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PREFACE 

The California Energy Commission’s (CEC) Energy Research and Development Division 

supports energy research and development programs to spur innovation in energy efficiency, 

renewable energy and advanced clean generation, energy-related environmental protection, 

energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 

Public Utilities Commission to fund public investments in research to create and advance new 

energy solutions, foster regional innovation and bring ideas from the lab to the marketplace. 

The CEC and the state’s three largest investor-owned utilities—Pacific Gas and Electric 

Company, San Diego Gas & Electric Company and Southern California Edison Company—were 

selected to administer the EPIC funds and advance novel technologies, tools, and strategies 

that provide benefits to their electric ratepayers. 

The CEC is committed to ensuring public participation in its research and development 

programs that promote greater reliability, lower costs, and increase safety for the California 

electric ratepayer and include: 

• Providing societal benefits.

• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost.

• Supporting California’s loading order to meet energy needs first with energy efficiency

and demand response, next with renewable energy (distributed generation and utility

scale), and finally with clean, conventional electricity supply.

• Supporting low-emission vehicles and transportation.

• Providing economic development.

• Using ratepayer funds efficiently.

Open Building Control is the final report for the OpenBuilding Control Project (Contract 

Number: EPC-16-056) conducted by Lawrence Berkeley National Laboratory. The information 

from this project contributes to the Energy Research and Development Division’s EPIC 

Program. 

For more information about the Energy Research and Development Division, please visit the 

CEC’s research website (www.energy.ca.gov/research/) or contact the CEC at 916-327-1551. 

http://www.energy.ca.gov/research/
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ABSTRACT 

Best practice control sequences are often not implemented correctly, or are not implemented 

at all, in large commercial buildings. This typically leads to 10-30 percent energy waste, along 

with reduced occupant productivity and unnecessary equipment wear. The current process of 

designing and implementing such control sequences is a manual process that starts with 

designers who often don’t have adequate training, then requires controls programmers to 

interpret and program a verbose written sequence. This process has been shown to fail to 

deliver high performance control sequences at scale. The Open Building Control project 

digitizes the current control delivery process. The project is developing tools for system 

designers to select control sequences, assess their energy performance and load flexibility 

potential using whole building simulation, specify the sequence for implementation using 

machine-to-machine translation by a control provider and formally testing the as-installed 

sequences by a commissioning agent. The project developed tools for each stage of this 

delivery process. The key innovation of the project is the development of the Control 

Description Language, a language that allows such a digitized control delivery process with 

end-to-end verification. 

Libraries of control sequences have been implemented using the Control Description 

Language, and their performance has been demonstrated using whole building energy 

simulation. An automated translation of such sequences to a commercial control product line 

has been conducted using a prototype translator. Tools for formal verification of as-installed 

control sequences relative to their specification have been developed and demonstrated. The 

American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) started 

the process of forming a committee to make this language an ASHRAE/ANSI Standard. This 

new standard will complement existing and emerging ASHRAE standards for building 

communication and semantic modeling by providing a standard for expressing the control logic 

- the actual brain of the building. We expect this language and the process it enables to be an

important contribution to the deployment of high performance building control sequences at

scale because it allows taming the complexity of the control delivery process, which is

continually increasing due to the need for higher performance and increased load flexibility to

meet goals for net zero energy and increased renewable integration.

Keywords: OpenBuildingControl, commercial buildings, energy efficiency, automation, high- 

performance controls, description language, sequences of operation, BACnet, ASHRAE 

Please use the following citation for this report: 

Wetter, Michael. 2021. Open Building Control. California Energy Commission. Publication 

Number: CEC 500-2021-012. 
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Chapter 1 

 
Executive Summary 

 
1.1 Introduction 

 
In the United States, commercial buildings account for just under 20% of all energy use. Energy consumption is driven by 

systems that include HVAC and lighting. Proper control of these systems, based on factors such as building occu- pancy 

and weather conditions, can reduce building energy use by 10 to 30%. However, few commercial buildings have optimized 

control systems. Many existing buildings predate current energy codes, standards and guidelines which require optimized 

sequences. New construction projects that are designed to implement such strategies frequently struggle due to the 

inherently complicated process of traditional design development, documentation, interpretation, implementation and 

owner operation. This results in buildings that are inefficient and often uncomfortable, which results in wasted energy and 

lost occupant productivity. 

OpenBuildingControl is a project whose aim is to improve the process and tools necessary for the design, cost-effective 

implementation, and validation of the control sequences used in commercial buildings. The first phase of the project, 

reported here, has been co-funded by the California Energy Commission and the United States Department of Energy 

(DOE). A second phase of the project is being funded by the DOE. 

The Phase 1 work reported here has focused on providing the capability to avoid major problems with the current process 

for the design and implementation of controls in commercial buildings. Current practice involves the HVAC designer writing 

a sequence, which depending on the skill level of the HVAC designer can be ambiguous and error-prone. The sequence 

is a verbose description of the control system operation, which a project technician has to interpret to write the necessary 

code for deployment of the sequence in a proprietary control system. This is followed by a manual process to validate and 

confirm the operation. 

The OpenBuildingControl project built the foundation to enable the digitization of the current paper-based delivery pro- 

cess. The project has built tools for system designers to select, model the performance of, and then specify sequences 

for implementation, using a digitized workflow with end-to-end verification, including formal testing of the installed control 

sequences. The designer will be able to express the desired sequence in an electronic format that can be readily imple- 

mented or translated to programming code without the need for manual interpretation. The project will also provide tools 

to automatically document the sequences of operation implemented in a building and compare them to the original design 

intent. Used together, this set of tools will have the potential to substantially reduce energy use in both new commercial 

buildings and in existing buildings with controls retrofits. However, to be effective, these tools need to be widely adopted 

and used by industry, including system engineers, designers, controls manufacturers, controls subcontractors, owners,  
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and to be required or incentivized by other interested parties, including state energy agencies and utilities. 

The OpenBuildingControl project complements work by the Standing Guideline Project Committee 36 of the American 

Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), which collects, develops and publishes 

control sequences considered to be industry best-in-class for improving system stability, energy performance, indoor air 

quality and comfort. Current versions of energy standards and codes, such as ASHRAE 90.1 and the California Energy 

Code, Title 24, require specific algorithms documented in Guideline 36, and are anticipated to adopt or reference Guideline 

36 sequences as awareness of the Guideline grows. 

 

 

1.2 Project Purpose 

 
The purpose of the OpenBuildingControl project is to substantially reduce commercial building energy use by optimizing 

the design, implementation, and validation of building controls. The project team has documented existing buildings con- 

trols practices and developed processes and tools to remove impediments to effective design and correct implementation. 

A key paradigm shift is the development of a process and supporting software that paves the way for digitization of the 

controls delivery process. The current process starts with the need for a design engineer to write a “controls sequence” 

using a verbose format to describe each part of the operation of a system. There are several challenges with this process. 

The first is that many design engineers are not well trained in controls and have difficulty writing sequences that are 

appropriate and will result in efficient operation. The second challenge is that a controls technician has to interpret what 

was written and then express it in a proprietary controls programming language. The project team has developed a formal 

end-to-end process that starts with a library of optimized sequences expressed both in English and in a unambiguous 

digital format. The system designer can select the sequences that will work best with the project’s mechanical system,  

using tools developed in this project.  The digital sequence specification allows the performance   of building control 

sequences, including annual energy, load flexibility, peak demand and comfort, to be assessed using whole building 

simulation. The control sequences can then be used directly or be translated for use in commercial building control product 

lines using machine-to-machine translation. Finally, new tools will assist in verifying proper implementation of the 

sequences. Such a process will allow error-free deployment of control sequences, thereby addressing the situation that 

the current paper-based process fails to implement high-performance control sequences at scale. 

The main audience for the technology developed in this project consists of: 

• Building owners and operators, who are responsible for operating commercial buildings so that they are safe, pro- 

ductive, and efficient. 

• Researchers and control companies who develop new HVAC systems and control sequences for building energy 

systems. 

• Professional organizations such as ASHRAE who are developing guidelines for high performance building control 

sequences. 

• Analysts who assess the performance of control sequences when updating energy codes such as California’s 

Building Energy Efficiency Standard Title 24 or ANSI/ASHRAE/IES Standard 90.1, Energy Standard for Buildings 

Except Low-Rise Residential Buildings. 

• Mechanical designers who specify control sequences for a particular building. 

• Control companies and system integrators who implement control sequences in new construction or retrofit projects. 

• Commissioning agents who verify whether the as-installed control sequences comply with the specification from the 

mechanical designer. 
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1.3 Project Approach 

 
The US Department of Energy’s Lawrence Berkeley National Laboratory is leading this project, with regular reviews from 

the US Department of Energy and the California Energy Commission program management. The process started with the 

establishment of a project team consisting of Lawrence Berkeley National Laboratory staff and industry experts in the 

design and implementation of control systems, along with an advisory panel that includes design engineers, general con- 

tractors, mechanical subcontractors, controls subcontractors, controls manufacturers, commissioning agents, and building 

owners and operators. 

The advisory panel provided industry input and feedback while the core team was responsible for defining the new process 

and coding, testing, validating, and documenting the associated tools. Several presentations at ASHRAE also led to 

feedback that affected the direction of the research and development, as did presentation to the advisory panel, to selected 

companies and to the scientific community at various conferences. 

A key technical challenge encountered by the project was that, due to a lack of standards, existing control product lines are 

heterogeneous. They differ in their functionality for expressing control sequences, in their semantics of how control output 

gets updated, and in their programming syntax, which ranges from graphical languages to textual languages. Code 

generation for a variety of products is common in the Electronic Design Automation industry, which develops software 

tools for designing electronic systems such as integrated circuits and printed circuit boards. However, in the Electronic 

Design Automation industry, engineers write models of the physical device and the controls, using graphical and textual 

languages, and actual controllers are then built to conform to the models. If this process were to be applied to the buildings 

industry, then control providers would need to update their product lines. The project team believes that once CDL 

becomes a standard, that suppliers consider adding it to new or existing products. That process may take 5 to 10 years 

to complete. Therefore, for the immediate future, the OpenBuildingControl process will need to involve the building of 

models of control sequences that can conform to their implementation on existing control product lines, while ensuring 

that, as new product lines are being developed, they can invert the paradigm and build controllers that conform to the 

models. The project team has, therefore, selected the path of designing the Control Description Language in such a way 

that it provides a minimum set of capabilities that can be expected to be supported by current control products. As we 

have demonstrated with one commercial product, the barrier to supporting this language is low, and we therefore expect 

that suppliers may elect to develop and support translators. We are also working with industry to establish the Control 

Description Language as an ASHRAE/ANSI Standard and, eventually, an ISO Standard. Getting industry support to make 

the Control Description Language a standard would allow for products to be developed that use the Control Description 

Language without the need for translation. 

 

 

1.4 Project Results 

 
The project achievements to date have been very positively received by industry and by members of the ASHRAE Standing 

Guideline Project Committee 36 which develops high performance control sequences. The following items resulted from 

this project phase: 

• Definition of use cases and processes related to controls design and implementation. 

• Definition and documentation of the semantics and syntax of the Control Description Language and of its JSON 

export format. 

• A library of control sequences for building energy systems expressed in the Control Description Language. 

• Modeling tools that can simulate sequences expressed in the Control Description Language coupled to heating, 

ventilation, and air-conditioning models from the Modelica Buildings library and linked to Spawn of EnergyPlus  
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envelope models. 

• Tools that verify that the control response from a Control Description Language–specified sequence and trended 

control outputs are within user-specified tolerances. 

• Tools to translate the Control Description Language into open formats such as JSON and HTML, as well as to 

Microsoft Word. 

• Demonstration of sequences expressed in the Control Description Language being translated to a proprietary lan- 

guage and uploaded into a working control system. 

• Case studies that demonstrate the use of the tools and the energy savings obtained through the use of high perfor- 

mance control sequence. 

• A commercialization and market transformation plan. 

• The specification to develop a system design tool that will allow an engineer to specify the type of system to control 

and to select control options. The tool will then select and generate the proper control sequence using the Control 

Description Language. This tool will include a library of capabilities from sources such as ASHRAE Guideline 36 

and the engineers’ current library and will make use of the Spawn of EnergyPlus simulation tool to compute the 

performance of the selected option using whole building energy simulation. 

