once data were sorted, PG-350 data is rounded to 

the nearest hundredth decimal place for concentrations below 10 ppm, and to the nearest 

Time NTK 1 NTK 2 NTK 3 UniNOx 1 UniNOx 2 UniNOx 3 PG-350

4:09:01 PM 11 15 14 18 15 17 6.72
4:09:11 PM 12 18 16 20 16 17 11.13
4:09:20 PM 13 20 19 21 17 18 12.65
4:09:31 PM 5 9 8 9 6 7 11.53
4:09:41 PM 8 14 13 23 20 27 7.31
4:09:51 PM 16 27 24 26 16 23 17.36
4:10:01 PM 10 19 17 20 12 18 19.15
4:10:10 PM 10 17 17 25 21 28 15.62
4:10:21 PM 37 56 53 62 44 61 24.42
4:10:31 PM 43 63 59 65 44 62 43.42
4:10:41 PM 43 63 59 65 44 62 48.65
4:10:51 PM 44 64 60 66 45 63 50.36
4:11:01 PM 42 62 57 61 39 55 50.46
4:11:11 PM 32 48 45 49 34 46 45.21
4:11:21 PM 32 46 43 47 31 44 38.55
4:11:31 PM 29 45 42 46 31 43 36.17
4:11:41 PM 34 49 48 58 45 60 34.91
4:11:50 PM 48 71 67 75 54 72 44.74

19 kW Data

10 kW Transient 
Data

10 kW Steady-
State Data
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tenth decimal place for concentrations above 10 ppm. A MATLAB code was used to perform 

calculations and sort data. 

Table 3: Sampling Points for 0.1 Hertz Data 

Load (kW) Sampling Points Load (kW) Sampling Points 

10 983 39 160 

19 80 42 160 

20 80 46 160 

23 160 49 160 

26 160 52 160 

29 160 55 160 

33 160 59 160 

36 160 60 5285 

Source: UC Irvine 

Table 4 displays a small segment of the daily measurements that were collected for the 

sensors as well as the PG-350. The following is an explanation of the four circles in the table 

and how the calculations were conducted for the measured sensor characteristics. 

• Circle 1. are the PG-350 measurements that were recorded. At three times in the day 

(could be at different timestamps and at different conditions throughout the day), the 

PG-350 reported 5.06 ppmvd (15 percent O2). 

• At the same time the PG-350 reported 5.06 ppmvd, the three NTK sensors also 

reported measurements. These are shown in circle 2 (the blue circle). 

• At the same time the PG-350 reported 5.06 ppmvd, the three UniNOx® sensors also 

reported measurements. These are shown in circle 3 (the yellow circle). 

• The purple circle (circle 4) represents the corresponding load (kW) at which the data 

were measured.  

Table 4: Sample Data 

 

Source: UC Irvine 

  

 

PG-350 NTK 1 NTK 2 NTK 3 UniNOx 

1 

UniNOx 

2 

UniNOx 

3 

Load (kW) 

5 6.728508  5.833674  5.614943  0 1.821652  1.855635  33 

5 0 1.788429  0 0 0 0 46 

5.04 1.61355  0 0 0 0 0 46 

5.06 3.082251  3.368874  1.690571  0 0 0 46 

5.06 5.137812  4.179985  3.830412  0 0 0 29 

5.06 3.464234  6.205357  3.873933  0 0 0 33 

5.07 3.481312  4.222372  3.905154  0 1.876998  0 29 

5.07 1.622051  1.775909  0 0 0 0 46 

5.14 3.077597  3.366685  1.691808  0 0 0 46 

1.
2. 3. 4.
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Using these data, accuracy can be calculated using the following equation: 

Accuracy (%) =
DMax

INf.s.
∙ 100  Equation 2.4 

To use this to calculate the percentage accuracy of each individual NTK and UniNOx® sensor, 

𝐷𝑀𝑎𝑥 must first be calculated. Since each individual sensor has three responses at the same 

input, these differences will be averaged. These results are shown in the following equations 

and Table 5: 

DMax NTK1(ppmvd) =
|3.08−5.06|+|5.14−5.06|+|3.46−5.06|

3
= 1.22  Equation 2.5 

DMax NTK2(ppmvd) =
|3.37−5.06|+|5.14−5.06|+|3.46−5.06|

3
= 1.24  Equation 2.6 

DMax NTK2(ppmvd) =
|1.69−5.06|+|3.83−5.06|+|3.87−5.06|

3
= 1.93 Equation 2.7 

DMax UniNOx1(ppmvd) =
|0−5.06|+|0−5.06|+|0−5.06|

3
= 5.06 Equation 2.8 

DMax UniNOx2(ppmvd) =
|0−5.06|+|0−5.06|+|0−5.06|

3
= 5.06 Equation 2.9 

DMax UniNOx3(ppmvd) =
|0−5.06|+|0−5.06|+|0−5.06|

3
= 5.06 Equation 2.10 

Table 5: Explanation of Accuracy 

 

Source: UC Irvine 

Once the averaged differences are computed, the maximum range of PG-350 data observed 

throughout the testing day are used to determine the accuracy. 

  

 

PG-350 NTK 1 NTK 2 NTK 3 UniNOx 

1 

UniNOx 

2 

UniNOx 

3 

Load (kW) 

5 6.728508  5.833674  5.614943  0 1.821652  1.855635  33 

5 0 1.788429  0 0 0 0 46 

5.04 1.61355  0 0 0 0 0 46 

5.06 3.082251  3.368874  1.690571  0 0 0 46 

5.06 5.137812  4.179985  3.830412  0 0 0 29 

5.06 3.464234  6.205357  3.873933  0 0 0 33 

5.07 3.481312  4.222372  3.905154  0 1.876998  0 29 

5.07 1.622051  1.775909  0 0 0 0 46 

5.14 3.077597  3.366685  1.691808  0 0 0 46 

Unique PG-350 value

Averaged Differences between individual sensor and PG-350

(at 5.06 ppmvd)

 

PG-350 NTK 1 NTK 2 NTK 3 UniNOx 

1 

UniNOx 

2 

UniNOx 

3 

5.06 1.22 1.24 1.93 5.06 5.06 5.06 
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Precision can be calculated using the following equation: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =
Δ𝑆𝑀𝑎𝑥

𝐼𝑁𝑓.𝑠.
∙ 100  Equation 2.11 

To use this to calculate the percentage precision of each individual NTK and UniNOx® sensor, 

Δ𝑆𝑀𝑎𝑥 must first be calculated. Since each individual sensor has three responses at the same 

input, these differences will be averaged. These results are shown in the following equations 

and Table 6. 

𝛥𝑆𝑀𝑎𝑥 NTK1(ppmvd) =
|3.08−5.14|+|3.08−3.46|+|3.08−3.08|

3
= .813  Equation 2.12 

𝛥𝑆𝑀𝑎𝑥NTK2(ppmvd) =
|3.37−3.37|+|3.37−4.18|+|3.37−6.21|

3
= 1.22  Equation 2.13 

𝛥𝑆𝑀𝑎𝑥 NTK2(ppmvd) =
|1.69−1.69|+|3.83−1.69|+|3.87−1.69|

3
= 1.44 Equation 2.14 

𝛥𝑆𝑀𝑎𝑥 UniNOx1(ppmvd) =
|5.06−5.06|+|5.06−5.06|+|5.06−5.06|

3
= 0 Equation 2.15 

𝛥𝑆𝑀𝑎𝑥 UniNOx2(ppmvd) =
|5.06−5.06|+|5.06−5.06|+|5.06−5.06|

3
= 0 Equation 2.16 

𝛥𝑆𝑀𝑎𝑥 UniNOx3(ppmvd) =
|5.06−5.06|+|5.06−5.06|+|5.06−5.06|

3
= 0 Equation 2.17 

Table 6: Explanation of Precision 

 

With all the values reported at the same input (in this case the PG-350 value of 5.06 ppmvd is 

taken as the actual “true” NO concentration in the exhaust), the average difference either 

between the sensors themselves (for precision) or the difference between the sensor value 

and the PG-350 (for accuracy) is reported. When calculating precision, the first value each 

sensor reports is treated as the established measurement value at that input, of which a 

difference from this value is zero. This is established so only one unique output is reported for 

the same input (only one unique sensor measurement for each PG-350 measurement).  

  

 

PG-350 NTK 1 NTK 2 NTK 3 UniNOx 

1 

UniNOx 

2 

UniNOx 

3 

5.06 0.812515  1.215864  1.441068  0 0 0 

 

PG-350 NTK 1 NTK 2 NTK 3 UniNOx 

1 

UniNOx 

2 

UniNOx 

3 

Load (kW) 

5 6.728508  5.833674  5.614943  0 1.821652  1.855635  33 

5 0 1.788429  0 0 0 0 46 

5.04 1.61355  0 0 0 0 0 46 

5.06 3.082251  3.368874  1.690571  0 0 0 46 

5.06 5.137812  4.179985  3.830412  0 0 0 29 

5.06 3.464234  6.205357  3.873933  0 0 0 33 

5.07 3.481312  4.222372  3.905154  0 1.876998  0 29 

5.07 1.622051  1.775909  0 0 0 0 46 

5.14 3.077597  3.366685  1.691808  0 0 0 46 

Unique PG-350 value

Averaged Differences between individual sensor responses at 

same PG-350 measurement (at 5.06 ppmvd)
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2.5 Results 

2.5.1 Explanation of Accuracy and Precision 

To gain a basic underlying understanding of the results that will be discussed, it is important 

to highlight the differences between accuracy and precision in greater detail. This can be best 

illustrated with the dartboard analogy. The two dartboards displayed in Figure 10 show the 

distinct differences. To be precise, each dart that lands on the board must land close to the 

dart that came before it; however, to be accurate, each dart must land within a certain 

distance of the middle of the board. If the average distance between each subsequent dart is 

closer to the middle (left board), the shooter is precise but not accurate. If the average 

distance between each dart is farther than the distance to the middle of the board, the shooter 

is accurate but not precise. By applying this analogy to the solid-state sensors, an accurate but 

imprecise sensor is one that measures close to the PG-350 response, but during repeated 

measurements fails to achieve a similar response to what it measured before. A precise but 

inaccurate sensor would fail to measure close to the PG-350 response, but during repeated 

measurements would achieve a similar response to previous measurements. Because three 

sensors for each brand are used (three NTK and three UniNOx® sensors), an average 

precision and average accuracy of the three will be found.  

Figure 10: Dartboard Analogy 

 

Source: UC Irvine 

2.5.2 Accuracy 

Accuracy was calculated by following the procedure outlined in Appendix A. The testplan 

included non-linearity instead of accuracy, but the equations for both are the same.  

Accuracy represents the difference between the recorded output (sensor response) and the 

“ideal” linear input (PG-350 response). It is the closeness to which the output follows the 

input. In this case, the straight line would be a line of 1:1 correlation with the reported values 

of the PG-350, and the output would be the solid-state sensor values. 

Running the C-60 gas turbine on the modified load profile (as explained in the previous 

sections), the project team was able to expose NTK and UniNOx© sensors to a significant 

range of nitric oxide levels (0 – approximately 190 ppmvd) over a six-month period. Testing 

was conducted between early March and late May and after a brief halt in the measurement 

True 

Measurement 

Value (PG-350)

Measurement 

Values

(Sensors)

Precise but not accurate Accurate but not precise
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period, was conducted between late September and mid-October. Over the PG-350’s 

measured range of values, the accuracy of each sensor was calculated by: 

• Filtering out transient data as the engine transitioned from one load to the next (10 

points at the beginning of each load) 

• Taking the average of steady-state measurements at each load. The number of 

sampling points per load is due to the preset load profile that is programmed into CRMS 

software.  

• With this average value for each sensor per load, the average deviation was found at 

each load by subtracting the mean value of each sensor at each respective load from 

the ideal sensor value (PG-350 nitric oxide value), and then dividing by the total range 

over which the PG-350 reported for that day. This number was multiplied by 100 to 

present it in terms of a percentage.  

• Each sensor brand was averaged to show the corresponding trend for one particular 

brand of sensor. 