• The formation of an ASHRAE Standard Project Committee for making the Control Description Language an 

ASHRAE/ANSI Standard and, ultimately, an ISO Standard. 

There is also a set of items that were not completed by the end of Phase 1 of this project; partial follow-on funding to 

further develop these items has been secured. These items include: 

• The implementation of the systems design tool. 

• An expanded library of control sequences, expressed in the Control Description Language, that can be used as 

input for the above system design tool. 

• Tools and documentation that can be used by control systems suppliers to develop translators from the JSON 

representation of the Control Description Language to their proprietary control system. 

• Provisions to add tagging to the Control Description Language so that it can be used with Brick, Project Haystack 

and other similar semantic tagging and data modeling standardization efforts. 

• Programs for implementing market transformation. 

• Tools for evaluating a current control system and developing documentation for installed sequences. 

 

 
1.5 Technology/Knowledge Transfer/Market Adoption 

 
To build market adoption, the project team worked with key committees of ASHRAE to align the developed technology 

with the needs of the industry. Furthermore, all technology has been developed in such a way that it directly integrates 

with the roadmap of the US Department of Energy’s Building Technologies Office for energy simulation and for sensors 

and controls. 

To align the developed technologies with industry needs, the project team developed a detailed commercialization and 

market transformation plan. This plan outlines the current state of the process of control specification, delivery, commis- 

sioning and building operation. It discusses the tools and workflow developed by the project team. It lists benefits for 

mechanical designers, control providers, building operators and building owners. Lastly, it describes a path to establish a 

digitized control delivery process. 

Foundational work for this deployment started during this project: A key part of the technology transfer is the work that has 

started on making the Control Description Language an ASHRAE/ANSI standard, thereby ensuring the industry that there 

is a robust foundation on which industry can make further investments. The tools developed in this project have become 
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a key part of the tool development sponsored by the US Department of Energy. Specifically, Spawn of EnergyPlus is, in 

part, being developed to support the design, deployment and operation of advanced energy and controls for buildings, for 

district heating and cooling systems and for geothermal systems through its Building Technologies Office, Advanced 

Manufacturing Office and Geothermal Office, respectively. 

To support the update of energy codes, such as California’s Building Energy Efficiency Standard Title 24 and AN- 

SI/ASHRAE/IES Standard 90.1, we anticipate that analysts will use the Control Description Language together with Spawn 

of EnergyPlus. This will allow analyzing the energy impacts of measures related to building control across a portfolio of 

buildings in different climate zones. Moreover, prescriptive codes may state which control sequences need to be used 

and they could then provide the specification of these control sequences in the Control Description Language for use in 

project specifications and for implementation on the building’s control system. 

 

 

1.6 Benefits to California 

 
This project will benefit both the State of California and the rest of the US — and, ideally, the world. The key benefits are 

as follows: 

• Reduced cost to design and implement advanced controls. This project will make the use of these advanced controls 

sequences more cost effective for new construction and, even more importantly, for retrofit, where costs and 

complexity are often impediments to implementation. 

• Improved energy efficiency. The project team has documented the potential to reduce heating, ventilation, and air-

conditioning system energy use by 30% through the use of advanced controls sequences for airside HVAC systems. 

The team is confident that this approach can be extended to other building systems, including primary systems, 

lighting systems, and active façade systems. The ability to reduce building energy use is a significant benefit for the 

state and is essential to achieving California’s 2030 goal of having all new commercial buildings, and 50% of 

commercial buildings being retrofitted, to be net zero energy. 

The adoption of OpenBuildingControl will result in improved design and implementation of commercial building controls 

without requiring major retraining or process changes to how controls are designed or delivered. The energy savings from 

widespread adoption of the processes and tools can be estimated as follows. A major barrier to achieving the state’s 

statutory energy goals is the failure of most commercial buildings to perform close to the technical potential of the design 

and its associated equipment. An LBNL meta-study identified 16% median actual savings from retro-commissioning and a 

study of 481 operational issues identified in existing commercial buildings found that control problems accounted for more 

than 75% of the potential energy savings. Therefore, we assume that around 75% of the 16% energy savings, equal to a 

total of 12% of energy savings, associated with commissioning are related to controls. Assuming that the technologies to 

be developed in the project can save 12% in the 50% of commercial building floor area higher than 50,000 sf, we will 

assume our technology can reduce energy consumption on average across all commercial buildings by 6%. 

The California savings are estimated as follows: The annual energy consumption of California commercial buildings is 

about 67.1 TWh of electricity, equivalent to 0.64 quads (188 TWh) of source energy, and 1278.6 Mtherms (0.13 quads, 37.4 

TWh) of natural gas. The estimated 6% savings correspond to 4.03 TWh of electricity, equivalent to 0.038 quads (11.28 

TWh) of source energy, and 0.00764 quads (2.24 TWh) of natural gas. Assuming a price of 0.17 $/kWh for electricity and 

8 $/(1000 ft3) for natural gas (corresponding to 0.027 $/kWh), the cost savings would be $0.69B in electricity and $0.064B 

in natural gas. 

The US national savings are estimated as follows: The annual energy consumption of US commercial buildings is about 

1240 TWh of electricity, equivalent to 11.9 quads (3472 TWh) of source energy, and about 22,500 MTherms (2.25 quads, 

659 TWh) of natural gas. The estimated 6% savings correspond to 74.4 TWh of electricity, equivalent to 0.71 quads (208 
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TWh) of source energy, and 0.135 quads (39.5 TWh) of natural gas. Assuming a price of 0.11 $/kWh for electricity and 8 

$/(1000 ft3) for natural gas, the electricity cost savings would be $8.2B and the natural gas savings $1.07B. 

These electricity savings correspond to 25 Rosenfelds in the US and 1.5 Rosenfelds in California. 

If we assume 75% adoption of OpenBuildingControl over the next ten years, a controls retrofit rate of 10% per year and a 

new building construction rate of 1.5% per year, then, after 10 years, the fraction of the building stock, weighted by floor 

area, that is impacted by OpenBuildingControl is 21%. Assuming the potential benefit of $0.69B savings in electricity, the 

estimated benefits are $146M/yr savings for California ratepayers. 
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Chapter 2 

 
Introduction 

 
2.1 Background 

 
More than 1 quad/yr of energy is wasted in the US because, for most commercial building projects, control sequences 

are poorly specified and implemented. The process to specify, implement and verify controls sequences is often only 

partially successful, with efficiency being the most difficult part to accomplish. This is particulary the case for built-up 

HVAC systems, which require custom-control solutions and which are common in large buildings. For such systems, the 

current state is that, at best, the mechanical designer specifies the building control sequences in an English language 

specification. However, such a specification cannot be tested formally for correctness. It is also ambiguous, leaving room 

for different implementations, including variants that were not intended by the designer or may not work correctly. The 

implementation of the sequences is often done by a controls contractor who either attempts to implement the sequence 

as specified, or uses a sequence from a similar project that appears to have the same control intent. During commis- 

sioning, the lack of an executable specification of the control sequence against which the implementation can be tested 

makes commissioning of the control sequences expensive and limited in terms of code coverage [GF17]. Not surpris- 

ingly, programming errors are the dominating issue among control-related problems that impact energy use in buildings 

[BHK+02]. 

However, formal controls design and verification in other industries has led to significant labor cost savings and perfor- 

mance improvements. 

 

 

2.2 Project Goals 

 
The overall goal of this project is to significantly improve building energy efficiency through a robust workflow that allows 

deploying high performance building control sequence at scale. In support of this, the project developed a process, 

together with an integrated set of tools, to enable design engineers to unambiguously specify energy-efficient control 

sequences for commercial buildings and then verify their correct implementation, providing end-to-end quality control. 
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2.3 Approach 

 
Our approach is to digitize the delivery of control. Rather than paper-based English language specification, our process is 

fully digitized, allowing performance assessment in design, electronic specification in a format that was designed to allow 

machine-to-machine translation to control product lines, and formal verification of the control response relative to its elec- 

tronic specification. Specifically, the project developed a process and a set of tools that enable digital control specification, 

performance assessment using whole building energy simulation, and delivery and implementation on existing building 

automation product lines. 

The technical environment for such a digital control delivery starts to fall in place: For communication of control signals, 

standards such as BACnet and LonWorks are widely used. For semantic modeling, Haystack and Brick Schema are 

increasingly used, and the proposed ASHRAE Standard 223P attempts to standardize semantic modeling, building on 

these previous efforts. 

 
 
 

Fig. 2.1: Overview of process for control sequence design, export of a specification, implementation on a control platform and verification 

against the specification. 

 
However, what is missing is a means to express control sequences in a way that can be simulated during design, exported 

for control specification and documentation, used directly or translated to commercial product lines and reused for formal 

verification of the correct implementation of the control sequences. This gap is what the OpenBuildingControl project 

attempts to close. A key element of the OpenBuildingControl is the Control Description Language (CDL) that has been 

developed in the project. CDL is a declarative language for expressing control sequences through block diagram modeling. 

To enable simulation of closed loop control as part of annual energy modeling during building design or control research, 

we designed CDL to be a proper subset of the Modelica language, an open standard for an eqution-based object-oriented 

modeling language [ME97][Mod12].   As CDL is a declarative language,  the control specification can be exported in     a 

vendor-independent json format that serves as an intermediate format to produce English language documentation 

including point lists, and that can serve as input to a code translator to a particular control product line. The control 

specification can also be exported for use in a formal process that verifies that a control signal generated by the actual 

implementation is within a user-selected tolerance of the simulated control signal. This provides, therefore, a workflow with 

an end-to-end verification as shown in Fig. 2.1. Therefore, CDL complements communication (ASHRAE 135 - BACnet) 

and semantic modeling (ASHRAE 223P - Designation and Classification of Semantic Tags for Building Data) by expressing 

the control logic, with the goal of standardizing this missing part of the control representation. 

We believe that the timing of such an effort is ideal due to the convergence of various technologies related to the digitization 

of the building design and operation, and related to emerging needs of building energy systems. Regarding digitization of 

the building design and operation, declarative modeling (Modelica) progressed substantially over the last years, getting to 

the point where fully coupled closed loop control simulation is possible within annual energy simulation. Furthermore, 

advances in code generation eases machine-to-machine translation of declarative languages and semantic modeling 

(BRICK or ASHRAE 223p), putting in place the foundation to generate a semantic model from a declarative Modelica 

model. This combination promises to allow the semi-automatic connection of an actual building system to a digital twin  
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of the control and related algorithms that support building analytics (Mortar [FPA+19]). Regarding emerging needs of 

building energy systems, there is a shift towards all electric buildings in various US states and various countries. In these 

systems, heating and cooling often includes the use of heat sources and heat storage that are close to ambient 

temperatures. To increase the 2nd law efficiency of such systems, systems operate with low temperature lifts, rather than 

the large temperature lifts that are customary in fossil-fuel based heating systems and conventional cooling systems. 

Moreover, building systems also have the added recent requirement to provide flexibility to the electrical grid. All of these 

lead to more complex energy and control systems. The OpenBuildingControl process has been developed to support the 

transitions towards such high performance systems. 

 

 

2.4 Project Results 

 
The project resulted in a process and a set of software tools, documented at obc.lbl.gov, that pave the way to a digitized 

control delivery process. They enable the performance evaluation and improvement of building control sequences using 

whole building energy simulation. Typical performance indices are annual energy use, greenhouse gas emissions, peak 

demand and thermal comfort. Such performance assessment can be done by researchers and control companies as part 

of developing and evaluating new control sequences, or by mechanical designers as part of the building design process. 

These control sequences can then be exported to a digital format, for which we showed, as a proof-of-concept, that it can 

be translated to a commercial building control platform, thereby running the control sequence that was used in simulation 

natively on a commercial building control platform. This intermediate format also provides control providers data needed 

to build digital cost estimation tools, further streamlining the control procurement process. 

As part of the project, we demonstrated each step of such a digitized control design, delivery and verification process. We 

also started forming an ASHRAE Standard Project Committee whose purpose is to turn the Control Description Language 

that has been developed in this project into an ASHRAE/ANSI standard. Such a standard will then complement existing 

standards for building control communication (ASHRAE 135 - BACnet), emerging standards for semantic data (ASHRAE 

223P - Designation and Classification of Semantic Tags for Building Data) with a standard that allows expressing the 

control logic in a way that is independent of a particular control product line. 

The potential energy savings of this project, if adopted widely, are estimated to be in California, 4.03 TWh of electricity, 

equivalent to 0.038 quads (11.28 TWh) of source energy, and 0.00764 quads (2.24 TWh) of natural gas. In the US, the 

potenial savings are 74.4 TWh of electricity, equivalent to 0.71 quads (208 TWh) of source energy, and 0.135 quads (39.5 

TWh) of natural gas. 

If we assume 75% adoption of OpenBuildingControl over the next ten years, a controls retrofit rate of 10% per year and a 

new building construction rate of 1.5% per year, then, after 10 years, the fraction of the building stock, weighted by floor 

area, that is impacted by OpenBuildingControl is 21%. This would result in estimated benefits of $146M/yr for California 

electricity ratepayers. 

The next sections provide more details about the results of this project. They are structured as follows: 

Section 3 describes the overall process from control design to performance assessment, export of control specification, 

cost-estimation, implementation by a control vendor and formal verification of the implemented control sequences relative 

to the design specifications. 

Section 4 describes the Control Description Language (CDL), which is the key technology developed in this project. This 

language is used to express control sequences digitally and in English language, in a format that is then translated for 

simulation, for cost estimation, and for implementation in control product lines. This section is rather technical, and is 

mainly of interest to developers who implement tools that use CDL. Less technical readers may skip this section. 

  

https://obc.lbl.gov/
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Section 5 describes how the CDL language has been used to implement libraries of ready-to-use control sequence that 

can be used within the process described in Section 3. 

Section 6 describes various paths of how CDL can be translated for use in building control systems, respecting the need 

for reusing existing control product lines, but also showing how established and emerging standards could be used to 

streamline this process if a control provider develops a new control product line. 

Section 7 describes how to formally verify that a control sequence that is implemented on a real control hardware conforms 

to the CDL specification. It presents an actual example that illustrates the verification, and closes with specifications for 

how to automate such a verification. 

Section 8 presents an example in which we compared the annual energy peformance of two different control sequences 

applied to the same building and HVAC system. In this example, simply changing the control sequence led to about 30% 

annual savings in HVAC site electricity use. 

Section 9 describes the benefits to the California rate payers. 

Section 10 explains technical terms used throughout the report. 
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Chapter 3 

 
Process Workflow 

 
Fig. 3.1 shows the process of selecting, deploying and verifying a control sequence that we follow in OpenBuildingControl. 

First, given regulations and efficiency targets, labeled as (1) in Fig. 3.1, a design engineer selects, configures, tests and 

evaluates the performance of a control sequence using building energy simulation (2), starting from a control sequence 

library that contains ASHRAE Guideline 36 sequences, as well as user-added sequences (3), linked to a model of the 

mechanical system and the building (4). If the sequences meet closed-loop performance requirements, the designer ex- 

ports a control specification, including the sequences and functional verification tests expressed in the Control Description 

Language CDL (5). Optionally, for reuse in similar projects, the sequences can be added to a user-library (6). This specifi- 

cation is used by the control vendor to bid on the project (7) and to implement the sequence (8). For current control product 

lines, step (8) involves a translation of CDL to their programming languages, whereas in the future, control providers could 

build systems that directly use CDL. Prior to operation, a commissioning provider verifies the correct functionality of these 

implemented sequences by running functional tests against the electronic, executable specification in the Commissioning 

and Functional Verification Tool (9). If the verification tests fail, the implementation needs to be corrected. 

For closed-loop performance assessment, Modelica models of the HVAC systems and controls can be linked to a Modelica 

envelope model [WZN11] or to an EnergyPlus envelope model. The latter can be done through Spawn of EnergyPlus 

[WBG+20], which is being developed in a related project at https://lbl-srg.github.io/soep/. 

  

http://simulationresearch.lbl.gov/modelica/
https://lbl-srg.github.io/soep/
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Fig. 3.1: Process workflow for controls design, specification and functional verification. 
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Chapter 4 

 
Control Description Language 

 
4.1 Introduction 

 
This section specifies the Control Description Language (CDL), a declarative language that can be used to express control 

sequences using block-diagrams. It is designed in such a way that it can be used to conveniently specify building control 

sequences in a vendor-independent format, use them within whole building energy simulation, and translate them for use 

in building control systems. 

A key technical challenge encountered when developing CDL was that existing control product lines are heterogeneous. 

They differ in their functionality for expressing control sequences, in their semantics of how control output gets updated, 

and in their syntax which ranges from graphical languages to textual languages. Code generation for a variety of products 

is common in the Electronic Design Automation industry. However, in the Electronic Design Automation industry, engineers 

write models and controllers are built to conform to the models. If this were to be applied to the buildings industry, then 

control providers would need to update their product line in order to be able to faithfully comply with the model. We think 

such costly product line reconfigurations are not reasonable to expect in the next decade. Therefore, for the immediate 

future, we will need to build digital models of control sequences that can conform to their implementation on target control 

product lines; while ensuring that as new product lines are being developed, the manufacturers can invert the paradigm 

and build controllers that conform to the models. We therefore selected the path of designing CDL in such a way that it 

provide a minimum set of capabilities that can be expected to be supported by current control product lines, while allowing 

future control product lines to directly use CDL for the implementation of the control sequences. As we have demonstrated 

with one commercial product, the barrier to translate CDL to the programming language of a current control product line 

is low. 

To  put CDL in context, and to introduce terminology, Fig. 4.1 shows the translation of CDL to a control product line or   to 

English language documentation. Input into the translation is CDL. An open-source tool called modelica-json 

translator (see also Section 6.3 and https://github.com/lbl-srg/modelica-json) translates CDL to an intermediate format 

that we call CDL-JSON. From CDL-JSON, further translations can be done to a control product line, or to generate point 

lists or English language documentation of the control sequences. We anticipate that future control product lines use 

directly CDL as shown in the right of Fig. 4.1. Such a translation can then be done using various existing Modelica tools 

to generate code for real-time simulation. 

The next sections define the CDL language. A collection of control sequences that are composed using the CDL language 

is described in Section 5. These sequences can be simulated with Modelica simulation environments. The translation of 

  

https://github.com/lbl-srg/modelica-json
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Fig. 4.1: Translation of CDL to the CDL-JSON intermediate format and to a product line or English language documentation. 

 

 
such sequences to control product lines using modelica-json, or other means of translation, is described in Section 

6. 

 

 

4.2 Basic Elements of CDL 

 
The CDL consists of the following elements: 

• A list of elementary control blocks, such as a block that adds two signals and outputs the sum, or a block that 

represents a PID controller. 

• Connectors through which these blocks receive values and output values. 

• Permissible data types. 

• Syntax to specify 

– how to instantiate these blocks and assign values of parameters, such as a proportional gain. 

– how to connect inputs of blocks to outputs of other blocks. 

– how to document blocks. 

– how to add annotations such as for graphical rendering of blocks and their connections. 

– how to specify composite blocks. 

• A model of computation that describes when blocks are executed and when outputs are assigned to inputs. 

 

 
4.3 Syntax 

 
In order to use CDL with building energy simulation programs, and to not invent yet another language with new syntax, the 

CDL syntax conforms to a subset of the Modelica 3.3 specification [Mod12]. The selected subset is needed to instantiate 

classes, assign parameters, connect objects and document classes. This subset is fully compatible with Modelica, e.g., 

no construct that violates the Modelica Standard has been added, thereby allowing users to view, modify and simulate 

CDL-conformant control sequences with any Modelica-compliant simulation environment. 

To simplify the support of CDL for tools and control systems, the following Modelica keywords are not supported in CDL: 

1. extends 

2. redeclare 

3. constrainedby  
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4. inner and outer 

Also, the following Modelica language features are not supported in CDL: 

1. Clocks [which are used in Modelica for hybrid system modeling]. 

2. algorithm sections. [As the elementary building blocks are black-box models as far as CDL is concerned and 

thus CDL compliant tools need not parse the algorithm section.] 

3. initial equation and initial algorithm sections. 

 

 

4.4 Permissible Data Types 

 
4.4.1 Data Types 

 
This section defines the basic data types. The definition is a subset of Modelica in which we left out attributes that are not 

needed for CDL. 

The attributes that are present in Modelica but not in CDL are marked with //--. 

[Note the following: The start attribute is not needed in CDL because the start value of states is declared through a 

parameter. The equation section has been removed because how to deal with variables that are out of limit should be 

left to the implementation of the control system. ] 

 
 

4.4.1.1 Real Type 

 
The following is the predefined Real type: 

 
 
 

Real Type/double matches the IEC 60559:1989 (ANSI/IEEE 754-1985) double format. 

The quantity attribute is optional, can take on the following values: 

• "", which is the default, is considered as no quantity being specified. 

• Angle for area (such as used for sun position). 

• Area for area. 
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• Energy for energy. 

• Frequency for frequency. 

• Illuminance for illuminance. 

• Irradiance for solar irradiance. 

• MassFlowRate for mass flow rate. 

• MassFraction for mass fraction. 

• Power for power. 

• PowerFactor for power factor. 

• Pressure for absolute pressure. 

• PressureDifference for pressure difference. 

• SpecificEnergy for specific energy. 

• TemperatureDifference for temperature difference. 

• Time for time. 

• ThermodynamicTemperature for absolute temperature. 

• Velocity for velocity. 

• VolumeFlowRate for volume flow rate. 

[These quantities are compatible with the quantities used in the Modelica Standard Library, to allow connecting CDL 

models to Modelica models, see also Section 4.10.] 

[The quantity attribute could be used for example to declare in a sequence that a real signal is a AbsolutePressure. 

This could be used to aid connecting signals or filtering data. Quantities serve a different purpose than tagged properties 

(Section 4.14.2).] 

The value of displayUnit is used as a recommendation for how to display units to the user. [For example, tools that 

implement CDL may convert the value from unit to displayUnit before showing it in a GUI or a log file. Moreover, 

tools may have a global list where users can specify, for example, to display degC and K in degF.] 

The nominal attribute is meant to be used for scaling purposes and to define tolerances, such as for integrators, in relative 

terms. 

 

4.4.1.2 Integer Type 

 
The following is the predefined Integer type: 

 
 

The minimal recommended number range for IntegerType is from −2147483648 to +2147483647, corresponding to a 

two’s-complement 32-bit integer implementation. 
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[The quantity attribute could be used for example to declare in a sequence that a integer signal is a 

NumberOfHeatingRequest. This could be used to aid connecting signals or filtering data.] 

 
 

4.4.1.3 Boolean Type 

 
The following is the predefined Boolean type: 

 
 
 

[The quantity attribute could be used for example to declare in a sequence that a boolean signal is a ChillerOn 

command.] 

 
 

4.4.1.4 String Type 

 
The following is the predefined String type: 

 

 

 
4.4.1.5 Enumeration Types 

 
A declaration of the form 

 
 

defines an enumeration type E and the associated enumeration literals of the enumList. The enumeration literals shall 

be distinct within the enumeration type. The names of the enumeration literals are defined inside the scope of E. Each 

enumeration literal in the enumList has type E. 

[Example: 
 

  

 

type Boolean // Note: Defined with Modelica syntax although predefined 

BooleanType value; // Accessed without dot-notation 

//-- parameter StringType quantity = ""; 

//-- parameter BooleanType start = false; // Initial value 

//-- parameter BooleanType fixed = true, // default for parameter/constant; 

//-- = false, // default for other variables 

end Boolean; 

 
type E = enumeration([enumList]); 

type SimpleController = enumeration(P, PI, PD, PID); 

 
parameter SimpleController = SimpleController.P; 
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] 

An optional comment string can be specified with each enumeration literal. 

[Example: 

 
 

] 

[Enumerations can for example be used to declare a list of mode of operations, such as on, off, startUp, coolDown.] 