Initially, there were some concerns that the sensors reported total NOx measurements instead 

of NO measurements. These results are shown in Figure 11. The graph displays the one-one 

comparison of the PG-350 results with the sensor measurements while operating the PG-350 

on the NOx setting during a week in late September. By looking at the graph, it is obvious that 

the PG-350 significantly over-reports compared to the sensor measurements, so the sensors 

did not measure total NOx. The comparison of PG-350 versus the sensor response while 

operating on the NO setting is shown in Figure 12, which is a much closer comparison. This 

testing was conducted during a week in late September to early October.  

Following are the percentage accuracies for each sensor over the entire testing period. These 

percentage accuracies were computed from the following equation: 

Accuracy (%) =
𝐷𝑀𝑎𝑥

𝐼𝑁𝑓.𝑠.
∙ 100 Equation 2.18 

where Din(Max) is the maximum reported deviation (difference between averaged output and 

averaged input) between the sensors and the PG-350 and INf.s. is the maximum, full scale 

input range reported for each testing day. 

The lower the calculated percentage, the more accurate is the response of the sensor. 

Figure 13 shows the calculated percentage accuracy over the course of the testing period from 

March to May and subsequently from September to mid-October when testing was resumed. 

Seasonal variation affects the calculated accuracies, which can most likely be attributed to 

changes in humidity and ambient temperature from the different season in which testing 

occurred. This variation can be seen in Figure 14. Solid-state NO measurements are known to 

be directly affected by water vapor concentrations, which can interfere with the sensor 

signals(L. Woo and R Glass, 2012). This could explain the lower percentage accuracy (more 

accurate) found in the drier months compared to the wet, more humid months.  

Each square- and diamond-shaped data point represents the average of three sensor 

percentage accuracies (three UniNOx® and three NTK sensors) for one day. Standard error 

represents the variation in individual accuracies calculated for each sensor. Table 7 shows the 

results of a t-test that was conducted that allows a statistical comparison of the reported 
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accuracies for the two sensors. Given the differences between the mean variation of each 

sensor (comparing 12 percent versus 14.8 percent) compared to the variability among the 

three of each sensor (0.547 percent) over the entire testing period, the t-test, with 132 

degrees of freedom for the data set, indicates that the NTK sensor achieves better accuracy 

(lower percentage accuracy) than the UniNOx® sensor with more than 99 percent confidence. 

Figure 11: PG-350 Nitrogen Oxide One-One Output (Week of 9/18/2017 – 
9/24/2017) 

 

Source: UC Irvine  
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Figure 12: PG-350 Nitric Oxide One-One Output (late September/ early October)  

 

Source: UC Irvine 

Figure 13: Percentage Accuracy 

 

Source: UC Irvine 
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Table 7: T-Test Accuracy Results 

Source: UC Irvine 

Figure 14: Ambient Temperature and Relative Humidity Over Testing Period 

 

Source: UC Irvine 

2.5.3 Precision 

Sensor precision was calculated by following the procedure outlined in Appendix A. Precision 

represents the maximum difference between recorded output values over a single input. In 

terms of this project’s sensors, it represents how close the readings of each sensor are with 

respect to other readings at the same input condition (which is represented by the PG-350 

concentration reading).  

To summarize, the steps were as follows: 

• Filter out the transient data.  

• Sort data from all sensors and PG-350 in ascending order, for both the upscale and 

downscale directions of load.  

• Find the averaged difference between what one sensor reports at a given PG-350 

measurement. If only one unique input is reported, the averaged difference will be zero 

(no other readings to compare against)  

• Divide the maximum averaged difference seen over the upscale and downscale range 

for each sensor over the maximum PG-350 measurement range observed.  

• Show the corresponding trend for each sensor brand. 
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Sensor precision can be expressed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (%) =
Δ𝑆𝑀𝑎𝑥

𝐼𝑁𝑓.𝑠.
∙ 100  Equation 2.19 

where Δ𝑆𝑀𝑎𝑥 is the maximum difference in reported output values at the same input for a 
given sensor in the upscale and downscale direction of measurements, and 𝐼𝑁𝑓.𝑠. is the full-

scale range of NO values reported by the PG-350 for each day of testing. 

Figure 15 shows the percentage precision for the NTK and UniNOx® sensors over the entire 

period of testing. Standard error represents the variation in reported values of percentage 

precision for different sensors within the same brand. Each square- and diamond-shaped point 

represents the average of three sensor precision percentages (three UniNOx® and three NTK 

sensors) for one day. Over the course of the testing period, the general trend indicates that 

precision is decreasing slightly for both sensor brands (increasing percentage). Because the 

sensors are installed directly into the exhaust environment, the exposure of different exhaust 

species to the electrodes could affect precision loss over time. The challenge with taking 

repeated measurements for these sensors is that input conditions are never truly identical; 

when individual sensor measurements are compared at the same input (same PG-350 

measurement reported), the exhaust temperatures, ambient conditions, and other external 

factors may be dissimilar (all of which affect the sensor), which will lead to a larger standard 

deviation and subsequently larger differences between signals than may actually be the case. 

To truly assess the precision of the device, a controlled environment with close monitoring of 

input factors would be required; nonetheless, the large amount of data available from testing 

and the averaging of the three sensor signals are suitable to account for this fact.  

Table 8 shows the results from the t-test, which indicate that, with a confidence interval 

greater than 99 percent, the UniNOx® sensor is more precise than the NTK sensor for the 

duration of the testing period. This means that a measurement taken with the UniNOx® 

sensor is more likely to be the same at a given condition (given PG-350 measurement) than 

the NTK sensor.  

The upscale direction was not used in the measurements of precision for the sensors. This is 

because the sensors perform worse in the downscale direction than in the upscale direction 

(due to their performance at 10 kW being considered in the downscale direction). 
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Figure 15: Precision (Downscale Direction) 

 

Source: UC Irvine 

Table 8: T-Test Precision Results 

Source: UC Irvine 

2.5.4 Lower Detectable Limit 

The lower detectable limit (LDL) is defined as the smallest concentration level that can be 

statistically differentiated from a zero concentration level by a 99 percent confidence interval 

(D. MacDougall et al, 1980). In terms of the sensors, it is the reported NO concentration that 

can be differentiated from a zero ppm concentration with 99 percent confidence, determined 

with the following equation: 

LDL (ppmvd) = 𝑁𝑂̅̅ ̅̅
0,𝑝𝑝𝑚𝑣𝑑 + 3𝜎0,𝑝𝑝𝑚𝑣𝑑  Equation 2.20 

where 𝑁𝑂̅̅ ̅̅
0,𝑝𝑝𝑚𝑣𝑑  is the average first non-zero concentrations reported by each sensor and 

3𝜎0,𝑝𝑝𝑚𝑣𝑑 is three times the standard deviation of the reported non-zero concentrations 

To calculate LDL, steps were taken similar to those outlined in EPC-15-062 Technical Task 2 

Test . To summarize, the steps were as follows: 
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• Filter out the transient data as described in the previous sections.  

• Sort data from all sensors and PG-350 in ascending order for the combined upscale and 

downscale direction.  

• Find the first non-zero concentration the sensors report and the corresponding PG-350 

concentration associated with the sensor measurement. 

• Find the average PG-350 concentration reported for the sensors in a particular brand 

for the first non-zero value.  

• Find the standard deviation across the three averages for each sensor brand. 

• Calculate the LDL. 

At high loads, low moisture content present in the exhaust will lead the UniNOx® sensors to 

report erroneously high levels of NO (greater than 3000 ppm). These data were filtered out by 

replacing these values with a concentration of zero ppm.  

Figure 16 shows the average reported LDL for each sensor type over the entire testing period.  

Figure 16: Lower Detectable Limit 

 

Source: UC Irvine 

Standard error represents the variation in the first non-zero concentrations that are reported. 

To measure LDL, a MATLAB code was to find the first non-zero values of each sensor and 

subsequently use the reported measurement of the PG-350 at those values as the LDL for that 

individual sensor. This was done for each device and subsequently averaged with two other 

measurements, along with the calculated standard deviation of all three devices, to calculate 

the LDL of the particular brand. Each square- and diamond-shaped point represents the 

calculated LDL for each day in the testing period. Table 9 reports the results of the t-test that 

0

2

4

6

8

10

12

14

16

18

20

11-Mar 31-Mar 20-Apr 10-May 30-May

L
D

L
 p

p
m

v
d

 (
1
5
%

 O
2
)

NTK UniNOx

26-Sep 6-Oct 16-Oct



 

27 

was conducted for the average reported LDL of each brand. With greater than 99 percent 

confidence, the results indicate that the LDL of the NTK sensor (5.22 ppmvd) is lower than the 

LDL of the UniNOx® sensor (9.44 ppmvd). These results were shown to agree with results 

directly given by EmiSense for both of these sensors. 

Table 9: Estimated Mean and Standard Error — Lower Detectable Limit 

Source: UC Irvine 

2.5.5 Rise Time and Fall Time 

Fall time and rise time are important indicators of how fast the sensor can respond to changes 

in input parameters. Rise time is the time sensor takes to rise from 10 percent to 90 percent of 

the output signal step height (in the direction of increasing output). Fall time is the time it 

takes to fall from 10 percent to 90 percent of the initial starting value. Appendix A details the 

test procedure and proposed test approach. 

Because precise care was needed to measure fall time and rise time, a 10 percent nitric oxide 

concentration bottle was used to inject nitric oxide into the exhaust at a preset load (60 kW). 

A pounds per square inch (psi) pressure setting on the regulator was found to the extent that 

a 0 – 100 ppm resulting step change could be induced in the exhaust and subsequently 

measured on the PG-350. This was done with a number 35 sonic orifice.  

Sampling at 1 Hz was done to ensure a better time resolution of data (1-second increments 

compared to 10-second increments). The secure digital (SD) card feature on the PG-350 was 

used to collect the data, instead of using the USB DAQ.  

To summarize, the steps to collect data were as follows: 

• Set the engine to a load of 60 kW, ensuring a low nitric oxide starting point. 

• With the sonic orifice attached to the regulator valve and then leading into a shutoff 

valve, inject nitric oxide. Read the reported values of the PG-350 on the monitor screen 

until approximately 100 ppm is reached.  

• Once approximately 100 ppm is reached, turn the shutoff valve off. Proceed to record 

values any time after this point. Make sure 1 Hz data is collected. 

• Proceed to mark a significant point in time. At this point, turn the shut-off valve in such 

a way that the flow is unrestricted. These sensor values recorded will be for the rise 

time calculations. Take into account any differences in the sampling delay time present 

in the PG-350.  

• After another significant point in time, when the sensor values have remained 

consistently within a difference of 1 – 2 ppm over a 15-second time frame, proceed to 

turn the shutoff valve in such a way that the flow is restricted. These subsequent values 

Sensor 

Brand 

Est. 

Mean 

Std. 

Error 

Treat-

ment 

Mean 

Diff. 
df 

Std. 

Error 

Prob > 

|t| 

1-NTK 5.22 0.33 1 vs  2 -4.22 131 0.46 < 

0.0001 

2-UniNOx® 9.44 0.33      
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will be used for the fall time calculations. Take into account any differences in the 

sampling delay time present in the PG-350. 

• After data has been sufficiently collected and the PG-350 has reported a final steady-

state value, proceed to stop recording data. 

To analyze the data, the steps were as follows: 

• Proceed to split the data into two segments in time: the upward direction and the 

downward direction. 

• For both, take the initial steady-state value to be where the sensors report a difference 

of the previous and initial value of zero for three or more consecutive seconds. This will 

be the initial starting point from which the time will be measured. 

• For both, take the final steady-state value to be where the sensors report a difference 

of the previous and initial value of zero for three or more consecutive seconds. This will 

be the final steady-state value.  

• Compute fall time and rise time by using a linear interpolation by following the sub-

steps listed: 

o Compute 0.9xF.V. (Final Value) and 0.1xF.V. (rise time) and 0.9xI.V. (Initial 

Value) and 0.1xI.V. (fall time) 

o Interpolate between the next available point after these values and the previous 

available point before these values. Find the time it takes to get to both. 

o Report these values for both directions (0.9xF.V. to 0.1xF.V. going up, 0.9xI.V. to 

0.1xI.V. going down). 