 
 

4.4.2 Parameter and constant declarations 

 
A parameter is a value that does not change as time progresses, except through stopping the executation of the control 

sequence, setting a new value through a user interaction or an API, and restarting the execution. In other words, the value 

of a parameter cannot be changed through an input connector (Section 4.8). Parameters are declared with the 

parameter prefix. 

[For example, to declare a proportional gain, use 
 

 

] 

A constant is a value that is fixed at compilation time. Constants are declared with the constant prefix. 

[For example, 

 

] 

 
 

4.4.3 Arrays 

 
Each of these data types, including the elementary building blocks, can be a single instance, one-dimensional array or 

two-dimensional array (matrix). Array indices shall be of type Integer only. The first element of an array has index 1. 

An array of size 0 is an empty array. 

Arrays may be constructed using the notation {x1,x2,...}, for example parameter Integer k[3,2] = {{1, 

2},{3,4},{5,6}}, or using one or several iterators, for example parameter Real k[2,3] = {i*0.5+j for 

i in 1:3, j in 1:2};. They can also be constructed using a fill or cat function, see Section 4.7.1. 

The size of arrays will be fixed at translation. It cannot be changed during run-time. 

[enumeration or Boolean data types are not permitted as array indices.] 

  

type SimpleController = enumeration( 

P "P controller", 

PI "PI controller", 

PD "PD controller", 

PID "PID controller") 

"Enumeration defining P, PI, PD, or PID simple controller type"; 

parameter Real k(min=0) = 1 "Proportional gain of controller"; 

constant Real pi = 3.14159; 
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See the Modelica 3.3 specification Chapter 10 for array notation and these functions. 

 

 
4.5 Encapsulation of Functionality 

 
All computations are encapsulated in a block. Blocks expose parameters (used to configure the block, such as a control 

gain), and they expose inputs and outputs using connectors. 

Blocks are either elementary building blocks (Section 4.6) or composite blocks (Section 4.12). 

 

 
4.6 Elementary Building Blocks 

 

 
 

Fig.  4.2:   Screenshot of CDL library. 

 

The CDL library contains elementary building blocks that are used to compose control sequences. The functionality of 

elementary building blocks, but not their implementation, is part of the CDL specification. Thus, in the most general form, 

elementary building blocks can be considered as functions that for given parameters p, time t and internal states x (t ), 

map inputs u(t ) to new outputs y (t ), e.g., 
 

(p, t , u(t ), x (t )) ↦→ y (t ). 

Control providers who support CDL need to be able to implement the same functionality as is provided by the elementary 

CDL blocks. 

[CDL implementations are allowed to use a different implementation of the elementary building blocks, because the 

implementation is language specific. However, implementations shall have the same inputs, outputs and parameters, and 

they shall compute the same response for the same value of inputs and state variables.] 
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Users are not allowed to add new elementary building blocks. Rather, users can use the existing elementary blocks to 

implement composite blocks (Section 4.12). 

 

Note: The elementary building blocks can be browsed in any of these ways: 

• Open a web browser at http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Controls_OBC_ 

CDL.html. 

• Download https://github.com/lbl-srg/modelica-buildings/archive/master.zip, unzip the file, and open Buildings/ 

package.mo in the graphical model editor of OpenModelica, Impact, or Dymola. All models in the Examples and 

Validation packages can be simulated with these tools, as well as with OPTIMICA and with JModelica. 

 

An actual implementation of an elementary building block looks as follows, where we omitted the annotations that are 

used for graphical rendering: 
 

For the complete implementation, see the github repository. 

 

 
4.7 Instantiation 

 
4.7.1 Parameter Declaration and Assigning of Values to Parameters 

 
Parameters are values that do not depend on time. The values of parameters can be changed during run-time through a 

user interaction with the control program (such as to change a control gain), unless a parameter is a structural parameter . 

The declaration of parameters and their values is identical to Modelica, but we limit the type of expressions that are 

allowed in such assignments. In particular, for Boolean parameters, we allow expressions involving and, or and not 

and the function fill(..) in Table 4.1. For Real and Integer, expressions are allowed that involve 

  

block AddParameter "Output the sum of an input plus a parameter" 

 
parameter Real p "Value to be added"; 

parameter Real k "Gain of input"; 

 
Interfaces.RealInput u "Connector of Real input signal"; 

Interfaces.RealOutput y "Connector of Real output signal"; 

 
equation 

y = k*u + p; 

 
annotation(Documentation(info(" 

<html> 

<p> 

Block that outputs <code>y = k u + p</code>, 

where <code>k</code> and <code>p</code> are 

parameters and <code>u</code> is an input. 

</p> 

</html>")); 

end AddParameter; 

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Controls_OBC_CDL.html
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Controls_OBC_CDL.html
http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Controls_OBC_CDL.html
https://github.com/lbl-srg/modelica-buildings/archive/master.zip
https://www.openmodelica.org/?id=78%3Aomconnectioneditoromedit&catid=10%3Amain-category
https://www.modelon.com/modelon-impact/
https://www.3ds.com/products-services/catia/products/dymola/trial-version/
https://www.modelon.com/products-services/modelon-creator-suite/optimica-compiler-toolkit/
https://www.jmodelica.org/
https://github.com/lbl-srg/modelica-buildings/blob/master/Buildings/Controls/OBC/CDL/Continuous/AddParameter.mo
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• the basic arithmetic functions +, -, *, -, 

• the relations >, >=, <, <=, ==, <>, 

• calls to the functions listed in Table 4.1. 

 
Table 4.1: Functions that are allowed in parameter assignments. The func- 

tions are consistent with Modelica 3.3. 

Function Descrition 

abs(v) Absolute value of v. 

sign(v) Returns if v>0 then 1 else if v<0 then -1 else 0. 

sqrt(v) Returns the square root of v if v >=0, or an error otherwise. 

div(x, y) Returns the algebraic quotient x/y with any fractional part discarded (also known as truncation 

toward zero). [Note: this is defined for / in C99; in C89 the result for negative numbers is 

implementation-defined, so the standard function div() must be used.]. Result and arguments 

shall have type Real or Integer. If either of the arguments is Real the result is Real otherwise 

it is Integer. 

mod(x, y) Returns the integer modulus of x/y , i.e. mod(x,y)=x-floor(x/y)*y. Result and arguments 

shall have type Real or Integer. If either of the arguments is Real the result is Real otherwise 

it is Integer. 

[Examples are mod(3,1.4)=0.2, mod(-3,1.4)=1.2 and mod(3,-1.4)=-1.2.] 

rem(x,y) Returns the integer remainder of x/y, such that div(x,y)*y + rem(x, y) = x. Result and 

arguments shall have type Real or Integer. If either of the arguments is Real the result is Real 

otherwise it is Integer. 

[Examples are rem(3,1.4)=0.2 and rem(-3,1.4)=-0.2.] 

ceil(x) Returns the smallest integer not less than x. Result and argument shall have type Real. 

floor(x) Returns the largest integer not greater than x. Result and argument shall have type Real. 

integer(x) Returns the largest integer not greater than x. The argument shall have type Real. The result has 

type Integer. 

min(A) Returns the least element of array expression A. 

min(x, y) Returns the least element of the scalars x and y. 

max(A) Returns the greatest element of array expression A. 

max(x, y) Returns the greatest element of the scalars x and y. 

sum(...) The expression sum( e(i, ..., j) for i in u, ..., j in v) returns the sum of 

the expression e(i, ..., j) evaluated for all combinations of i in u, ..., j in v: 

e(u[1], ... ,v[1]) + e(u[2], ... ,v[1])+... +e(u[end],... ,v[1])+... 

+e(u[end],... ,v[end]) 

The type of sum(e(i, ..., j) for i in u, ..., j in v) is the same as the type of 

e(i,...j). 

fill(s, n1, 

n2, ...) 

Returns the n1 × n2 × n3 × ... array with all elements equal to scalar or array expression s (ni ≥ 0). 

The returned array has the same type as s. 

Recursive definition: fill(s, n1, n2, n3, ...) = fill( fill(s, n2, n3, ...), 

n1);, fill(s,n)={s, s, ..., s} 

The function needs two or more arguments; that is fill(s) is not legal. 

 
[For example, to instantiate a gain, one would write 
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where the documentation string is optional. The annotation is typically used for the graphical positioning of the instance 

in a block diagram.] 

Using expressions in parameter assignments, and propagating values of parameters in a hierarchical formulation of a 

control sequence, are convenient language constructs to express relations between parameters. However, most of today’s 

building control product lines do not support propagation of parameter values and evaluation of expressions in parameter 

assignments. For CDL to be compatible with this limitation, the modelica-json translator has optional flags, described 

below, that trigger the evaluation of propagated parameters, and that evaluate expressions that involve parameters. 

CDL also has a keyword called final that prevents a declaration from being changed by the user. This can be used in 

a hierarchical controller to ensure that parameter values are propagated to lower level controller in such a way that users 

can only change their value at the top-level location. It can also be used in CDL to enforce that different instances of blocks 

have the same parameter value. For example, if a controller samples two signals, then final could be used to ensure 

that they sample at the same rate. However, most of today’s building control product lines do not support such a language 

construct. Therefore, while the CDL translator preserves the final keyword in the CDL-JSON format, a translator from 

CDL-JSON to a control product line is allowed to ignore this declaration. 

 

Note: People who implement control sequences that require that values of parameters are identical among multiple 

instances of blocks must use blocks that take these values as an input, rather than rely on the final keyword. This could 

be done as explained in these two examples: 

Example 1: If a  controller  has  two  samplers  called  sam1 and  sam2 and  their  parameter  samplePeriod  must 

satisfy sam1.samplePeriod = sam2.samplePeriod for the logic to  work  correctly,  then  the  con-  troller can 

be implemented using CDL.Logical.Sources.SampleTrigger and connect its output to two instances of 

CDL.Discrete.TriggeredSampler that sample the corresponding signals. 

Example 2: If a controller normalized two input signals by dividing it by a gain k1, then rather than using two instances of 

CDL.Continuous.Gain with parameter k = 1/k1, one could use a constant source CDL.Continuous.Sources.Constant 

with parameter k=k1 and two instances of CDL.Continuous.Division, and then connect the output of the constant source 

with the inputs of the division blocks. 

 
 

4.7.2 Evaluation of Assignment of Values to Parameters 

 
We will now describe how assignments of values to parameters can optionally be evaluated by the CDL translator. While 

such an evaluation is not prefered, it is allowed in CDL to accomodate the situation that most building control product lines, 

in constrast to modeling tools such as Modelica, Simulink or LabVIEW, do not support the propagation of parameters, nor 

do they support the use of expressions in parameter assignments. 

Consider the statement 

 
 
 
 
 
 

(continues on next page) 
  

Continuous.Gain gai(k=-1) "Constant gain of -1" annotation(...); 

parameter Real pRel(unit="Pa") = 50 "Pressure difference across damper"; 

 
CDL.Continuous.Sources.Constant con( 

k = pRel) "Block producing constant output"; 

CDL.Logical.Hysteresis hys( 

https://simulationresearch.lbl.gov/modelica/releases/v6.0.0/help/Buildings_Controls_OBC_CDL_Logical_Sources.html#Buildings.Controls.OBC.CDL.Logical.Sources.SampleTrigger
https://simulationresearch.lbl.gov/modelica/releases/v6.0.0/help/Buildings_Controls_OBC_CDL_Discrete.html#Buildings.Controls.OBC.CDL.Discrete.TriggeredSampler
https://simulationresearch.lbl.gov/modelica/releases/v6.0.0/help/Buildings_Controls_OBC_CDL_Continuous.html#Buildings.Controls.OBC.CDL.Continuous.Gain
https://simulationresearch.lbl.gov/modelica/releases/v6.0.0/help/Buildings_Controls_OBC_CDL_Continuous_Sources.html#Buildings.Controls.OBC.CDL.Continuous.Sources.Constant
https://simulationresearch.lbl.gov/modelica/releases/v6.0.0/help/Buildings_Controls_OBC_CDL_Continuous.html#Buildings.Controls.OBC.CDL.Continuous.Division
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(continued from previous page) 

 

Some building control product lines will need to evaluate this at translation because they cannot propagate parameters 

and/or cannot evaluate expressions. 