Figure 17 shows the results of the rise time and fall time tests and indicates that the NTK 

sensor responds more quickly than the UniNOx® sensor in both the rising and falling 

directions. The inherent 10-second sample delay for the PG-350 (configurable by the user for 

both a 10-second and 30-second response time) is the reason the instrument’s initial response 

time is longer relative to the solid-state sensors. The PG-350 also uses a time-averaging 

feature, which was preselected to 60 seconds. This has the ability to allow for an even faster, 

smoother, and more stabilized response by the PG-350 than if it were measuring raw values, 

which is particularly useful for the instrument since it is used mostly in applications where 

steady-state data are taken; nonetheless, the results agree with the configurable 10-second 

response time.  

Table 10 shows the results of the test. The difference in the fall time and rise time of the NTK 

and UniNOx® sensors is significant.  

The fall and rise times were determined using the following equations:  

𝑡𝑟𝑖𝑠𝑒 = 𝑡.9𝐹.𝑉. − 𝑡.1𝐹.𝑉.  Equation 2.21 

𝑡𝑓𝑎𝑙𝑙 = 𝑡.1𝐼.𝑉. − 𝑡.9𝐼.𝑉. Equation 2.22 

where 𝑡𝑟𝑖𝑠𝑒 represents rise time and 𝑡𝑓𝑎𝑙𝑙  represents fall time.  
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To find the approximate fall time and rise time, linear interpolation is needed: 

𝑁𝑂𝑖−𝑁𝑂𝑖−1

𝑁𝑂𝑖+1−𝑁𝑂𝑖−1
=

𝑡𝑖−𝑡𝑖−1

𝑡𝑖+1−𝑡𝑖−1
 Equation 2.23 

Figure 17: Rise Time and Fall Time Tests 

 

Source: UC Irvine 

Table 10: Rise Time and Fall Time Results 

Test (5/19/17) 
UniNOx Mean 

+/- Std Dev 

NTK Mean 

+/- Std Dev 
PG-350 

Rise Time (sec) 8.26 +/- 0.60 3.70 +/- 0.38 11.02 

Falling Time (sec) 6.83 +/- 0.74 4.02 +/1 0.36 10.41 

Source: UC Irvine 

2.5.6 Concentration Resolution 

Concentration resolution is the smallest incremental change in nitric oxide that can be 

detected by the sensors. In the case of the UniNOx® and NTK sensors, both sensors can 

detect an incremental change of 1 ppm.  

2.6 Summary of Sensor Evaluation Testing 
Table 11 shows the results from each of the comparisons. A value of 1 represents the better 

performance of one sensor than another. The NTK sensor was found to perform more 
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accurately on a 99 percent confidence interval. The UniNOx® sensor was found to perform 

better with regard to precision in the downscale direction with 99 percent confidence. The NTK 

was found to perform better with regard to LDL with a 99 percent confidence interval. The 

NTK sensor was found to perform faster with regard to fall time and rise time. Both sensors 

achieve a 1 ppm concentration resolution. In total, three sensor characteristics measured out 

of the six favor the NTK sensor over the UniNOx® sensor. This was the reason the NTK sensor 

was suggested for the control algorithm development. 

Table 11: Downselection Table 

Performance Accuracy Precision LDL 
Lag Time/ 

Rise Time 

Concentration 

Resolution 
Total 

UniNOx 0 1 0 0 0 1 

NTK 1 0 1 1 0 3 

Source: UC Irvine 
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CHAPTER 3: 
Integrate Sensor Information Into Engine 

3.1 Overview of Control Algorithm Development 
The goal of the technical task 3.0, from the CEC EPC-15-062 project outline, is as follows: “to 

integrate the signals from the NOx/Air-to-Fuel ratio sensor(s) that demonstrated promising 

performance in Task 2 with the engine control system. Initially, open loop concepts will be 

demonstrated and various algorithms for optimizing emissions performance evaluated.”  

After the successful completion of well over 3000 hours of testing, it was determined that the 

Ford NTK sensor performed better in most measured sensor characteristics (accuracy, LDL, 

and lag time and rise time) by a confidence interval of at least 99 percent or greater compared 

with the UniNOx® sensor. To implement the Ford NTK sensor within the control system of the 

engine, a total of four possible control algorithms were developed and an emissions map of CO 

and NO (ppmvd) at all possible operating conditions was generated. To generate the 

emissions map, open loop testing was performed using a Design of Experiments (DOEx) 

approach. Design Expert® was used and a response surface user-defined design was 

constructed. Using three factors (turbine exit temperature, injector staging, and load ), the 

resulting design was used to build the four distinct control algorithms that could be used to 

minimize emissions upon integration of the Ford NTK sensor within control system of the C-60 

microturbine. The most feasible approach from the four resulting control strategies was 

chosen as the algorithm of choice for the technical task 4, (demonstrating the integrated 

control system) .  

3.2 Open Loop Commands 

3.2.1 Capstone Remote Monitoring Software 

The Capstone C-60 microturbine uses the staging of six lean-premix injectors to keep 

emissions low; two injectors are constantly fired at start and four injectors are consecutively 

turned on as load increases until all six injectors are firing simultaneously from 50 kW to 60 

kW. Turbine exit temperature (TET), measured in degrees Fahrenheit, is also a parameter 

used to trade off durability versus an increase in the efficiency of the system. Higher TET set 

points will result in more power output but also result in higher nitric oxide emissions and 

possible reduced durability of the engine. Table 12 shows the default staging settings.  The 

last character in the injector notation (e.g., “0” in IJ30F”0”) indicates a minimum ambient 

temperature for which the indicated load in Table 12 corresponds.  “0” indicates 2 deg F, “1” 

indicates 65 deg F, and “2” indicates 128 deg F.   The turbine exit temperature was permitted 

to vary between 1100 and 1175 deg F.   

Using the CRMS, open loop commands were issued to the engine. Nitric oxide and carbon 

monoxide emissions were measured using the reference “CEM-like” analyzer (Horiba PG-350) 

that abides by established United States Environmental Protection Agency (USEPA) protocols 

for emissions measurements.  Appendix A offers details about this analyzer. 
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Table 12: Open Loop Commands — Default Staging and Turbine Exit Temperature  

Staging Turbine Exit Temperature  

3 Injectors 
OFF (kW) IJ3OF0 

30 

IJ3OF1 

21 

IJ3OF2 

18 

Steady State (kW) IJ3SS0 

13.5 

IJ3SS1 

13.5 

IJ3SS2 

13.5 

ON (kW) IJ3ON0 

15 

IJ3ON1 

15 

IJ3ON2 

15 

4 Injectors 
OFF (kW) IJ4OF0 

35 

IJ4OF1 

29 

IJ4OF2 

29 

Steady State (kW) IJ4SS0 

26 

IJ4SS1 

26 

IJ4SS2 

26 

ON (kW) IJ4ON0 

23 

IJ4ON1 

23 

IJ4ON2 

23 

5 Injectors 
OFF (kW) IJ5OF0 

46 

IJ5OF1 

46 

IJ5OF2 

46 

Steady State (kW) IJ5SS0 

43 

IJ5SS1 

43 

IJ5SS2 

43 

ON (kW) IJ5ON0 

40 

IJ5ON1 

40 

IJ5ON2 

40 

6 Injectors 
OFF (kW) IJ6OF0 

56 

IJ6OF1 

56 

IJ6OF2 

56 

Steady State (kW) IJ6SS0 

53 

IJ6SS1 

53 

IJ6SS2 

53 

ON (kW) IJ6ON0 

50 

IJ6ON1 

50 

IJ6ON2 

50 

Source: UC Irvine 

3.2.2 Design of Experiments 

To create the emissions map of the C-60 at all operating conditions, a statistically designed 

experiment was developed. To aide in this, a software package, Design Expert® version 10 

was used. A three-factor, multi-level design was constructed with Load (kW), TET (°F), and 

Injector Staging as the factors. Load and TET are continuous; whereas, the number of 

injectors is discrete. Because the number of injectors readily available to be fired is dependent 

upon the load at which the engine is being operated (± 1 injector can reasonably be fired at 

any given load from the default number of injectors before the engine encounters stability 

issues), the design was split into four smaller studies; a low range (12 – 22 kW), a medium 

range (22 – 38 kW), a high range (38 – 50kW), and 50 – 60 kW were modeled. A total of 27 

points for each design was tested, with four vertices, four centers of edges, and one overall 

centroid (Figure 18). Table 13 through Table 16 show details for each of the experimental 

designs.  
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Figure 18: Design of Experiments Design Points 

 

Source: UC Irvine 

Table 13: 12 – 22 Kilowatt Design 

 Load TET 
# of 

Injectors 

Units kW F  

Type Continuous Continuous Discrete 

Levels N/A N/A 3 

L[1] 12 1100 2 

L[2] 22 1175 3 

L[3]   4 

Source: UC Irvine 

Table 14: 22 – 38 Kilowatt Design 

 Load TET 
# of 

Injectors 

Units kW F  

Type Continuous Continuous Discrete 

Levels N/A N/A 3 

L[1] 22 1100 3 

L[2] 38 1175 4 

L[3]   5 

Source: UC Irvine 
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Table 15: 38 – 50 Kilowatt Design 

 Load TET 
# of 

Injectors 

Units kW F  

Type Continuous Continuous Discrete 

Levels N/A N/A 3 

L[1] 38 1100 4 

L[2] 50 1175 5 

L[3]   6 

Source: UC Irvine 

Table 16: 50 – 60 Kilowatt Factor Levels 

 Load TET 
# of 

Injectors 

Units kW F  

Type Continuous Continuous Discrete 

Levels N/A N/A 2 

L[1] 50 1100 5 

L[2] 60 1175 6 

Source: UC Irvine 

3.2.3 Design Expert Results: Analysis of Variance 

This section shows the results of the model from Design Expert® 10 (DX10). For Table 17 

through Table 24, the analysis of variance (ANOVA) results are shown in table “a” and the 

equation for the model is displayed in table “b”. Each equation is presented as a function of 

load, TET, and the number of injectors.  

A quadratic model was recommended for analyzing each load range, with the exception of 50 

– 60 kW. In all cases, the number of injectors was found to be the most significant factor for 

the model within a 99 percent confidence interval or greater, followed by TET.  
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Table 17a: Analysis of Variance – 12 – 22 Kilowatt Range Nitric Oxide 
ANOVA Results 

Result Value 

Std. Dev. 0.98 

Mean 5.56 

C.V. % 17.61 

PRESS 47.47 

-2 Log Likelihood 62.95 

R-Squared 0.9709 

Adj R-Squared 0.9555 

Pred R-Squared 0.9151 

Adeq Precision 21.708 

BIC 95.90 

AICc 96.70 

Table 17b: Analysis of Variance – 12 – 22 Kilowatt Range Nitric Oxide 

Model Equation 

Value Equation 

Sqrt(NO + 0.50) = 

+285.09390  

-0.27307 * Load 

-0.45631 * TET 

-13.12938 * # of Injectors 

-3.93550E-005 * Load * TET 

-0.18184 * Load * # of Injectors 

-8.29246E-003 * TET * # of Injectors 

+0.023623 * Load2 

+2.17329E-004 * TET2 

+3.44009 * # of Injectors2 

Source: UC Irvine 
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Table 18a: Analysis of Variance – 12 – 22 Kilowatt Range Carbon Monoxide 
ANOVA Results 

Result Value 

Std. Dev. 2.94 

Mean 21.50 

C.V. % 13.70 

PRESS 396.82 

-2 Log Likelihood 117.32 

R-Squared 0.9736 

Adj R-Squared 0.9587 

Pred R-Squared 0.9244 

Adeq Precision 23.615 

BIC 149.90 

AICc 151.99 

Table 18b: Analysis of Variance – 12 – 22 Kilowatt Range Carbon Monoxide 

Model Equation 

Value Equation 

Sqrt(CO + 0.50) = 

-1066.91380  

+0.98280 * Load 

+1.76296 * TET 

+65.60712 * # of Injectors 

-8.91904E-004 * Load * TET 

-0.37298 * Load * # of Injectors 

-0.040235 * TET * # of Injectors 

+0.023617 * Load2 

-7.48197E-004 * TET2 

+0.53945 * # of Injectors2 

Source: UC Irvine 

  



 

37 

Table 19a: Analysis of Variance – 22 – 38 Kilowatt Range Nitric Oxide 
ANOVA Results 