To lower the barrier for the development of a CDL translator to a control product line, the modelica-json translator has 

two flags. One flag, called evaluatePropagatedParameters will cause the translator to evaluate the propagated 

parameter, leading to a CDL-JSON declaration that is equivalent to the declaration 
 

 

Note 

1. the parameter Real pRel(unit="Pa") = 50 has been removed as it is no longer used anywhere. 

2. the parameter con.k has now the unit attribute set as this information would otherwise be lost. 

3. the parameter hys.uLow has the unit not set because the assignment involves an expression. As expressions can be 

used to convert a value to a different unit, the unit will not be propagated if the assignment involves an expression. 

Another flag called evaluateExpressions will cause all mathematical expressions to be evaluated, leading to a CDL- 

JSON declaration that is equivalent to the CDL declaration 
 

 

If both evaluatePropagatedParameters and evaluateExpressions are set, the result would be equivalent of 

the declaration 
 

 

Clearly, use of these flags is not preferred, but they have been introduced to accomodate the capabilities that are present 

in most of today’s building control product lines. 

 

Note: A commonly used construct in control sequences is to declare a parameter and then use the parameter once 

to assign the value of a block in this sequences. In CDL, this construct looks like 

  

uLow = pRel-25, 

uHigh = pRel+25) "Hysteresis for fan control"; 

CDL.Continuous.Sources.Constant con( 

k(unit="Pa") = 50) "Block producing constant output"; 

CDL.Logical.Hysteresis hys( 

uLow = 50-25, 

uHigh = 50+25) "Hysteresis for fan control"; 

parameter Real pRel(unit="Pa") = 50 "Pressure difference across damper"; 

 
CDL.Continuous.Sources.Constant con( 

k = pRel) "Block producing constant output"; 

CDL.Logical.Hysteresis hys( 

uLow = 25, 

uHigh = 75) "Hysteresis for fan control"; 

CDL.Continuous.Sources.Constant con( 

k(unit="Pa") = 50) "Block producing constant output"; 

CDL.Logical.Hysteresis hys( 

uLow = 25, 

uHigh = 75) "Hysteresis for fan control"; 
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Note that the English language sequence description would typically refer to the parameter pRel. If this is evaluated 

during translation due to the evaluatePropagatedParameters flag, then pRel would be removed as it is no longer 

used. Hence, such a translation should then rename the block con to pRel, e.g., it should produce a sequence that is 

equivalent to the CDL declaration 
 

 

In this way, references in the English language sequence to pRel are still valid. 

 

 

4.7.3 Conditionally Removing Instances 

 
Instances can be conditionally removed by using an if clause. 

This allows, for example, to have an implementation of a controller that optionally takes as an input the number of occu- 

pants in a zone. 

An example code snippet is 
 

 

By the Modelica language definition, all connections (Section 4.10) to nOcc will be removed if have_occSen = false. 

Some building automation systems do not allow to conditionally removing instances of blocks, inputs and outputs, and their 

connections. Rather, these instances are always present, and a value for the input must be present. To accomodate this 

case, every input connector that can be conditionally removed can declare a default value of the form    cdl(default 

= value), where value is the default value that will be used if the building automation system does not support 

conditionally removing instances.  The type of value must be the same as the type of the connector.  For Boolean 

connectors, the allowed values are true and false. 

If the cdl(default = value) annotation is absent, then the following values are assumed as default: 

• For RealInput, the default values are: 

– If unit=K: If quantity="TemperatureDifference", the default is 0 K, otherwise it is 293.15 K. 

– If unit=Pa: If quantity="PressureDifference", the default is 0 K, otherwise it is 101325 Pa. 

– For all other units, the default value is 0. 
  

parameter Real pRel(unit="Pa") = 50 "Pressure difference across damper"; 

CDL.Continuous.Sources.Constant con(k = pRel) "Block producing constant output"; 

CDL.Continuous.Sources.Constant pRel(k = 50) "Block producing constant output"; 

parameter Boolean have_occSen=false 

"Set to true if zones have occupancy sensor"; 

 
CDL.Interfaces.IntegerInput nOcc if have_occSen 

"Number of occupants" 

annotation ( cdl(default = 0)); 

 
CDL.Continuous.Gain gai( 

k = VOutPerPer_flow) if have_occSen 

"Outdoor air per person"; 

equation 

connect(nOcc, gai.u); 
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• For IntegerInput, the default value is 0. 

• For BooleanInput, the default value is false. 

• For DayTypeInput, the default value is WorkingDay. 

Note that output connectors must not have a specification of a default value, because if a building automation system 

cannot conditionally remove instances, then the block (or input connector) upstream of the output will always be present 

(or will have a default value). 

 

 

4.8 Connectors 

 
Blocks expose their inputs and outputs through input and output connectors. 

The permissible connectors are implemented in the package CDL.Interfaces, and are BooleanInput, 

BooleanOutput, DayTypeInput, DayTypeOutput, IntegerInput, IntegerOutput, RealInput and 

RealOutput. DayType is an enumeration for working day, non-working day and holiday. 

Connectors must be in a public section. 

Connectors can carry scalar variables, vectors or arrays of values (each having the same data type). For arrays, the 

connectors need to be explicitly declared as an array. 

[ For example, to declare an array of nin input signals, use 
 

 

] 

 

Note: In general, today’s building control product lines only support scalar variables on graphical connections. This leads 

to the situation that different control sequences need to be implemented for any combination of equipment. For example, 

if only scalars are allowed in connections, then a chiller plant with two chillers needs a different sequence than a chiller 

plant with three chillers. With vectors, however, one sequence can be implemented for chiller plants with any number of 

chillers. This is currently done when implementing sequences from ASHRAE RP-1711 in CDL. 

If control product lines do not support vectors on connections, then during translation from CDL to the control product line, 

the vectors (or arrays) can be flattened. For example, blocks of the form 
 

could be translated to the equivalent of 

 
 
 
 

(continues on next page) 
  

CDL.Continuous.Sources.Constant con_1(k=1); 

CDL.Continuous.Sources.Constant con_2(k=1); 

CDL.Continuous.MultiSum mulSum(nin=2); 

parameter Integer nin(min=1) "Number of inputs"; 

 
Interfaces.RealInput u[nin] "Connector for 2 Real input signals"; 

parameter Integer n = 2 "Number of blocks"; 

CDL.Continuous.Sources.Constant con[n](k={1, 2}); 

CDL.Continuous.MultiSum mulSum(nin=n); // multiSum that contains an input connector u[nin] 

equation 

connect(con.y, mulSum.u); 
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(continued from previous page) 

 

E.g., two instances of CDL.Continuous.Sources.Constant are used, the vectorized input mulSum.u[2] is flat- 

tened to two inputs, and two separate connections are instantiated. This will preserve the control logic, but the components 

will need to be graphically rearranged after translation. 

 

 

4.9 Equations 

 
After the instantiations (Section 4.7), a keyword equation must be present to introduce the equation section. The 

equation section can only contain connections (Section 4.10) and annotations (Section 4.11). 

Unlike in Modelica, an equation section shall not contain equations such as y=2*u; or commands such as for, if, 

while and when. 

Furthermore, unlike in Modelica, there shall not be an initial equation, initial algorithm or algorithm 

section. (They can however be part of a elementary building block.) 

 

 
4.10 Connections 

 
Connections connect input to output connector (Section 4.8). For scalar connectors, each input connector of a block 

needs to be connected to exactly one output connector of a block. For vectorized connectors, or vectorized instances with 

scalar connectors, each (element of an) input connector needs to be connected to exactly one (element of an) output 

connector. 

Connections are listed after the instantiation of the blocks in an equation section. The syntax is 
 

 connect(port_a, port_b) annotation(...); 

 

where annotation(...) is used to declare the graphical rendering of the connection (see Section 4.11). The order of 

the connections and the order of the arguments in the connect statement does not matter. 

[For example, to connect an input u of an instance gain to the output y of an instance maxValue, one would declare 
 

 

] 

Only connectors that carry the same data type (Section 4.4.1) can be connected. 

Attributes of the variables that are connected are handled as follows: 

  

equation 

connect(con_1.y, mulSum.u_1); 

connect(con_2.y, mulSum.u_2); 

Continuous.Max maxValue "Output maximum value"; 

Continous.Gain gain(k=60) "Gain"; 

 
equation 

connect(gain.u, maxValue.y); 
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• If the quantity, unit, min or max attributes are set to a non-default value for both connector variables, then they 

must be equal. Otherwise an error should be issued. 

• If only one of the two connector variables declares the quantity, unit, min or max attribute, then this value is 

applied to both connector variables. 

• If two connectors have different values for the displayUnit attribute, then either can be used.  [It is a quality  of 

the implementation that a warning is issued if declarations are inconsistent. However, because displayUnit 

does not affect the computations in the sequence, the connection is still valid.] 

[For example, 

 
 
 

Signals shall be connected using a connect statement; assigning the value of a signal in the instantiation of the output 

connnector is not allowed. 

[This ensures that all control sequences are expressed as block diagrams. For example, the following model is valid 
 

 

whereas the following implementation is not valid in CDL, although it is valid in Modelica 
 

 

  

block MyAdderValid 

Interfaces.RealInput u1; 

RealInput u2; 

Interfaces.RealOutput y; 

Continuous.Add add; 

equation 

connect(add.u1, u1); 

connect(add.u2, u2); 

connect(add.y, y); 

end MyAdderValid; 

block MyAdderInvalid 

Interfaces.RealInput u1; 

Interfaces.RealInput u2; 

     Interfaces.RealOutput y = u1 + u2; // not allowed  

end MyAdderInvalid; 
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4.11 Annotations 

 
Annotations follow the same rules as described in the following Modelica 3.3 Specifications 

• 18.2 Annotations for Documentation 

• 18.6 Annotations for Graphical Objects, with the exception of 

– 18.6.7 User input 

• 18.8 Annotations for Version Handling 

[For CDL, annotations are primarily used to graphically visualize block layouts, graphically visualize input and output signal 

connections, and to declare vendor annotations, (Sec. 18.1 in Modelica 3.3 Specification), such as to specify default value 

of connector as below.] 

CDL also uses annotations to declare default values for conditionally removable input connectors, see Section 4.7.3. 

For  CDL  implementations  of  sources  such  as  ASHRAE  Guideline  36,   any  instance,   such  as  a  parame-       ter,   

input  or  output,   that  is  not  provided  in  the  original  documentation  shall  be  annotated.   For   instances,    the 

annotation is cdl(InstanceInReference=False) while for parameter values, the annotation is 

     cdl(ValueInReference=False). For both, if not specified the default value is True. 

[ A specification may look like 
 

 

 

Note: This annotation is not provided for parameters that are in general not specified in the ASHRAE Guideline 36, such 

as hysteresis deadband, default gains for a controller, or any reformulations of ASHRAE parameters that are needed for 

sequence generalization, for instance a matrix variable used to indicate which chillers are used in each stage. 
 

 

 

4.12 Composite Blocks 

 
CDL allows building composite blocks such as shown in Fig. 4.3. 

Composite blocks can contain other composite blocks. 

Each composite block shall be stored on the file system under the name of the composite block with the file extension 

.mo, and with each package name being a directory. The name shall be an allowed Modelica class name. 

[For example, if a user specifies a new composite block MyController.MyAdder, then it shall be stored in the file 

MyController/MyAdder.mo on Linux or OS X, or MyController\MyAdder.mo on Windows.] 

[The following statement, when saved as CustomPWithLimiter.mo, is the declaration of the composite block shown 

in Fig. 4.3 

  

parameter Real anyOutOfScoMult( 

final unit = "1", 

final min = 0, 

final max = 1)=0.8 

"Outside of G36 recommended staging order chiller type SPLR multiplier" 

annotation(Evaluate=true, cdl(ValueInReference=False)); 
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y 

 
Fig. 4.3: Example of a composite control block that outputs y = min(k e, ymax ) where k is a parameter. 