Result Value 

Std. Dev. 0.17 

Mean 0.56 

C.V. % 29.89 

PRESS 1.28 

-2 Log Likelihood -31.64 

R-Squared 0.9818 

Adj R-Squared 0.9715 

Pred R-Squared 0.9484 

Adeq Precision 27.023 

BIC 0.94 

AICc 3.03 

Table 19b: Analysis of Variance – 22 – 38 Kilowatt Range Nitric Oxide 

Model Equation 

Value Equation 

Log10(NO) = 

-26.01879  

-0.64938 * Load 

+0.089138 * TET 

-6.57475 * # of Injectors 

+6.39060E-004 * Load * TET 

-7.96986E-003 * Load * # of Injectors 

+2.62221E-003 * TET * # of Injectors 

-3.42687E-004 * Load2 

-5.18733E-005 * TET2 

+0.33984 * # of Injectors2 

Source: UC Irvine 
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Table 20a: Analysis of Variance – 22 – 38 Kilowatt Range Carbon Monoxide 
ANOVA Results 

Result Value 

Std. Dev. 1.94 

Mean 20.49 

C.V. % 9.45 

PRESS 176.15 

-2 Log Likelihood 91.20 

R-Squared 0.9795 

Adj R-Squared 0.9673 

Pred R-Squared 0.9359 

Adeq Precision 28.393 

BIC 123.39 

AICc 126.91 

Table 20b: Analysis of Variance – 22 – 38 Kilowatt Range Carbon Monoxide 

Model Equation 

Value Equation 

Sqrt(CO + 0.50) = 

-531.78661  

+3.65427 * Load 

+0.45154 * TET 

+136.66794 * # of Injectors 

-4.77444E-003 * Load * TET 

-0.11545 * Load * # of Injectors 

-0.073718 * TET * # of Injectors 

+0.029328 * Load2 

-4.01916E-005 * TET2 

-4.84083 * # of Injectors2 

Source: UC Irvine 
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Table 21a: Analysis of Variance – 38 – 50 Kilowatt Range Nitric Oxide 
ANOVA Results 

Result Value 

Std. Dev. 0.17 

Mean 0.32 

C.V. % 53.42 

PRESS 1.18 

-2 Log Likelihood -29.89 

R-Squared 0.9499 

Adj R-Squared 0.9198 

Pred R-Squared 0.8661 

Adeq Precision 17.788 

BIC 2.30 

AICc 5.83 

Table21b: Analysis of Variance – 38 – 50 Kilowatt Range Nitric Oxide 

Model Equation 

Value Equation 

Log10(NO) = 

+51.46796  

-0.78093 * Load 

-0.026791 * TET 

-8.19065 * # of Injectors 

+3.72860E-004 * Load * TET 

+0.019215 * Load * # of Injectors 

+2.98810E-003 * TET * # of Injectors 

+2.94432E-003 * Load2 

+5.19224E-007 * TET2 

+0.32684 * # of Injectors2 

Source: UC Irvine 
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Table 22a: Analysis of Variance – 38 – 50 Kilowatt Range Carbon Monoxide 
ANOVA Results 

Result Value 

Std. Dev. 3.24 

Mean 20.01 

C.V. % 16.17 

PRESS 377.97 

-2 Log Likelihood 128.03 

R-Squared .8915 

Adj R-Squared .8643 

Pred R-Squared 0.8041 

Adeq Precision 19.820 

BIC 147.58 

AICc 144.45 

Table 22b: Analysis of Variance – 38 – 50 Kilowatt Range Carbon Monoxide 

Model Equation 

Value Equation 

Sqrt(CO) = 

-438.26240  

+1.95155 * Load 

+0.29510 * TET 

+127.37185 * # of Injectors 

-0.47941 * Load * # of Injectors 

-0.087034 * TET * # of Injectors 

Source: UC Irvine 
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Table 23a: Analysis of Variance – 50 – 60 Kilowatt Range Nitric Oxide 
ANOVA Results 

Result Value 

Std. Dev. 0.37 

Mean 2.69 

C.V. % 13.91 

PRESS 2.83 

-2 Log Likelihood 7.47 

R-Squared 0.9642 

Adj R-Squared 0.9534 

Pred R-Squared 0.9276 

Adeq Precision 25.549 

BIC 18.03 

AICc 19.92 

Table23b: Analysis of Variance – 50 – 60 Kilowatt Range Nitric Oxide 

Model Equation 

Value Equation 

NO = 

-17.01774  

+0.077764 * Load 

+0.026865 * TET 

-2.70199 * # of Injectors 

Source: UC Irvine 
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Table 24a: Analysis of Variance – 50 – 60 Kilowatt Range Carbon Monoxide 
ANOVA Results 

Result Value 

Std. Dev. 0.086 

Mean 2.18 

C.V. % 3.94 

PRESS 0.22 

-2 Log Likelihood -40.52 

Table 24b: Analysis of Variance – 50 – 60 Kilowatt Range Carbon Monoxide 
Model Equation 

Value Equation 

Log10(CO) = 

-94.73527  

+1.09357 * Load 

+0.078401 * TET 

+10.53181 * # of Injectors 

-8.42787E-004 * Load * TET 

-0.029820 * Load * # of Injectors 

-7.76025E-003 * TET * # of Injectors 

Source: UC Irvine 

Control Algorithms 
With the statistical analysis completed, algorithms that could be implemented are now 

presented. Four possible algorithms were developed and each is described in this section. 

While nearly unlimited approaches could be considered, the current situation is constrained by 

practicality associated with implementation into the Capstone engine control software. 

Essentially, new information (NO from sensor) can be brought in and used to make decisions 

regarding manipulation of parameters that can currently be controlled. This ensures the 

algorithms presented can actually be implemented into the current software without major 

restructuring of the current engine control software. 

3.3.1 Control Algorithm #1: Nitric Oxide and Carbon Monoxide Optimization 

— Adjust Turbine Exit Temperature and Staging 

Control Algorithm #1 is designed to achieve lower nitric oxide (NO) and carbon monoxide (CO) 

emissions by changing the number of injectors and the TET setpoint (°F). The models 

presented in the previous section show that an increase in the number of injectors lowers NO 

and increases CO; whereas, an increase in TET lowers CO and increases NO. Design Expert® 

10 (DX10) was used to optimize the factors so that minimum emissions could be achieved at 

every load (1 kW – 60 kW). 
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The major features of the control algorithm include the following: 

• Split into five different ranges: 49 – 60 kW, 39 – 48 kW, 30 – 38 kW,  

11 – 29 kW, and less than 10 kw  

• Emissions ranges expected (ppmvd, 15 percent O2) 

• 49 – 60 kW: 1.9 – 2.4 ppmvd NO, 98 – 160 ppmvd CO 

• 39 – 48 kW: 1.9 – 2.4 ppmvd, 160 – 280 ppmvd CO 

• 30 – 38 kW: 7 – 9.2 ppmvd, 220 – 250 ppmvd CO 

• 11 – 29 kW: 10 – 27 ppmvd, 220 – 400 ppmvd CO 

• Less than 11 KW: 30 – 100 ppmvd, 400 – 1000 ppmvd CO 

• TET setpoint (°F) and the number of injectors desired are determined using the Design 

Expert® software. This was used to find the optimal settings that minimized emissions 

at every load.  

• Real-time emissions 1 is a variable for the time-averaged emissions before the engine 

parameters are changed. Real-time emissions 2 is a variable for the time-averaged 

emissions after engine parameters are changed. The difference between the two 

gauges whether the changes in TET and injector staging were effective. If they were, 

the engine will continue to operate in said condition.  

• If changes in TET and injector staging are not effective, a general strategy will be used; 

decrease TET and increase the number of injectors by one, if possible.  

• If changes in TET and injector staging are not effective after five attempts, an error will 

be issued and will signal the operator to monitor emissions for a possible issue with the 

Capstone engine.  

An additional option for the algorithm includes: 

• Error occurs when emissions fall outside of expected ranges for longer than two to 

three minutes in steady-state operation.  

3.3.2 Control Algorithm #2: Nitric Oxide Optimization — Adjust Turbine Exit 
Temperature  and Staging 

Control Algorithm #2 is designed to achieve lower nitric oxide (NO) by changing the number of 

injectors and the TET setpoint. This presents an alternative to Control Algorithm #1 by 

minimizing NO alone (as opposed to minimizing both NO and CO).  

Major features of the control algorithm include the following: 

• Split into five different ranges: 49 – 60 kW, 39 – 48 kW, 30 – 38 kW, 11 – 29 kW, and 

less than 10 kW 

• Emissions ranges expected (ppmvd, 15 percent O2) 

• 49 – 60 kW: 1– 2 ppmvd NO, 100 – 340 ppmvd CO 

• 39 – 48 kW: .2 – .4 ppmvd, greater than 1000 ppmvd CO 

• 30 – 38 kW: .2 – .4 ppmvd, greater than 1000 ppmvd CO 

• 11 – 29 kW: .2 – 8 ppmvd, greater than 1000 ppmvd CO 

• < 11 KW: 10 – 90 ppmvd, greater than 1000 ppmvd CO 



 

44 

• TET setpoint and the number of injectors desired are determined using the Design 

Expert® software. This was used to find the optimal settings that minimized emissions 

at every load.  

• Real-time emissions 1 is a variable for the time-averaged emissions before the engine 

parameters are changed. Real-time emissions 2 is a variable for the time-averaged 

emissions after engine parameters are changed. The difference between the two 

gauges whether the changes in TET and injector staging were effective. If they were, 

the engine will continue to operate in said condition.  

• If changes in TET and injector staging are not effective, a general strategy will be used; 

decrease TET and increase the number of injectors, if possible.  

• If changes in TET and injector staging are not effective after five attempts, an error will 

be issued and will signal the operator to monitor emissions for a possible issue with the 

Capstone engine.  

An additional option for the algorithm includes: 

• Error occurs when emissions fall outside of expected ranges for longer than two to 

three minutes in steady-state operation.  

3.3.3 Control Algorithm #3: Adjust Turbine Exit Temperature  

Control Algorithm #3 is designed to achieve lower nitric oxide (NO) and carbon monoxide (CO) 

by changing the TET setpoint (the injector staging is kept at the default settings). The models 

presented in the previous section show that an increase in the number of injectors lowers NO 

and increases CO; whereas, an increase in TET lowers CO and increases NO.  

Major features of the control algorithm include the following: 

• Split into six different ranges: 49 – 60 kW, 40 – 48 kW, 29 – 39 kW, 23 – 28 kW, 12 – 

22 kW, and less than 12 kW 

• Emissions ranges expected (ppmvd, 15 percent O2) 

• 49 – 60 kW: .3 – 1 ppmvd NO, 500 – 1000 ppmvd CO 

• 40 – 48 kW: .8 – 1 ppmvd, 500 – 730 ppmvd CO 

• 29 – 39 kW: approximately 2 ppmvd, approximately 650 ppmvd CO 

• 23 – 28 kW: 1 – 2 ppmvd, 450 – greater than 1000 ppmvd CO 

• 12 – 22 kW: 0 – 12 ppmvd, greater than 1000 ppmvd CO 

• Less than 12 kW: 100 – 160 ppmvd, 50 – 90 ppmvd CO 

• The TET setpoint for every load range is determined using the Design Expert® 

software. This was used to find the optimal settings that minimized emissions at every 

load.  

• Real-time emissions 1 is a variable for the time-averaged emissions before the engine 

parameters are changed. Real-time emissions 2 is a variable for the time-averaged 

emissions after engine parameters are changed. The difference between the two 

gauges whether the changes in TET were effective. If they were, the engine will 

continue to operate in said condition.  

• If changes in TET and injector staging are not effective, a general strategy will be used; 

decrease TET from the desired setpoint if possible.  
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• If changes in TET are not effective after 5 attempts, an error will be issued and will 

signal the operator to monitor emissions for a possible issue with the Capstone engine.  

An additional option for the algorithm includes: 

• Error occurs when emissions fall outside of expected ranges for longer than two to 

three minutes in steady-state operation.  

3.3.4 Control Algorithm #4: Adjust Staging  

Control Algorithm #4 is designed to achieve lower nitric oxide (NO) and carbon monoxide (CO) 

by changing the injector staging (the TET setpoint is left at the default value).  