 
 

 

 (continues on next page) 
  

block CustomPWithLimiter 

"Custom implementation of a P controller with variable output limiter" 

 
parameter Real k "Constant gain"; 

 
CDL.Interfaces.RealInput yMax "Maximum value of output signal" 

annotation (Placement(transformation(extent={{-140,20},{-100,60}}))); 

 
CDL.Interfaces.RealInput e "Control error" 

annotation (Placement(transformation(extent={{-140,-60},{-100,-20}}))); 

 
CDL.Interfaces.RealOutput y "Control signal" 

annotation (Placement(transformation(extent={{100,-10},{120,10}}))); 

 
CDL.Continuous.Gain gain(final k=k) "Constant gain" 

annotation (Placement(transformation(extent={{-60,-50},{-40,-30}}))); 

 
CDL.Continuous.Min minValue "Outputs the minimum of its inputs" 

annotation (Placement(transformation(extent={{20,-10},{40,10}}))); 

equation 

connect(yMax, minValue.u1) annotation ( 

Line(points={{-120,40},{-120,40},{-20,40},{-20, 6},{18,6}}, 

color={0,0,127})); 

connect(e, gain.u) annotation ( 

Line(points={{-120,-40},{-92,-40},{-62,-40}}, 

color={0,0,127})); 

connect(gain.y, minValue.u2) annotation ( 

Line(points={{-39,-40},{-20,-40},{-20,-6}, {18,-6}}, 

color={0,0,127})); 

connect(minValue.y, y) annotation ( 

Line(points={{41,0},{110,0}}, 

color={0,0,127})); 
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(continued from previous page) 

 

Composite blocks are needed to preserve grouping of control blocks and their connections, and are needed for hierarchical 

composition of control sequences.] 

 

 

4.13 Model of Computation 

 
CDL uses the synchronous data flow principle and the single assignment rule, which are defined below. [The definition is 

adopted from and consistent with the Modelica 3.3 Specification, Section 8.4.] 

1. All variables keep their actual values until these values are explicitly changed. Variable values can be accessed at 

any time instant. 

2. Computation and communication at an event instant does not take time. [If computation or communication time has 

to be simulated, this property has to be explicitly modeled.] 

3. Every input connector shall be connected to exactly one output connector. 

In addition, the dependency graph from inputs to outputs that directly depend on inputs shall be directed and acyclic. I.e., 

connections that form an algebraic loop are not allowed. [To break an algebraic loop, one could place a delay block or an 

integrator in the loop, because the outputs of a delay or integrator does not depend directly on the input.] 

 

 

4.14 Tags 

 
CDL has sufficient information for tools that process CDL to generate for example point lists that list all analog temperature 

sensors, or to verify that a pressure control signal is not connected to a temperature input of a controller. Some, but not 

all, of this information can be inferred from the CDL language described above. We will use tags, implemented through 

Modelica vendor annotations, to provide this additional information. In Section 4.14.1, we will explain the properties that 

can be inferred, and in Section 4.14.2, we will explain how to use tagging schemes in CDL. 

 

Note: None of this information affects the computation of a control signal. Rather, it can be used for example to facilitate 

the implementation of cost estimation tools, or to detect incorrect connections between outputs and inputs. 

  

annotation (Documentation(info="<html> 

<p> 

Block that outputs <code>y = min(yMax, k*e)</code>, 

where 

<code>yMax</code> and <code>e</code> are real-valued input signals and 

<code>k</code> is a parameter. 

</p> 

</html>")); 

end CustomPWithLimiter; 
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4.14.1 Inferred Properties 

 
To avoid that signals with physically incompatible quantities are connected, tools that parse CDL can infer the physical 

quantities from the unit and quantity attributes. 

[For example, a differential pressure input signal with name u can be declared as 
 

 

Hence, tools can verify that the PressureDifference is not connected to AbsolutePressure, and they can infer 

that the input has units of Pascal. 

Therefore, tools that process CDL can infer the following information: 

• Numerical value: Binary value (which in CDL is represented by a Boolean data type), analog value, (which in CDL 

is represented by a Real data type) mode (which in CDL is presented by an Integer data type or an enumeration, 

which allow for example encoding of the ASHRAE Guideline 36 Freeze Protection which has 4 stages). 

• Source: Hardware point or software point. 

• Quantity: such as Temperature, Pressure, Humidity or Speed. 

• Unit: Unit and preferred display unit. (The display unit can be overwritten by a tool. This allows for example a control 

vendor to use the same sequences in North America displaying IP units, and in the rest of the world displaying SI 

units.) 

] 

 
 

4.14.2 Tagged Properties 

 
The buildings industry uses different tagging schemes such as Brick (http://brickschema.org/) and Haystack (http: 

//project-haystack.org/). CDL allows, but does not require, use of the Brick or Haystack tagging scheme. 

CDL allows to add tags to declarations that instantiate 

• elementary building blocks (Section 4.6), and 

• composite blocks (Section 4.12). 

[We currently do not see a use case that would require adding a tag to a parameter declaration.] 

To implement such tags, CDL blocks can contain vendor annotations with the following syntax: 

 

where cdl annotation is the annotation for CDL. 

For Brick, the cdl_annotation is 

  

Interfaces.RealInput u( 

quantity="PressureDifference", 

unit="Pa") "Differential pressure signal" annotation (...); 

annotation : 

annotation "(" [annotations ","] 

     cdl "(" [ cdl_annotation ] ")" ["," annotations] ")" 

brick_annotation: 

brick "(" RDF ")" 

http://brickschema.org/
http://project-haystack.org/
http://project-haystack.org/
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where RDF is the RDF 1.1 Turtle (https://www.w3.org/TR/turtle/) specification of the Brick object. 

[Note that, for example for a controller with two output signals y1 and y2, Brick seems to have no means to specify that  y1 

controls a fan speed and y2 controls a heating valve, where controls is the Brick relationship. Therefore, we 

allow the brick_annotation to only be at the block level, but not at the level of instances of input or output connectors. 

For example, the Brick specification 
 

 

can be declared in CDL as 

 
 
 

] 

For Haystack, the cdl_annotation is 
 

 

where JSON is the JSON encoding of the Haystack object. 

[For example, the AHU discharge air temperature setpoint of the example in http://project-haystack.org/tag/sensor, which 

is in Haystack declared as 
 

can be declared in CDL as 

 
 

(continues on next page)  

annotation( cdl(brick="soda_hall:flow_sensor_SODA1F1_VAV_AV a brick:Supply_Air_Flow_Sensor 

˓→; 

bf:hasTag brick:Average ; 

bf:isLocatedIn soda_hall:floor_1 .")); 

soda_hall:flow_sensor_SODA1F1_VAV_AV a brick:Supply_Air_Flow_Sensor ; 

bf:hasTag brick:Average ; 

bf:isLocatedIn soda_hall:floor_1 . 

haystack_annotation: 

haystack "(" JSON ")" 

id: @whitehouse.ahu3.dat 

dis: "White House AHU-3 DischargeAirTemp" 

point 

siteRef: @whitehouse 

equipRef: @whitehouse.ahu3 

discharge 

air 

temp 

sensor 

kind: "Number" 

unit: "degF" 

https://www.w3.org/TR/turtle/
http://project-haystack.org/tag/sensor
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(continued from previous page) 

 

Tools  that process CDL can interpret the brick or haystack annotation,  but for control purposes CDL will ignore  it. 

[This avoids potential conflict for entities that are declared differently in Brick (or Haystack) and CDL, and may be 

conflicting.  For example, the above sensor input declares in Haystack that it belongs to an ahu3.  CDL, however,  has   a 

different syntax to declare such dependencies: In CDL, through the connect(whitehouse.ahu3.TSup, ...) 

statement, a tool can infer what upstream component sends the input signal.] 
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Chapter 5 

 
Controls Library 

 
5.1 Introduction 

 
To implement control sequences that conform to the CDL specification of Section 4, we implemented a library of ele- 

mentary control blocks, and a library of control sequences that are composed of these elementary control blocks, using 

composition rules that are specified in the CDL specification. The next two sections give a brief overview of these library. 

To see their implementation, browse the online documentation at https://simulationresearch.lbl.gov/modelica/releases/ 

latest/help/Buildings_Controls_OBC.html. 

 

 

5.2 CDL Library 

 
To implement control sequences in CDL, we created the CDL library. This library contains all compositional elements of 

the CDL language, such as connectors for input and output signals of various types (real, integer etc.), type definitions 

such as for the day-of-week, and the elementary control blocks that are described in Section 4.6. This library consist of 

about 130 elementary control blocks, such as a block that adds two real-valued input signals and produces its sum as the 

output, a block that implements a proportional-integral-derivative controller with anti-windup, and blocks that perform basic 

operations on boolean signals. Thus, the CDL library defines the necessary and sufficient set of models that need to be 

supported by control product lines to which control sequences that are expressed in CDL can be translated to, using the 

process described in Section 6.3. 

These elementary blocks are used to compose control sequences for mechanical systems, lighting systems and active 

facades as described in the next section. 

 

 

5.3 Library of Control Sequences 

 
To make ready-to-use control sequences available to building designers, researchers and control providers, we imple- 

mented control sequences for secondary HVAC systems based on ASHRAE Guideline 36, for lighting systems and for 

active facades. 

  

https://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Controls_OBC.html
https://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Controls_OBC.html
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Fig. 5.1: Overview of package that includes control sequences from ASHRAE Guideline 36. 

 

 
For example, Fig. 5.1 shows an overview of the control sequences that have been implemented based on ASHRAE 

Guideline 36. The implementation is structured hierarchically into packages for air handler units, into constants that 

indicate the mode of operation, into generic sequences such as for a trim and respond logic, and into sequences for 

terminal units. Around 30 smaller sequences are used to hierarchically compose controllers for single-zone and multi- 

zone VAV systems. 

Every sequence contains an English language description, an implementation using block diagram modeling, and one or 

more examples that illustrate the use of the sequence. These examples are available in the Validation package in 

which the sequences are used, typically with open-loop tests. For top-level sequences, there are also closed loop tests 

available. For example Fig. 5.2 shows the schematic view of the model that evaluates the performance of the single zone 

VAV controller based on ASHRAE Guideline 36 [ZBG+20]. In this model, the controller output is connected to an HVAC 

system model, which in turn is connected to a model of the building. Sensor data from the HVAC system and the room air 

temperature are fed back to the controller to form the closed loop test. The model is available in the Modelica Buildings 

Library as the model Buildings.Air.Systems.SingleZone.VAV.Examples.Guideline36. 

As of Fall 2020, additional sequences are being implemented for chilled water plants and for boiler plants, following the 

ASHRAE Research Project Report 1711, and for optimal start-up (for heating) and cool down (for cooling). 
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Fig. 5.2: Schematic view of model that uses the CDL implementation of the single zone VAV controller based on ASHRAE Guideline 

36. 
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Chapter 6 

 
Code Generation 

 
6.1 Introduction 

 
This section describes the translation of control sequences expressed in CDL to a building automation system. 

Translating the CDL library to a building automation system to make it available as part of a product line needs to be done 

only when the CDL library is updated, and hence only developers need to perform this step. However, translation of a 

CDL-conforming control sequence that has been developed for a specific building will need to be done for each building 

project. 

While translation from CDL to C code or to a Functional Mockup Unit is support by Modelica simulation environments, 

translation to legacy building automation product lines is more difficult as they typically do not allow executing custom C 

code. Moreover, a building operator typically needs a graphical operator interface, which would not be supported if one 

were to simply upload compiled C code to a building automation system. 

Use of CDL control sequences for building operation, or use of such sequences in a verification test module, consists of 

the following steps: 

1. Implementation of the control sequence using CDL. 

2. Export of the Modelica model as a Functional Mockup Unit for Model Exchange (FMU-ME) or as a JSON specifica- 

tion. 

3. Import of the FMU-ME in the runtime environment, or translation of the JSON specification to the language used by 

the building automation system. 

Fig. 6.1 shows the process of exporting and importing control sequences. 

The next section describes three different approaches that can be used by control vendors to translate CDL to their product 

line: 

1. Translation of the CDL-compliant sequence to a JSON intermediate format, which can be translated to the format 

used by the control platform (Section 6.3). 

2. Export of the whole CDL-compliant sequence using the FMI standard (Section 6.4), a standard for exchanging 

simulation models that can be simulated using a variety of open-source tools. 

3. Translation of the CDL-compliant sequence to an xml-based standard called System Structure and Parameterization 

(SSP), which is then used to parameterize, link and execute pre-compiled elementary CDL blocks (Section 6.5). 
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Fig. 6.1: Overview of the code export and import of control sequences and verification tests. 
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The best approach will depend on the control platform. While in the short-term, option 1) is likely preferred as it allows 

reusing existing control product lines, the long term vision is that control product lines would directly compile CDL using 

option 2) or 3). Before explaining these three approaches, we first discuss challenges of translation of CDL sequences to 

building automation systems, as well as their implications. 

 

 

6.2 Challenges and Implications for Translation of Control Sequences from 

and to Building Control Product Lines 

This section discusses challenges and implications for translating CDL-conforming control sequences to the programming 

languages used by building automation system. 

First, we note that simply generating C code is not viable for such applications because building automation systems 

generally do not allow users to upload C code. Moreover, they also need to provide an interface for the building operator 

that allows editing the control parameters and control sequences. 

Second, we note that the translation will for most, if not all, systems only be possible from CDL to a building automation 

system, but not vice versa. This is due to specific constructs that may exist in building automation systems but not in CDL. 

For example, if Sedona (https://www.sedona-alliance.org/) were the target platform, then translating from Sedona to CDL 

will not be possible because Sedona allows boolean variables to take on the values true, false and null, but CDL 

has no null value. 

 
 

6.3 Translation of a Control Sequence using a JSON Intermediate Format 

 
Control companies that choose to not use C-code generation or the FMI standard to execute CDL-compliant control 

sequences can develop translators from CDL to their native language. To aid in this process, a CDL to JSON translator 

can be used. Such a translator is currently being developed at https://github.com/lbl-srg/modelica-json. This translator 

parses CDL-compliant control sequences to a JSON format. The parser generates the following output formats: 

1. A JSON representation of the control sequence, 

2. a simplified version of this JSON representation, and 

3. an html-formated documentation of the control sequence. 

To translate CDL-compliant control sequences to the language that is used by the target building automation system, the 

simplified JSON representation is most suited. 

As an illustrative example, consider the composite control block shown in Fig. 4.3 and reproduced in Fig. 6.2. 

In CDL, this would be specified as 

 
1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

(continues on next page) 
  

block CustomPWithLimiter 

"Custom implementation of a P controller with variable output limiter" 

parameter Real k "Constant gain"; 

CDL.Interfaces.RealInput yMax "Maximum value of output signal" 

annotation (Placement(transformation(extent={{-140,20},{-100,60}}))); 

CDL.Interfaces.RealInput e "Control error" 

annotation (Placement(transformation(extent={{-140,-60},{-100,-20}}))); 

https://www.sedona-alliance.org/
https://github.com/lbl-srg/modelica-json
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y 

Fig. 6.2: Example of a composite control block that outputs y = max(k e, ymax ) where k is a parameter. 

(continued from previous page) 

8 CDL.Interfaces.RealOutput y "Control signal" 

9 annotation (Placement(transformation(extent={{100,-10},{120,10}}))); 

10 CDL.Continuous.Gain gain(final k=k) "Constant gain" 

11 annotation (Placement(transformation(extent={{-60,-50},{-40,-30}}))); 

12 CDL.Continuous.Min minValue "Outputs the minimum of its inputs" 

13 annotation (Placement(transformation(extent={{20,-10},{40,10}}))); 

14 equation 

15 connect(yMax, minValue.u1) annotation ( 

16 Line(points={{-120,40},{-120,40},{-20,40},{-20, 6},{18,6}}, color={0,0,127})); 

17 connect(e, gain.u) annotation ( 

18 Line(points={{-120,-40},{-92,-40},{-62,-40}}, color={0,0,127})); 

19 connect(gain.y, minValue.u2) annotation ( 

20 Line(points={{-39,-40},{-20,-40},{-20,-6}, {18,-6}}, color={0,0,127})); 

21 connect(minValue.y, y) annotation ( 

22 Line(points={{41,0},{110,0}}, color={0,0,127})); 

23 annotation (Documentation(info="<html> 

24 <p> 

25 Block that outputs <code>y = min(yMax, k*e)</code>, 

26 where 

27 <code>yMax</code> and <code>e</code> are real-valued input signals and 

28 <code>k</code> is a parameter. 

29 </p> 

30 </html>")); 

31 end CustomPWithLimiter; 

 

This specification can be converted to JSON using the program modelica-json. Executing the command 
 

 

will produce a file called CustomPWithLimiter-simplified.json that looks as follows: 
 

 (continues on next page)  

node modelica-json/app.js -f CustomPWithLimiter.mo -o json-simplified 

https://github.com/lbl-srg/modelica-json
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(continued from previous page) 

2 { 

3 "modelicaFile": "CustomPWithLimiter.mo", 

4 "topClassName": "CustomPWithLimiter", 

5 "comment": "Custom implementation of a P controller with variable output limiter", 

6 "public": { 

7 "parameters": [ 

8 { 

9 "className": "Real", 

10 "name": "k", 

11 "comment": "Constant gain", 

12 "annotation": { 

13 "dialog": { 

14 "tab": "General", 

15 "group": "Parameters" 

16 } 

17 } 

18 } 

19 ], 

20 "models": [ 

21 { 

22 "className": "CDL.Interfaces.RealInput", 

23 "name": "yMax", 

24 "comment": "Maximum value of output signal" 

25 }, 

26 { 

27 "className": "CDL.Interfaces.RealInput", 

28 "name": "e", 

29 "comment": "Control error" 

30 }, 

31 { 

32 "className": "CDL.Interfaces.RealOutput", 

33 "name": "y", 

34 "comment": "Control signal" 

35 }, 

36 { 

37 "className": "CDL.Continuous.Gain", 

38 "name": "gain", 

39 "comment": "Constant gain", 

40 "modifications": [ 

41 { 

42 "name": "k", 

43 "value": "k", 

44 "isFinal": true 

45 } 

46 ] 

47 }, 

48 { 

49 "className": "CDL.Continuous.Min", 

50 "name": "minValue", 

(continues on next page) 
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(continued from previous page) 

51 "comment": "Outputs the minimum of its inputs" 

52 } 

53 ] 

54 }, 

55 "info": "<html>\n<p>\nBlock that outputs <code>y = min(yMax, k*e)</code>,\nwhere\n<code> 

˓→yMax</code> and <code>e</code> are real-valued input signals and\n<code>k</code> is a 

˓→parameter.\n</p>\n</html>", 

56 "connections": [ 

57 [  

58  { 

59  "instance": "yMax" 

60  }, 

61  { 

62 "instance": "minValue", 

63 "connector": "u1" 

64 } 

65 ], 

66 [ 

67 { 

68 "instance": "e" 

69 }, 

70 { 

71 "instance": "gain", 

72 "connector": "u" 

73 } 

74 ], 

75 [ 

76 { 

77 "instance": "gain", 

78 "connector": "y" 

79  }, 

80  { 

81  "instance": "minValue", 

82  "connector": "u2" 

83  } 

84 ],  

85 [  

86  { 

87  "instance": "minValue", 

88  "connector": "y" 

89  }, 

90  { 

91 "instance": "y" 

92 } 

93 ] 

94 ] 

95 } 

96 ] 

 

Note that the graphical annotations are not shown. The JSON representation can then be parsed and converted to another 
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block-diagram language. Note that CDL.Continuous.Gain is an elementary CDL block (see Section 4.6). If it were a 

composite CDL block (see Section 4.12), it would be parsed recursively until only elementary CDL blocks are present in 

the JSON file. Various examples of CDL converted to JSON can be found at https://github.com/lbl-srg/modelica-json/tree/ 

master/test/FromModelica. 

The simplified JSON representation of a CDL sequence must be compliant with the corresponding JSON Schema. A 

JSON Schema describes the data format and file structure, lists the required or optional properties, and sets limitations 

on values such as patterns for strings or extrema for numbers. 

The CDL Schema can be found at https://raw.githubusercontent.com/lbl-srg/modelica-json/master/schema-CDL.json . 

The program modelica-json automatically tests the JSON representation parsed from a CDL file against the schema right 

after it is generated. 

The validation of an existing JSON representation of a CDL file against the schema can be done executing the command 
 

 

Control providers can use the JSON Schema as a specification to develop a translator to a control product line. If JSON 

files are the starting point, then they should first validate the JSON files against the JSON Schema, as this ensures that 

the input files to the translator are valid. 

 

 

6.4 Export of a Control Sequence or a Verification Test using the FMI Stan- 

dard 

This section describes how to export a control sequence, or a verification test, using the FMI standard . In this workflow, 

the intermediate format that is used is FMI for model exchange, as it is an open standard, and because FMI can easily be 

integrated into tools for controls or verification using a variety of languages. 

 

Note: Also possible, but outside of the scope of this project, is the translation of the control sequences to JavaScript, 

which could then be executed in a building automation system. For a Modelica to JavaScript converter, see https://github. 

com/tshort/openmodelica-javascript. 
 

 

To implement control sequences, blocks from the CDL library (Section 4.6) can be used to compose sequences that 

conform to the CDL language specification described in Section 4. For verification tests, any Modelica block can be used. 

Next, to export the Modelica model, a Modelica tool such as OpenModelica, JModelica, OPTIMICA or Dymola can be 

used. For example, with OPTIMICA a control sequence can be exported using the Python commands 
 

This will generate an FMU-ME. Finally, to import the FMU-ME in a runtime environment, various tools can be used, 

including: 

• Tools based on Python, which could be used to interface with sMAP (https://pythonhosted.org/Smap/en/2.0/index. 

html) or Volttron (https://energy.gov/eere/buildings/volttron): 

– PyFMI (https://pypi.python.org/pypi/PyFMI) 
  

node modelica-json/validation.js -f filename.json 

from pymodelica import compile_fmu 

compile_fmu("Buildings.Controls.OBC.ASHRAE.G36_PR1.AHUs.SingleZone.Economizers.Controller") 

https://github.com/lbl-srg/modelica-json/tree/master/test/FromModelica
https://github.com/lbl-srg/modelica-json/tree/master/test/FromModelica
https://raw.githubusercontent.com/lbl-srg/modelica-json/master/schema-CDL.json
https://github.com/lbl-srg/modelica-json
https://github.com/tshort/openmodelica-javascript
https://github.com/tshort/openmodelica-javascript
https://pythonhosted.org/Smap/en/2.0/index.html
https://pythonhosted.org/Smap/en/2.0/index.html
https://pythonhosted.org/Smap/en/2.0/index.html
https://energy.gov/eere/buildings/volttron
https://pypi.python.org/pypi/PyFMI
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• Tools based on Java: 

– Building Controls Virtual Test Bed (http://simulationresearch.lbl.gov/bcvtb) 

– JFMI (https://ptolemy.eecs.berkeley.edu/java/jfmi/) 

– JavaFMI (https://bitbucket.org/siani/javafmi/wiki/Home) 

• Tools based on C: 

– FMI Library (https://github.com/modelon-community/fmi-library) 

• Modelica tools, of which many if not all provide functionality for real-time simulation: 

– OpenModelica (https://openmodelica.org/) 

– JModelica (https://www.jmodelica.org) 

– Impact (https://www.modelon.com/modelon-impact/) 

– Dymola (https://www.3ds.com/products-services/catia/products/dymola/) 

– MapleSim (https://www.maplesoft.com/products/maplesim/) 

– SimulationX (https://www.simulationx.com/) 

– SystemModeler (http://www.wolfram.com/system-modeler/index.html) 

See also http://fmi-standard.org/tools/ for other tools. 

Note that directly compiling Modelica models to building automation systems also allows leveraging the ongoing EM- 

PHYSIS project (2017-20, Euro 14M) that develops technologies for running dynamic models on electronic control units 

(ECU), micro controllers or other embedded systems. This may be attractive for FDD and some advanced control se- 

quences. 

 

 

6.5 Modular Export of a Control Sequence using the FMI Standard for Control 

Blocks and using the SSP Standard for the Run-time Environment 

In 2019, a new standard called System Structure and Parameterization (SSP) was released (https://ssp-standard.org/). 