Major features of the control algorithm include the following: 

• Split into four different ranges: 39 – 60 kW, 22 – 38 kW, 6 – 21 kW, and 1 – 5 kW  

• Emissions Ranges Expected (ppmvd, 15% O2) 

• 39 – 60 kW: 1 – 3 ppmvd NO, 20 – 550 ppmvd CO 

• 22 – 38 kW: .2 – 1 ppmvd, 350 – 1000 ppmvd CO 

• 6 – 21 kW: 2 ppmvd – 40 , greater than 1000 ppmvd CO 

• 0 – 5 kW: 50 – 100 ppmvd, greater than 1000 ppmvd CO 

• The TET setpoint for every load range is determined using the Design Expert® 

software. This was used to find the optimal settings that minimized emissions at every 

load.  

• Real-time emissions 1 is a variable for the time-averaged emissions before the engine 

parameters are changed. Real-time emissions 2 is a variable for the time-averaged 

emissions after engine parameters are changed. The difference between the two 

gauges whether the changes in TET were effective. If they were, the engine will 

continue to operate in said condition.  

• If changes in TET and injector staging are not effective, a general strategy will be used; 

decrease TET from the desired setpoint if possible.  

• If changes in TET are not effective after five attempts, an error will be issued and will 

signal the operator to monitor emissions for a possible issue with the Capstone engine.  

3.4 Summary of Control Algorithm Development 
After previous work by the University of California, Irvine’s Combustion Laboratory (UCICL) 

showed that the Ford NTK commercial nitric oxide (NO) sensor showed promising results 

regarding reliability and accuracy when measuring emissions in-situ in the exhaust of the 

Capstone C-60 engine, a total of four control loop algorithms were developed that involved 

different strategies to minimize emissions using closed-loop control; all of them involve 

incorporating the feedback of the Ford NTK within the closed-loop control logic of the 60 kW 

Capstone gas turbine. Design Expert® 10 (DX10) was used to develop models for different 

load ranges, including: 12 – 22 kW, 22 – 38 kW, 38 – 50 kW, and 50 – 60 kW. Results from 

ANOVA are presented for each model in previous sections.  

Results from each of the four load ranges show that the number of injectors is the most 

significant factor for each model, within a 99 percent or greater confidence interval. All models 

show that an increase in TET increases nitric oxide (NO) and lowers carbon monoxide (CO) 
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due to the higher firing temperatures; whereas, an increase in the number of injectors 

increases CO and lowers NO due to the lower local equivalence ratios in each individual 

injector (same amount of fuel split to an additional injector). Using DX10, the factors for each 

model (TET setpoint and injector staging) were optimized at every load to minimize emissions. 

These optimal levels for each factor were subsequently used in each of the four control 

algorithms: Control Algorithm 1 is designed to minimize both NO and CO by adjusting TET 

setpoint and injector staging, Control Algorithm 2 is designed to minimize only NO by adjusting 

TET setpoint and staging, Control Algorithm 3 is designed to minimize NO by adjusting the 

TET setpoint and keeping the default staging, and Control Algorithm 4 is designed to minimize 

NO by keeping the default TET setpoint and altering injector staging.  

Of the four control algorithms, Control Algorithm #1 is suggested. Because NO and CO are 

both minimized, it is a practical approach to achieving acceptable emissions levels. For the 

current application, maps of CO emissions as a function of the parameters studied will be 

needed until a similarly robust sensor for exhaust CO is identified/developed. 
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CHAPTER 4:  
Demonstrate Control Performance 

4.1 Overview of Control Algorithm Demonstration 
The third technical task (Task 4) from the CEC EPC-15-062 project outline is: “to implement 

the recommended control algorithm from Task 3 into a demonstration study in which 

emissions levels are changed and the control algorithm demonstrates the ability to minimize 

them.” 

After the development of the initial control logic for Control Algorithm #1, the Combustion 

Laboratory at the University of California, Irvine (UCICL) successfully worked with Capstone 

Turbine Corporation and EmiSense to develop control algorithm software and an analog-

output package capable of sending the NTK sensor signal to the engine communications bay 

(see Figure 19) in the form of two output signals: an NO (ppm) signal (uncorrected and wet) 

from 4-20 mA (milliampere) and 0 mA during the initial warm-up period, and a O2 (percent) 

signal (wet) from 4-20 mA and 0 mA during the initial warm-up period.  

Figure 19: Capstone Communications Bay 

 

Source: UC Irvine 

Once the control logic was programmed onto the engine in the form of a software update, a 

total of four tests were conducted across different load ranges (16 kW, 29 kW, 44 kW, and 55 

kW) to test the algorithm across a wide range of operating conditions. Measurements were 
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taken and recorded using the PG-350 referee instrument as well as the solid-state devices. 

The results of the tests are outlined in the following sections.  

4.2 Testing Results 
Upon loading the latest Capstone codeset (Codeset_C65_v5.40rc) and upgrading the fuel 

system with a Woodward control valve, the engine was able to use the NTK sensor feedback 

(measured in the software as combined heat and power [CHP] water flow [gallons per minute] 

and CHP temperature feedback for NO and O2, respectively; see Figure 20). Software was built 

into the latest codeset to allow for configurable scaling for both outputs. The digital conversion 

device on the NTK board is 8-bit, and the user control board (UCB) in the communications bay 

of the MTG allows for up to 10-bit precision. The NTK analog board outputs information 

(actively averaging the 10 ms (millisecond) signals from the NTK sensor) at a 1 Hz rate, and 

CRMS outputs information every 5 seconds. See Figure 21 for the analog output board.  

Figure 20: Capstone Remote Monitoring Software Screen 

 

Source: UC Irvine 

Figure 21: NTK Analog Output Printed Circuit Board 

 

Source: UC Irvine 

NTK NO Output (ppm)

NTK O2 Output (%)
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For higher loads (20 kW and up) it was found that the best performance was obtained with a 

scaling of 0 – 30 ppm for NO and 0 – 21 percent for O2. The wet, uncorrected readings of the 

NTK sensors were already quite low at loads higher than 30 kW (0 – 2 ppm reported from the 

PG-350). This presented a challenge for the algorithm to distinctly identify if the emissions had 

been lowered once the control logic took effect; however, at the 16 kW load setting, a range 

of 0 – 100 ppm was employed for the NO output scaling as well as a 0 – 21 percent scaling for 

O2. The injector staging also remained the same below 20 kW, but was adjusted above 20 kW 

to allow for higher NO output before the onset of the initial control logic. This was done so the 

algorithm could more easily identify if a reduction in emissions had occurred.  

The algorithm results for 16 kW and 29 kW are displayed in Figures 22 through 29 for NO, O2, 

and CO. The PG-350 10 second sample delay was taken into account, and the data were 

shifted by 10 seconds. The longer response time of the PG-350 results in a slightly delayed 

response compared to the NTK sensor. Note that there are no figures for any loads higher 

than 30 kW, as the algorithm was unable to resolve changes in NO at these points. Because 

the control board in the engine is unable to perform complex calculations, emissions could not 

be corrected in real time.  

4.2.1 16 Kilowatt Results 

The initial spike observed in Figure 22 – Figure 24 for the 16 kW results represents the 

transient emissions during the change from a previous load to the current load condition (21 

kW to 16 kW). If a 5 kW difference from the previous load is demanded, the control algorithm 

will take that difference into effect for that load.  

For Figure 22, the algorithm first measures the emissions (RT Emissions 1) when the desired 

load is achieved. This occurs after a predetermined time has elapsed to achieve steady-state 

conditions. This predetermined time is governed by the variable DBTIME in CRMS, which is set 

to a maximum of 1 minute. The default settings (TET and default staging already preset in 

CRMS) are still used during this first period. Note the 1 ppm resolution of the NTK sensor, 

which results in the small spikes observed. 

The algorithm’s first attempt to lower emissions is around the 16:49:26 mark. This is where 

the optimized settings from Control Algorithm #1 come into effect; however, there is no visible 

reduction in emissions because the optimized settings are nearly the same as the default 

settings programmed onto the engine. The TET is the same (1175°F [635oC]) and the injector 

staging is similar as well. Note that the emissions are measured for a second time at 16 kW 

right before the 16:50:53 mark (RT Emissions 2). This drop in TET is the algorithm’s attempt 

to lower NO emissions, which is successful. The NO after the first drop (after 16:50:53) is 

visibly lower than before. The algorithm observes that after another steady-state period the 

second emissions measurements are lower than before, so it continues to operate with the 

optimized settings. 

In Figure 23 and Figure 24, the CO and O2 results are displayed. Note the 1 percent resolution 

of the NTK sensor, which results in two large spikes in Figure 23. The CO results in the figure 

also show that the algorithm is working. By decreasing the TET, the local equivalence ratios of 

each injector decrease, so NO decreases but CO increases.  
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Figure 22: 16 Kilowatt Nitric Oxide Results 

 

Source: UC Irvine 
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Figure 23: 16 kilowatt Oxygen Results 

 

Source: UC Irvine 
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Figure 24: 16 Kilowatt Carbon Monoxide Results 

 

Source: UC Irvine 

4.2.2 29 Kilowatt Results 

Figure 25 – Figure 27 display the results for the 29 kW case. Note that from 14:54:14 – 

14:57:07 the load had changed from 32 kW to 29 kW, so the algorithm had not reset to the 

initial logic. A minimum change of 5 kW is needed for control algorithm logic to start from the 

beginning. The first emissions measurements (RT Emissions 1) were taken sometime between 

14:54:14 and 14:57:07.  

Right before the 14:57:07 mark, a large spike is observed, which is measured as RT Emissions 

2. Because the algorithm sees a large increase in NO, it attempts to correct it by lowering the 

TET by 15 degrees. A second and a third attempt also occur but eventually after the third 

attempt a reduction is seen and the algorithm continues to operate with the optimized 

settings.  

The results for O2 and CO are also displayed in Figure 26 and Figure 27. The sensor reports 

higher O2 percentages than the PG-350 for this case. The CO results are also indicative of a 

change of TET as the emissions rise from approximately 140 – 160 ppm. 
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Figure 25: 29 Kilowatt Nitric Oxide Results 

 

Source: UC Irvine 
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Figure 26: 29 Kilowatt Oxygen Results 

 

Source: UC Irvine 
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Figure 27: 29 Kilowatt Carbon Monoxide Results 

 

Source: UC Irvine 

4.3 Summary of Control Algorithm Demonstration 
Using the control algorithm logic developed in Technical Task 3 (Control Algorithm #1), a 

Capstone engine software codeset and hardware package were developed with the assistance 

of Capstone Turbine Corporation and EmiSense to demonstrate the ability of Control Algorithm 

#1 to successfully use the feedback of the NTK sensor to lower NO emissions in real time. 

After loading the codeset and sending the analog output of the sensor to the engine 

communications bay, the algorithm was able to successfully demonstrate that it could 

effectively lower NO emissions by lowering the TET and injector staging and subsequently use 

the feedback from the sensor to determine if further corrections were needed.  

Because of the successful completion of the final  Technical Task, the NTK sensor and control 

logic developed in Technical Task 3 represent a viable alternative to traditional CEMS for 

monitoring and certifying emissions performance for DG in California. The coupling of the 

sensor with the control algorithm represents an inexpensive and viable approach to helping 

improve the existing certification procedure.  
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CHAPTER 5:  
Discussion of Benefits 

5.1 Overview of Benefits 
This section details the findings from the midterm benefits project questionnaire. Because the 

NTK sensor (coupled with the control algorithm logic and associated feedback from the 

sensor) represents a viable approach to traditional CEMS, it is important to highlight the 

benefits and associated cost of using this technology versus employing traditionally expensive, 

albeit ARB certified, equipment for monitoring and emissions certification. The scenario 

presented in this case is one of many possible scenarios in which this technology can be used 

as a NO reduction strategy for DG devices. 

5.2 “Business as Usual”  
If “business as usual” were to be conducted for DG devices in California, dispatchable 

generation (that is, microturbines and rotary engines) would continue to generate power 

without any control technology to minimize emissions — specifically nitric oxide — at most, if 

not all, operating conditions. As was discussed in the introduction section of this report, DG 

sold in California undergoes a certification procedure (as outlined by the California Air 

Resources Board) to facilitate the deployment of clean (low polluting) devices in the state. The 

current standards were first established in 2003, with further amendments passed in 2007. 

Since 2007, fossil-fueled distributed generation has been certified to an emissions standard of 

.07 pounds per Megawatt-hour (lb/MW-hr) for NOx, .10 lb/MW-hr for CO, and .02 lb/MW-hr 

for VOCs. In 2013, the 2007 standards were also adopted for DG operating on renewable fuels 

(digester gas, landfill gas, and oil-field waste gas) to help meet the state’s goal of mitigating 

greenhouse gas (GHG) emissions while also lowering criteria pollutants. 

Figure 28 (first shown in Chapter 2), shows the NOx emissions as a function of load for the 

Capstone microturbine generator (MTG) employed as the representative DG device in this 

project. This microturbine represents one in the fleet of California MTGs that collectively 

generate 50 MW. The device (certified under the 2003 ARB requirements) was operated at the 

UCI Combustion Laboratory and emissions were collected with the HORIBA PG-350 analyzer. 

For more information on this, please refer to Chapter 2 and Appendix A with the associated 

testplan. To estimate the total criteria pollutant emissions reduction for the 50-MW fleet using 

inexpensive solid-state NO sensors as monitoring devices and as corrective tools for reducing 

NO emissions, it is pertinent to establish a baseline scenario.  

Figure 29 shows the California ISO “duck curve” chart (previously shown in Chapter 2) that 

illustrates the current situation regarding growing renewable penetration in California. In a 

baseline scenario with high renewable penetration throughout the state (as it is now in 2018), 

it is likely the MTG will have to be operated at full load part of the day when renewable 

generation is low, such as at night or in the early morning (4:30 A.M. – 10:00 A.M. and 11:30 

P.M. – 4:30 A.M.); at part-load when renewable penetration just starts to increase in the late 

morning (10:00 A.M. – 12:00 P.M.), and when it decreases during the early evening (7:30 P.M. 

– 11:30 P.M.); and at the lowest loads when renewable penetration peaks (12:00 P.M. – 7:30 

P.M.). Assuming the MTG spends a third of its time in a typical day operating in each of the 
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established cases, the device would operate at full load (60 kW) for eight hours, at the lowest 

loads (10kW – 22 kW) for eight hours, and at part load (22 kW – 38 kW) for eight hours.  

Figure 28: Nitric Oxide/Nitrogen Dioxide vs. Load for Capstone C-60 
Microturbine Generator 

 

Source: UC Irvine 
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Figure 29: California Independent System Operator "Duck Curve" Chart  

 

Source: UC Irvine, adapted from California Independent System Operator. 

Using Figure 28 to estimate the total emissions from the 50-MW fleet, at full load it would be 

expected that the MTG would emit between 0 – 2 ppmvd NO (1 ppmvd average), at part load 

0 – 5 ppmvd NO (2.5 ppmvd average), and at the lowest loads between 35 ppmvd to 15 

ppmvd (25 ppmvd average) while operating on natural gas. Using the recorded air and fuel 

flow rates of the Capstone C-60 MTG at 60 kW (3905 lb/hr of air and 17 lb/hr fuel), at 29 kW 

(3000 lb/hr of air and 20 lb/hr of fuel), and at 16 kW (2308 lb/hr air and 13 lb/hr fuel), it is 

estimated that one-half ton of NO would be produced per year per turbine (mostly from 

operation at 16 kW) if operating 365 days a year in the way previously described (eight hours 

at each load condition): .028 tons/year are produced at 60 kW, .054 tons/year are produced at 

29 kW, and .42 tons/year are produced at 16 kW. This corresponds to 415 tons of NO per year 

emitted in California from the 50-MW MTG fleet, assuming the entire fleet is composed of 

Capstone C-60 engines.  

5.3 NO Reduction with Solid-State Sensors Strategy 
Figure 30 and Figure 31, shown previously in Chapter 4, show the emission reductions that 

were observed when using the solid-state NO sensor as a feedback device for the Capstone C-

60 MTG. These reductions were observed at 29 kW and 16 kW, since the emissions at full-load 

were already minimized. For the 16-kW case, a 10 percent reduction of NO was observed 

when comparing RT Emissions 1 (approximately 10 ppm) with RT Emissions 2 on the second 

attempt (approximately 9 ppm). For the 29-kW case, a 10 percent reduction was similarly 

observed when comparing RT Emissions 2 (approximately 15 ppm) with RT Emissions 2 on the 

third attempt (approximately 13 ppm). Assuming a 10 percent reduction in emissions would 

remain fixed for 29 kW and 16 kW at all times, this corresponds to .45 tons of NO per year per 
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engine. The reduction for one engine would be .05 tons per year. For all the target adopters 

(California’s fleet of MTGs collectively generating 50 MW), this corresponds to roughly 376 

tons per year, a reduction in 39 tons per year of NO if a 10 percent improvement in 

performance was achieved. Appendix C details the calculations used to arrive at these 

numbers. 

This strategy represents an effective approach to minimizing emissions at part load where 

emissions performance is typically poor and where it is not monitored under the current 

certification procedure. About 85 percent of the total emissions in this strategy comes from the 

NO that is produced at part load. With renewable penetration increasing each year, the need 

for dispatchable devices to operate at part load will increase, and the effective tons of NO that 

are mitigated will continue to increase. This strategy will only become more viable and 

practical with time.  

Figure 30: 16 Kilowatt Emissions Reduction 

 

Source: UC Irvine 
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Figure 31: 29 Kilowatt Emissions Reduction 

 

Source: UC Irvine 

5.4 Cost of Strategy 
The cost of using this strategy represents a one-time fixed capital cost as well as an annual 

operation cost to replace the sensor. Woo and Glass (2012)  established that the ideal solid-

state sensor technology would last for 150,000 miles (in an automotive vehicle) or a 10-year 

period. For UCICL, the one-time incremental cost to develop the solid-state sensor package 

(sensor box, analog-output PCB, and sensor integration with engine) amounted to 

approximately $2,000. Assuming a discount rate of 5 percent and an economic life of 10 years 

for each sensor, the present value of the one-time incremental cost amounts to $9,722. This 

also amounts to a one-time annualized cost of $1,259 every 10 years.  

When comparing these combined costs to the cost of traditional CEMS analyzers and 

equipment, the savings is significant. Table 25 displays the one-time incremental costs 

associated with traditional emission monitoring analyzers. These are commonly used within the 

power generation industry as monitoring devices for systems with a nameplate capacity of 25 

MWe or greater. Note that these are solely upfront capital costs that do not take into account 

the annualized cost, maintenance cost of installing the equipment, or the other equipment 

needed to complete the CEMS package. For a typical CEMS NOx extractive analyzer (capable 

of only measuring NO/NO2) that adheres to established U.S. EPA and ARB sampling methods, 

the cost  is $10,440 (greater than $15,000 accounting for inflation between 2000 and 2018). 

Note that this analyzer is also extractive and not in-situ, so it also requires additional 

equipment for proper sample conditioning and extraction.  

Note that this closed-loop control strategy uses parameters in which the engine operates to 

minimize the NO emissions. It does not employ the use of other control strategies such as 
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selective catalytic reduction found in diesel vehicles. This allows for significant cost savings 

and does not alter the configuration or performance of the engine in a significant manner 

compared to the current setup.  

Table 25: Default Analyzer and Monitor Equipment Costs for Continuous Emission 
Monitoring Systems ($)  

 

Source: EPA [7] 
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CHAPTER 6:  
Conclusions and Recommendations 

The University of California, Irvine Combustion Laboratory successfully completed three 

technical tasks as part of a CEC-funded project (EPC-15-062) to demonstrate the viability of 

using inexpensive solid-state nitric oxide sensors (commonly used in the automotive industry 

as an integral part of selective catalytic reduction systems), coupled with closed-loop control 

logic, to monitor and minimize the NO emissions from dispatchable generation. Several 

conclusions were drawn from the technical tasks: 

• The solid-state sensors represent a viable approach to traditional continuous emissions 

monitoring instruments for monitoring the emissions performance of dispatchable 

generation devices. Although the NTK sensor performed more comparably to the 

established referee instrument (PG-350) with a 99 percent confidence interval or 

greater for three of the five measured sensor characteristics, both devices followed 

similar measurement trends compared to the PG-350 analyzer. Both sensors achieved 

faster response times and proved to be robust and accurate over the entire testing 

period. 

• The successful demonstration of the closed-loop algorithm control and the 10 percent 

reduction in NO observed across two different test cases (16 kW and 29 kW) show that 

the sensor, coupled with the control logic, represents a viable approach to using 

traditional CEMS to monitor and correct the emissions performance of DG systems in 

real time. 

• Using the sensors and associated logic of the control strategy is an inexpensive solution 

to amending the current certification procedure for DG systems. Because the current 

certification procedure does not account for emissions performance at part load, using 

the solid-state devices and control logic strategy will benefit the health of Californians 

by reducing NO emissions at part load where emissions are typically poor. Using current 

CEMS equipment and analyzers would not be a cost-effective strategy to improve the 

current standards. 

The research team recommends use of the NTK sensor and associated control algorithm 

developed for this project in California’s MTG fleet. A similarly robust, accurate, high-

temperature CO sensor capable of providing feedback to the control algorithm (CO ppm) is 

also recommended, thus enabling real-time adjustments to reduce both CO and NO.  
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LIST OF ACRONYMS 

Term Definition 

ANOVA Analysis of variance 

California ISO California Independent System Operator 

CEMS Continuous emissions monitoring system 

CO Carbon monoxide 

CRMS Capstone Remote Monitoring Software 

DAQ Data acquisition equipment 

DG Distributed generation 

DOEx Design of experiments 

GPM Gallons per minute 

Hz Hertz 

kW Kilowatts 

lb/MW-hr Pounds per megawatt-hour 

LDL Lower detectable limit 

MTG Microturbine generator 

MW megawatt 

mWe Megawatts electric 

NO Nitric oxide 

Nox Oxides of nitrogen 

O2 Oxygen  

PM Particulate matter 

Ppm Parts per million 

Ppmvd Parts per million by volume, dry 

Psi Pounds per square inch 

scf  Standard cubic feet 

SCAQMD South Coast Air Quality Management District 

TET Turbine exit temperature 

UCICL Combustion Lab at the University of California, Irvine 

VOCs Volatile organic compounds 
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APPENDIX A 
Technical Task 2 Test plan 

EPC-15-062 Technical Task 2 Test Plan 

Introduction 

As part of a research project funded by the California Energy Commission Grant EPC-15-062, 

the Combustion Lab at the University of California, Irvine will be installing solid state NO 

sensors in the exhaust of a C-65 Capstone Microturbine to measure NOx levels. The University 

of California, Irvine will be responsible for performing a robustness test on each of the 

candidate sensors as well as monitoring the output over an extended period of testing. These 

solid-state sensors will be measured against a CEMS instrument (continuous emission 

monitoring system), such as the Horiba PG-350. Data will be collected and analyzed to 

determine the sensor that best matches the output and characteristics of the referee analyzer 

according to: 

• Non-Linearity 

• Precision 

• Lower Detectable Limit 

• Concentration Resolution 

• Lag Time and Rise Time 

Candidate Sensors, Referee Instruments, Data Acquisition Equipment 

The sensors and referee instruments are shown in Figure A-1. 

Figure A-1: Equipment 

 

Source: UC Irvine 

Equipment Type Description Quantity

Sensors NTK Nox NTK Sensor 3

UniNOx Continental Sensor 3

NOxTrac CoorsTek Sensor 3

Referee Instrument PG-350 Horiba CEMs Equipment 1

PG-250

Horiba CEMs Equipment -> for 

other calibration range 1

Engine C-65 Capstone Microturbine, 65 kW 1
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The primary referee analyzer (Horiba PG 350) has the following specifications and established 

measurement procedures incorporated (see Table A-1): 

Table A-1: Horiba PG-350 Specifications 

 

Source: UC Irvine 

Each sensor can handle a maximum exhaust gas temperature of 800 °C (950 °C for 100 

hours).  

Proposed Testbed Layout 

Pictured in Figure A-2 is a proposed layout of the Test Bed. An exhaust duct will start out from 

the top of the C-65 Capstone casing and make its way down to a horizontal section. At this 

section, a sample line(s) will be installed which leads back to the referee instrument(s) in a 

designated data acquisition (DAQ) control room. The sensors installed in the horizontal section 

will send their signal along a CAN-Bus line back to the DAQ room.  

Assuming a colder day (and at nights), the exhaust length of the Capstone engine will need to 

be a minimum length of 22 feet for fully developed flow.  

A designated DAQ room will include equipment for both monitoring and storing data from the 

sensors as well as the referee instrument(s) that will be used. Figure A-3 shows a schematic of 

the sensor and the flow of communication from the sensor on the Controller Area Network 

(CAN-Bus). Each sensor provided from CoorsTek will include a power supply and device used 

for signal conditioning. A device that converts CAN-Bus to USB will be used to connect the 

CAN-Bus to a computer. Labview software and designated VI’s will be used to monitor all the 

signals on a single graph. This data will subsequently be used later for analysis. 
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Figure A-2: Test Bed Layout  

 

Source: UC Irvine 

Figure A-3: Data Acquisition Equipment Room 

 

Source: UC Irvine 
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Figure A-4: Horizontal Duct Arrangement 

  

Source: UC Irvine 

Installation Configuration: 

The solid-state electrochemical sensors will be installed in the exhaust stack of a Capstone C-

65 Microturbine Engine. A total of 9 sensors will be installed (3 NTK sensors, 3 UniNOx 

sensors, 3 NOxTrac sensors), all along a horizontal section of the exhaust duct.  

Sensors will installed in the following configuration. 

• 3 sensors installed in each plane, 120° apart from one another 

• Each plane will be equidistant from one another 

• Adjacent sensors from each consecutive plane will be spread out 30° from one another  

• Sensor configuration allows up to 16 sensors to be installed on exhaust duct without 

affecting the flow upstream of another sensor 

• Hardware provided allows for up to 16 sensors on the same communication bus.  

Sensor Characteristics and Testing Approaches 

Taken from ANSI/ISA–51.1–1979 (R1993) [7]: 

• For each of the following static performance characteristics, the test equipment shall be 

allowed to stabilize under steady-state operating conditions. All testing shall be done 

under these conditions. The operating conditions which would influence the test shall 

be observed and recorded.  

• The number of test points to determine the desired performance characteristic of each 

sensor should be distributed over the range. They should include points at or near 

(within 10%) the lower and upper-range values of each sensor. There should not be 
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less than 5 sampling points and preferably more. The number and location of these test 

points should be consistent with the degree of exactness desired and the characteristic 

being evaluated.  

• Prior to recording observations the device under test shall be exercised by a number of 

full range traverses in each direction. 

• At each point being observed the input shall be held steady until the device under test 

becomes stabilized at its apparent final value. 

• Tapping or vibrating the device under test is not allowed unless the performance 

characteristic under study requires such action (vibration due to engine running is 
unavoidable).  

Figure A-5: Calibration Curve [7] 

 

Source: UC Irvine 

Calibration Cycle: First step for each sensor characteristic is to produce a calibration cycle: 

• Maintain test conditions and precondition the test device as indicated above. 

• Observe and record output values for each desired input value for one full-range 

traverse in each direction starting near mid-range value. 

• Final input must be approached from the same direction as the initial input.  

• Apply the input in such a way as to not overshoot each input value. 

Calibration Curve: Then use the calibration cycle to produce a calibration curve: 

• Determine the difference between each on served output value and its corresponding 

ideal output value. 

• Present difference (deviation) as percent of ideal output span. 

• Plot deviation vs. input 
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Linearity: The closeness to which the output approximates a straight line. This is usually 

measured as nonlinearity and expressed as linearity (the maximum deviation between an 

average curve and a straight line). Linearity can be expressed three ways: independent 

linearity, terminal based linearity, or zero-based linearity. We will use the independent based 

linearity in our definition and analysis [7]. 

We will measure the non-linearity of each sensor according to: 

𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦𝐼𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡(%) =
𝐷𝑖𝑛 (𝑀𝑎𝑥)

𝐼𝑁𝑓.𝑠
∙ 100      [1]    

𝐷𝑖𝑛(𝑀𝑎𝑥) Is the maximum deviation (equal at several points)? 

𝐼𝑁𝑓.𝑠. Is the maximum, full scale input 

Figure A-6: Linearity 

 

Source: UC Irvine 

Proposed Test Approach: To best reflect the linearity from each of the sensors, the following 

steps should be performed [7]. The following are steps in accordance with procedures set 

forth by the ANSI in ANSI/ISA–51.1–1979 (R1993) 

• Plot a deviation curve, which is the average of the corresponding upscale and 

downscale output readings. 

• Draw a straight line through the average deviation curve so as to minimize the 

maximum deviation (independent linearity). It is not necessary that the straight line be 

horizontal or pass through the end points of the average deviation curve.  

• Find the maximum deviation over the input span you have used. 

• Find the nonlinearity percentage for each sensor. 

Precision:  According to ISO 5725, precision is the closeness of agreement among a set of 

results [8]. This refers to the degree of reproducibility in the output readings, and the stability 

of the instrument with regards to readings [1]. It is a measure of dispersion or scattering 
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around the mean value and usually expressed in terms of standard deviation, standard error or 

a range (difference between the highest and the lowest result) [2].  

Proposed Test Approach: To best reflect the precision characteristics of each sensor, we will 

follow the steps outlined in ANSI/ISA–51.1–1979 (R1993) for repeatability that will also help 

us determine precision. It may be determined directly from the deviation values of a number 

of calibration cycles [7]. 

• Perform a number of calibration cycles as described under “Calibration Cycle.” 

• Prepare a calibration curve based on the maximum difference between all upscale and 

downscale readings for each input observed. The deviation values are determined from 

the number of calibration cycles performed from step 1 above.  

• Maintain the test device in its regular operating condition, energized and with an input 

test signal applied.  

• At the end of the specified time, repeat steps 1 and 2.  

• Find the maximum difference between recorded output values (both upscale and 

downscale) for a given input value 

• Report precision as a percentage of output span (for both upscale and downscale). This 

will be the maximum deviation from ideal output in upscale and maximum deviation 

from ideal output in downscale (e.g. Precision in upscale direction is .05% of output 

span, precision in downscale direction is .06% of output span).  

Figure A-7: Precision 

 

Source: UC Irvine 

Lower Detectable Limit: This is the lowest concentration level that can be statistically 

differentiated from the zero value with 99% confidence [5].  

Proposed Test Approach: To best quantify the LDL, we will do the following: 

• Measure signal from n samples points (n > 7) when the engine is not running (~0 ppm 

NOx present in exhaust). 
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• Compute the standard deviation of the measurements for a set amount of time 

• Compute the average of the data set for a set amount of time. 

• Compute the signal detection limit: D. L. = σzero + 3 ∙ S. D.zero  

• Record the time of testing, the engine load condition, as well as the number of data 

points taken for the LDL. 

Figure A-8: Lower Detectable Limit 

 

Source: UC Irvine 

Concentration Resolution: The smallest detectable incremental change of input parameter that 

can be detected in the output signal. It is either a proportion of the full reading or reported in 

absolute terms [1]. 

Proposed Test Approach: To fully understand the resolution of the sensor, the following 

parameters must be identified for each sensor [9]: 

• Resolution specification  

• Bandwidth at which the resolution is obtained 

• If any bandwidth filters are integral to the sensor  

• Unit and type (P-P or RMS) of measure of the resolution specification 

To calculate the P-P resolution: 

• Record the output at any given input to the sensor over a given period of time. Make 

sure to record the input conditions as well as the duration of the test, as well as the 

number of samples taken. 

• Determine the frequency and bandwidth at which the sampling data is being given. 

• Analyze the data and determine the maximum peak-to-peak distance.  
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Figure A-9:  Concentration Resolution 

 

Source: UC Irvine 

Lag Time and Rise Time: Rise time the time it takes to rise from 10% to 90% of the output 

signal step height. Lag time is the time taken to reach 10% of output signal step height [10]. 

In summary: 

• 𝑡𝑅𝑖𝑠𝑒 = 𝑡.9∙𝐹.𝑉. − 𝑡.1∙𝐹.𝑉. 

• 𝑡𝐿𝑎𝑔 = 𝑡.1∙𝐹.𝑉. 

Where F.V. is the final value  

Proposed Test Approach: In parallel with the proposed test approaches listed above, perform 

the following steps: 

• Have designated Mass Flow Controller perform a step input increase in NO that 

produces a noticeable change in output signal on the sensor being tested. Make sure 

output signal on the sensor is able to reach a steady-state value before stepping down 

the input. 

• Record testing duration and input conditions, as well as the step input value of the 

MFC. 

• Analyze the data. Determine the rise time and lag time for the sensor at the specified 

step input value for the sensor.  

• Determine an equation that relates change in step input to change in rise time and lag 

time (equation for time constant?). 
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Figure A-10: Lag Time and Rise Time 

 

Source: UC Irvine 

References: 

• http://www.ni.com/white-paper/14860/en/ 

• http://www.fao.org/docrep/W7295E/w7295e08.htm 

• http://www.ni.com/white-paper/4439/en/ 

• https://en.wikipedia.org/wiki/Transient_response 

• https://en.wikipedia.org/wiki/Detection_limit 

• http://www.lionprecision.com/definitions/resolution.html 

• ftp://ftp.unicauca.edu.co/Facultades/FIET/DEIC/Materias/Instrumentacion%20Industrial

/Instrument_Engineers__Handbook_-

_Process_Measurement_and_Analysis/Instrument%20Engineers'%20Handbook%20-

%20Process%20Measurement%20and%20Analysis/1083ch1_3.pdf 

• https://en.wikipedia.org/wiki/Accuracy_and_precision#ISO_Definition_.28ISO_5725.29 

• http://www.lionprecision.com/tech-library/technotes/article-0010-sensor-resolution.html 

•  https://www.iso.org/obp/ui/#iso:std:iso:10155:ed-1:v1:en:term:3.3.1.1 

Testing Procedure 

An initial test will be conducted, followed by a test each week for the first month and followed 

by a test each month subsequent to the weekly tests. NOx injection test will be conducted in 

which NOx is introduced to the exhaust upstream of the sensors. Such a test will give greater 

control over input parameters that limit how we can test and quantify the characteristics of 

each sensor. We will: 

http://www.ni.com/white-paper/14860/en/
http://www.fao.org/docrep/W7295E/w7295e08.htm
http://www.ni.com/white-paper/4439/en/
https://en.wikipedia.org/wiki/Transient_response
http://www.lionprecision.com/definitions/resolution.html
ftp://ftp.unicauca.edu.co/Facultades/FIET/DEIC/Materias/Instrumentacion Industrial/Instrument_Engineers__Handbook_-_Process_Measurement_and_Analysis/Instrument Engineers' Handbook - Process Measurement and Analysis/1083ch1_3.pdf
ftp://ftp.unicauca.edu.co/Facultades/FIET/DEIC/Materias/Instrumentacion Industrial/Instrument_Engineers__Handbook_-_Process_Measurement_and_Analysis/Instrument Engineers' Handbook - Process Measurement and Analysis/1083ch1_3.pdf
ftp://ftp.unicauca.edu.co/Facultades/FIET/DEIC/Materias/Instrumentacion Industrial/Instrument_Engineers__Handbook_-_Process_Measurement_and_Analysis/Instrument Engineers' Handbook - Process Measurement and Analysis/1083ch1_3.pdf
ftp://ftp.unicauca.edu.co/Facultades/FIET/DEIC/Materias/Instrumentacion Industrial/Instrument_Engineers__Handbook_-_Process_Measurement_and_Analysis/Instrument Engineers' Handbook - Process Measurement and Analysis/1083ch1_3.pdf
https://en.wikipedia.org/wiki/Accuracy_and_precision#ISO_Definition_.28ISO_5725.29
http://www.lionprecision.com/tech-library/technotes/article-0010-sensor-resolution.html
https://www.iso.org/obp/ui/#iso:std:iso:10155:ed-1:v1:en:term:3.3.1.1
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• Inject while running the engine at steady state conditions (50 – 100% load). Record 

input conditions. 

• Run injection tests at regularly scheduled intervals throughout testing period and 

determine if sensor characteristics change over time.  

• CEMs equipment run during these scheduled tests. They will be calibrated before and 

after to account for drift. CEMS instruments will sample every 15 minutes during steady 

state operation and every 15 seconds during load profile testing. 

This will allow us to test for the follow parameters listed: 

• Linearity: Run the test approach as listed in section 1.4. Run in parallel with the CEMS 

instrument. Make sure NO is injected and diluted depending on which direction over the 

span you are trying to traverse. Make at least 7 measurements per input. Make sure 

incremental increases/decreases in input are as little as possible in each direction.  

• Precision: Run the test approach as listed in section 1.4. Run in parallel with the CEMS 

instrument. Achieve data in parallel for linearity listed above. 

• Lower Detectable Limit: Run the test approach as listed in section 1.4. Achieve data in 

parallel with Linearity and Precision listed above. Try to achieve as close to 0% of the 

full span as possible. 

• Concentration Resolution: Run the test approach as listed in section 1.4. Achieve data in 

parallel with other characteristics listed above. Determine P-P distance at each input for 

at least 7 measurements per input. 

• Lag Time and Rise Time: Run the test approach as listed in section 1.4. Designate mass 

flow controller to continually ramp NO injection up and down at a specified input span 

that is most easily achieved.  

After these testing periods, the robustness test will be resumed and the load profile included 

below will be followed. 

Load Profiles: The following load profile (Figure A-11 provided from Capstone will be used for 

our 6 months of testing.  
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Figure A-11:  Full Day Load Profile Data 

 

Testing Duration and Intervals: 

• Each time the Capstone engine runs the load profile above it will run for the specified 

time 

• The Capstone engine, once started, will be ramped up to 100% and then dwell there 

until steady-state conditions are achieved. Once in steady-state, the engine can now 

run the suggested load profile. 

• Once the suggested load profile has been performed, the engine will run at 100% for 

the rest of the duration of the testing day.  

• Engine will run testing profile once each day (excluding weekends), for 5 days a week. 
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Start

100% 0

Load 100% 65 40 40 0.7

Load 95% 62 5 45 0.8

Load 90% 59 5 50 0.8

Load 85% 55 5 55 0.9

Load 80% 52 5 60 1.0

Load 75% 49 5 65 1.1

Load 70% 46 5 70 1.2

Load 65% 42 5 75 1.3

Load 60% 39 5 80 1.3

Load 55% 36 5 85 1.4

Load 50% 33 5 90 1.5

Load 45% 29 5 95 1.6

Load 40% 26 5 100 1.7

Load 35% 23 5 105 1.8

Load 30% 19 5 110 1.8

Load 25% 16 5 115 1.9

Load 20% 13 5 120 2.0

Load 15% 10 5 125 2.1

Load 10% 6 5 130 2.2

Load 5% 3 5 135 2.3

Load 0% 0 5 140 2.3

Load 5% 3 5 145 2.4

Load 10% 7 5 150 2.5

Load 15% 10 5 155 2.6

Load 20% 13 5 160 2.7

Load 25% 16 5 165 2.8

Load 30% 20 5 170 2.8

Load 35% 23 5 175 2.9

Load 40% 26 5 180 3.0

Load 45% 29 5 185 3.1

Load 50% 33 5 190 3.2

Load 55% 36 5 195 3.3

Load 60% 39 5 200 3.3

Load 65% 42 5 205 3.4

Load 70% 46 5 210 3.5

Load 75% 49 5 215 3.6

Load 80% 52 5 220 3.7

Load 85% 55 5 225 3.8

Load 90% 59 5 230 3.8

Load 95% 62 5 235 3.9

Load 100% 65 5 240 4.0

Stop
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• Engine will run at 100% load during the day, 50% load at night for 5 days a week, 24 

hours a day. 

• Testing will begin on the first startup of the Capstone C-65 and end 6 months later 

when the Capstone C-65 is brought to 0% load (shutoff).  

• Testing with NOx injection will be scheduled at regular intervals throughout the testing 

period. A critical flow orifice will be used to control the injection. 

Data Acquisition, Test Data and Analysis: 

• Data will be taken for the duration of the testing period specified above, 24 hours per 

day for 5 days a week (excluding maintenance hours). 

• Data will be taken from each sensor at a rate of 10 Hz 

• Data will be taken from the referee sensor at a rate of 1 Hz 

• Data taken before and after load profile is being performed will be stored as steady-

state data. 

• Data taken while load profile is being performed will be stored at transient data.  

• Data will be analyzed using programs such as MATLAB and Excel  

• Data will be stored on a DAQ designated computer and backed-up with an external 

hard drive. 

Sensors and Hardware, Referee Instrument Calibration: 

• A total of three sensors for each type of sensor (UniNOx, NTK, NOxTrac) will be 

provided to ensure statistically meaningful data is received.  

• Two referee instruments will used during testing, one calibrated at low range and one 

calibrated at high range (ppm of NOx). During load profile testing, two sample lines will 

be running to both.  

• Each referee instrument will be calibrated before and after the load profile is performed 

to help prevent calibration drift. They will also be calibrated at other select times 

throughout the day while the C-65 is at 100% load, once in the morning and once at 

night.  

Explanation 

The suggested load profile in Figure A-11 has several implications for our testing conditions. 

As the C-65 starts from 100% load percentage, ramping down to 25% load will allow for a full 

range of testing conditions for the sensor while left in situ. 

As shown in, during the trial-run of the Uni-NOx sensor, a significant change in ppm of NOx 

can occur while the engine switches the number of injectors it is operating on. These types of 

change will give us the best conditions in which to perform the robustness test. Running the 

engine from 100% to 0% load will give us a better of idea of how the sensor performs over a 

wide range of different NOx levels and other conditions in the exhaust. 

Figure A-12: C-65 Data 
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Source: UC Irvine 

From the preliminary sensor data (UniNOx sensor), it becomes apparent that multiple referee 

instruments may be required for this test to ensure appropriate coverage of the expected NOx 

range. As more injectors are switched on, the need for a lower calibrated range NOx analyzer 

becomes our primary referee instrument, whereas for lower calibrated ranges both will be. 

Additional Comments and Questions 

While this test plan incorporates some experiential results, some questions remain which will 

be addresses as testing commences. In some cases, assumptions/recommendations have 

been suggested. 

1. Can CEMs instruments only be included in the NO injection phase? Will the data they 

provide during these stages give us enough information to make a well informed 

decision about which sensor is the best choice for integration in closed-loop control? 

Which sensor is the most robust? 

2. How many Horiba CEMs equipment should we have calibrated? There are several 

ranges over which they can be calibrated. 

3. Should the CEMs instrument be included in the whole test plan? Should they be 

extracting samples at all times? 

4. How often should the referee instrument(s) be calibrated? 

5. Will the NO injection test be the sole factor in determining the instrument 

characteristics? Other factors during the reliability test could be attributed to the decline 

in reliability and degradation of sensor measurement quality. Will these others factor 

remain unknown or should we try to determine their causes? 

Time (sec)

N
O

x
(p

p
m

)

10 20 30 40 50

50

100

150

15 kW 3 Inj.

15 kW 2 Inj.

26 kW 3 Inj.

26 kW 4 Inj.

43 kW 4 Inj.

43 kW 5 Inj.

54 kW 5 Inj.

54 kW 6 Inj.
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6. It is planned to exclude the CEMs instruments from the lag-time and rise-time test as 

they have internal delays that will inherently limit the response 

7. How much data should be stored when the Capstone engine is running 100% load? 

How much data should be stored when the Capstone engine is running at 50% load? 

How well should we track input conditions during these times? 
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APPENDIX B: 
Water Mole Fraction Calculation 

Stoichiometric Balance 

𝐶𝐻4 + 𝛼(𝑂2 + 3.76𝑁2) → 𝑑𝐶𝑂2 + 𝑏𝐻2𝑂 + 𝑐𝑁2 

CHON: 

C: 1 = 𝒅 

H: 4 = 2𝑏, 𝒃 = 𝟐 

O: 2𝛼 = 2𝑑 + 𝑏, 2𝛼 = 2 + 2, 𝜶 = 𝟐 

 

Excess Air 

 

𝐶𝐻4 + 2𝛼(𝑂2 + 3.76𝑁2) → 𝐶𝑂2 + 2𝐻2𝑂 + 𝑐𝑁2 + 𝒛𝑶𝟐 

O: 𝟒𝜶 = 𝟐 + 𝟐 + 𝟐𝒛 = 𝟒 + 𝟐𝒛 

2𝑧 = 4𝛼 − 4, 𝑧 = 2(𝛼 − 1) 

N: 𝛼(4)(3.76) = 2𝑐 

𝑐 = 2(3.76)𝛼 

• Mole fraction H20: 

𝑥𝐻20 =
2

1 + 2 + 𝑐 + 𝑧
=

2

1 + 2 + 2(3.76𝛼) + 2(𝛼 − 1)
 

• Find alpha from AFR values 

𝐴𝐹𝑅 =
2𝛼(𝑀𝑊𝑎𝑖𝑟)

1 ∗ 𝑀𝑊𝑓𝑢𝑒𝑙
=

2𝛼(32 + 3.76(28))

1(12 + 4)
=

2(137.28𝛼)

16
 

𝛼 =
8𝐴𝐹𝑅

137.28
  

• Use C60 values for AFR 
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APPENDIX C: 
Nitrogen Oxides Calculation 

60 kW Emissions (Example): 

Lb of Air to mols Air 

Estimates of air and fuel flowrates taken from real recorded data from Capstone C-60 (Air 

flowrate average of 1820 data points, S.D. = 13.25, Fuel flowrate average of 1820 data points, 

S.D. = 16.45) 

AIR MW (g/mol) = 28.97 

𝟑𝟗𝟎𝟓
𝒍𝒃

𝒉𝒓
∙

453.592 𝑔

𝑙𝑏
∙

𝑚𝑜𝑙

28.97 𝑔
= 6.114𝐸4

𝑚𝑜𝑙

ℎ𝑟
 

Lb of Fuel to Mols of Fuel 

CH4 MW (g/mol) = 16.04 

3905
𝑙𝑏
ℎ𝑟

𝑎𝑖𝑟

𝐴𝐹𝑅
= 𝑥

𝑙𝑏

ℎ𝑟
𝑓𝑢𝑒𝑙, 𝑨𝑭𝑹 = 𝟐𝟏𝟖, 𝑥 = 17.9

𝑙𝑏

ℎ𝑟
 

17.9
𝑙𝑏

ℎ𝑟
∙

453.592 𝑔

𝑙𝑏
∙

𝑚𝑜𝑙

16.04 𝑔
= 506

𝑚𝑜𝑙

ℎ𝑟
 

Equation  

506𝐶𝐻4 + 6.114𝐸4(𝑂2 + 3.76𝑁2) → 𝑎𝐶𝑂2 + 𝑏𝐻2𝑂 + 𝑐𝑁2 + 𝑑𝑂2 

CHON: 

C: 506 = 𝑎, 𝑎 = 506 

H:2024 = 2𝑏, 𝑏 = 1012  

O:122,280 = 2𝑎 + 𝑏 + 2𝑑, 𝑑 = 60128 

N:459773 = 2𝑐, 𝑐 = 229,886 

Moles of Exhaust Total: 291,532
𝑚𝑜𝑙𝑠

ℎ𝑟
 

NO Emissions at 60 kW for 1hr: 1 ppmvd 

NO MW (g/mol) = 30.01 

1 𝑚𝑜𝑙 𝑁𝑂

1𝐸6 𝑚𝑜𝑙𝑠 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡
=

𝑥 𝑚𝑜𝑙 𝑁𝑂

291,532 𝑚𝑜𝑙𝑠 𝑜𝑓 𝑒𝑥ℎ𝑎𝑢𝑠𝑡
, 𝑥 = .292

𝑚𝑜𝑙 𝑁𝑂

ℎ𝑟
, .292

𝑚𝑜𝑙

ℎ𝑟
∙

30.01 𝑔

𝑚𝑜𝑙

= 8.76
𝑔

ℎ𝑟
   

8.76
𝑔

ℎ𝑟
∙

𝑙𝑏

453.592 𝑔
∙

1 𝑡𝑜𝑛

2000 𝑙𝑏
= 9.656𝐸 − 6

𝑡𝑜𝑛𝑠 𝑁𝑂

ℎ𝑟
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Assuming 8 hrs of operation at 60 kW: 

7.725𝐸 − 5
𝑡𝑜𝑛𝑠 𝑁𝑂

8 ℎ𝑟𝑠
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