The standard provides an xml scheme for the specification of FMU parameter values, their input and output connec- tions, 

and their graphical layout. The SSP standard allows for transporting complex networks of FMUs between different 

platforms for simulation, hardware-in-the-loop and model-in-the-loop [KohlerHM+16]. Various tools that can simulate 

systems specified using the SSP standard are in development, with FMI composer (http://www.modelon.com/products/ 

modelon-deployment-suite/fmi-composer/) from Modelon being commercially available. 

CDL-compliant control sequences could be exported to the SSP standard as shown in Fig. 6.3. 

 
 

Fig.  6.3:   Translation of CDL to SSP. 

 

In such a workflow, a control vendor would translate the elementary CDL blocks (Section 4.6) to a repository of FMU-ME 

blocks. These blocks will then be used during operation. For each project, its CDL-compliant control sequence could 

  

http://simulationresearch.lbl.gov/bcvtb
https://ptolemy.eecs.berkeley.edu/java/jfmi/
https://bitbucket.org/siani/javafmi/wiki/Home
https://github.com/modelon-community/fmi-library
https://openmodelica.org/
https://www.jmodelica.org/
https://www.modelon.com/modelon-impact/
https://www.3ds.com/products-services/catia/products/dymola/
https://www.maplesoft.com/products/maplesim/
https://www.simulationx.com/
http://www.wolfram.com/system-modeler/index.html
http://fmi-standard.org/tools/
https://itea3.org/project/emphysis.html
https://itea3.org/project/emphysis.html
https://ssp-standard.org/
http://www.modelon.com/products/modelon-deployment-suite/fmi-composer/
http://www.modelon.com/products/modelon-deployment-suite/fmi-composer/
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be translated to the simplified JSON format, as described in Section 6.3. Using a template engine (similar as is used by 

modelica-json to translate the simplified JSON to html), the simplified JSON representation could then be converted 

to the xml syntax specified in the SSP standard. Finally, a tool such as the FMI Composer could import the SSP-compliant 

specification, and execute the control sequence using the elementary CDL block FMUs from the FMU repository. 

 

Note: In this workflow, all key representations are based on standards: The CDL-specification uses a subset of the 

Modelica standard, the elementary CDL blocks are converted to the FMI standard, and finally the runtime environment 

uses the SSP standard. 
 

 

 

6.6 Replacement of Elementary CDL Blocks during Translation 

 
When translating CDL to a control product lines, a translator may want to conduct certain substitutions. Some of these 

substitutions can change the control response, which can cause the verification that checks whether the actual implemen- 

tation conforms to the specification to fail. 

This section therefore explains how certain substitutions can be performed in a way that allows formal verification to pass. 

(How verification tests will be conducted will be specified later in 2018, but essentially we will require that the control 

response from the actual control implementation is within a certain tolerance of the control response computed by the 

CDL specification, provided that both sequences receive the same input signals and use the same parameter values.) 

 
 

6.6.1 Substitutions that Give Identical Control Response 

 
Consider the gain CDL.Continuous.Gain used above. If a product line uses different names for the inputs, outputs 

and parameters, then they can be replaced. 

Moreover, certain transformations that do not change the response of the block are permissible: For example, consider 

the PID controller in the CDL library.  The implementation has a parameter for the time constant of the integrator block.  If 

a control vendor requires the specification of an integrator gain rather than the integrator time constant, then such a 

parameter transformation can be done during the translation, as both implementations yield an identical response. 

 
 

6.6.2 Substitutions that Change the Control Response 

 
If a control vendor likes to use for example a different implementation of the anti-windup in a PID controller, then such a 

substitution will cause the verification to fail if the control responses differ between the CDL-compliant specification and 

the vendor’s implementation. 

Therefore, if a customer requires the implemented control sequence to comply with the specification, then the workflow 

shall be such that the control provider provides an executable implementation of its controller, and the control provider 

shall ask the customer to replace in the control specification the PID controller from the CDL library with the PID controller 

provided by the control provider. Afterwards, verification can be conducted as usual. 

 

Note: Such an executable implementation of a vendor’s PID controller can be made available by publishing the controller 

or by contributing the controller to the Modelica Buildings Library. The implementation of the control logic can be done 

  

http://simulationresearch.lbl.gov/modelica/releases/v5.0.1/help/Buildings_Controls_OBC_CDL_Continuous.html#Buildings.Controls.OBC.CDL.Continuous.LimPID
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either using other CDL blocks, which is the preferred approach, using the C language, or by providing a compiled library. 

See the Modelica Specification [Mod12] for implementation details if C code or compiled libraries are provided. If a 

compiled library is provided, then binaries shall be provided for Windows 32/64 bit, Linux 32/64 bit, and OS X 64 bit. 

 

 

6.6.3 Adding Blocks that are not in the CDL Library 

 
If a control vendor likes to use a block that is not in the CDL library, such as a block that uses machine learning to schedule 

optimal warm-up, then such an addition must be approved by the customer. If the customer requires the part of the control 

sequence that contains this block to be verified, then the block shall be made available as described in Section 6.6.2. 
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Chapter 7 

 
Verification 

 
7.1 Introduction 

 
This section describes how to formally verify whether the control sequence is implemented according to specification. 

This process would be done as part of the commissioning, as indicated in step 9 in the process diagram Fig. 3.1. 

For clarity, we note that verification tests whether the implementation of the control sequence conforms with its specifi- 

cation. In contrast, validation would test whether the control sequence, together with the building system, is such that it 

meets the building owner’s need. Hence, validation would be done in step 2 in Fig. 3.1. 

As this step only verifies that the control logic is implemented correctly, it should be conducted in addition to other functional 

tests, such as tests that verify that sensor and actuators are connected to the correct inputs and outputs, that sensors are 

installed properly and that the installed mechanical system meets the specification. 

 

 

7.2 Terminology 

 
We will use the following terminology, see also Section 4 for more details. 

By a real controller, we mean a control device implemented in a building automation system. 

By a controller, we mean a Modelica block that conforms to the CDL specification and that contains a control sequence. 

By input and output, we mean the input connectors (or ports) and output connector (or ports) of a (real) controller. 

By input value or output value, we mean the value that is present at an input or output connector at a given time instant. 

By time series, we mean a series of values at successive times. The time stamps of the series need not be equidistant, 

but they need to be non-decreasing, e.g., we allow for time series with two equal time stamps to indicate when a values 

switches. 

By signal, we mean a function that maps time to a value. 

By parameter, we mean a configuration value of a controller that is constant, unless it is changed by an operator or by the 

user who runs the simulation. Typical parameters are sample times, dead bands or proportional gains. 
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7.3 Scope of the Verification 

 
For OpenBuildingControl, we currently only verify the implementation of the control sequence. The verification is done by 

comparing output time series between a real controller and a simulated controller for the same input time series and the 

same control parameters. The comparison checks whether the difference between these time series are within a user-

specified tolerance. Therefore, with our tests, we aim to verify that the control provider implemented the sequence as 

specified, and that it executes correctly. 

Outside the scope of our verification are tests that verify whether the I/O points are connected properly, whether the 

mechanical equipment is installed and functions correctly, and whether the building envelope is meeting its specification. 

 

 

7.4 Methodology 

 
A typical usage would be as follows: A commissioning agent exports trended control input and output time series and 

stores them in a CSV file. The commissioning agent then executes the CDL specification for the trended input time series, 

and compares the following: 

1. Whether the trended output time series and the output time series computed by the CDL specification are close to 

each other. 

2. Whether the trended input and output time series lead to the right sequence diagrams, for example, whether an 

airhandler’s economizer outdoor air damper is fully open when the system is in free cooling mode. 

Technically, step 2 is not needed if step 1 succeeds. However, feedback from mechanical designers indicate the desire to 

confirm during commissioning that the sequence diagrams are indeed correct (and hence the original control specification 

is correct for the given system). 

Fig. 7.1 shows the flow diagram for the verification. Rather than using real-time data through BACnet or other protocols, 

set points, input time series and output time series of the actual controller are stored in an archive, here a CSV file.  This 

allows to reproduce the verification tests, and it does not require the verification tool to have access to the actual building 

control system. During the verification, the archived time series are read into a Modelica model that conducts the 

verification. The verification will use three blocks. The block labeled input file reader reads the archived time series, which 

may typically be in CSV format. As this data may be directly written by a building automation system,  its units  will differ 

from the units used in CDL. Therefore, the block called unit conversion converts the data to the units used in the CDL 

control specification. Next, the block labeled control specification is the control sequence specification in CDL format. This 

is the specification that was exported during design and sent to the control provider. Given the set points and 

measurement time series, it outputs the control time series according to the specification. The block labeled time series 

verification compares these time series with trended control time series, and indicates where the time series differ by more 

than a prescribed tolerance in time and in control variable value. The block labeled sequence chart creates x-y or scatter 

plots. These can be used to verify for example that an economizer outdoor air damper has the expected position as a 

function of the outside air temperature. 

Below, we will further describe the blocks in the box labeled verification. 

 

Note: We also considered testing criteria such as “whether room temperatures are satisfactory” or “a damper control 

signal is not oscillating”. However,  discussions with design engineers and commissioning providers showed that there  is 

currently no accepted method for turning such questions into hard requirements. We implemented software that tests 

criteria such as “Room air temperature shall be within the setpoint ±0.5 Kelvin for at least 45 min within each 60 minute 
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Fig. 7.1: Overview of the verification that tests whether the installed control sequence meets the specification. 

 

 

window.” and “Damper signal shall not oscillate more than 4 times per hour between a change of ±0.025 (for a 2 minute 

sample period)”. Software implementations of such tests are available on the Modelica Buildings Library github repository, 

commit 454cc75. 

Besides these tests, we also considered automatic fault detection and diagnostics methods that were proposed for in- 

clusion in ASHRAE RP-1455 and Guideline 36, and we considered using methods such as in [Ver13] that automatically 

detect faulty regulation, including excessively oscillatory behavior. However, as it is not yet clear how sensitive these 

methods are to site-specific tuning, and because field tests are ongoing in a NIST project, we did not implement them. 

 

 

7.5 Modules of the Verification Test 

 
To conduct the verification, the following models and tools are used. 

 
 

7.5.1 CSV File Reader 

 
To read CSV files, the data reader Modelica.Blocks.Sources.CombiTimeTable from the Modelica Standard 

Library can be used. It requires the CSV file to have the following structure: 

 
 

 
  

https://github.com/lbl-srg/modelica-buildings/commit/454cc7521c0303d0a3f903acdda2132cc53fe45f
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Note, that the first two characters in the file need to be #1 (a line comment defining the version number of the file format). 

Afterwards, the corresponding matrix has to be declared with type double, name and dimensions. Finally, in successive 

rows of the file, the elements of the matrix have to be given. The elements have to be provided as a sequence of numbers 

in row-wise order (therefore a matrix row can span several lines in the file and need not start at the beginning of a line). 

Numbers have to be given according to C syntax (such as 2.3, -2, +2.e4). Number separators are spaces, tab, comma, 

or semicolon. Line comments start with the hash symbol (#) and can appear everywhere. 

 
 

7.5.2 Unit Conversion 

 
Building automation systems store physical quantities in various units. To convert them to the units used by Modelica and 

hence also by CDL, we developed the package Buildings.Controls.OBC.UnitConversions. This package 

provides blocks that convert between SI units and units that are commonly used in the HVAC industry. 

 
 

7.5.3 Comparison of Time Series Data 

 
We have been developing a tool called funnel to conduct time series comparison. The tool imports two CSV files, one 

containing the reference data set and the other the test data set. Both CSV files contain time series that need to be 

compared against each other. The comparison is conducted by computing a funnel around the reference curve. For this 

funnel, users can specify the tolerances with respect to time and with respect to the trended quantity. The tool then checks 

whether the time series of the test data set is within the funnel and computes the corresponding exceeding error curve. 

The tool is available from https://github.com/lbl-srg/funnel. 

It is primarily intended to be used by means of a Python binding. This can be done in two ways: 

• Import the module pyfunnel and use the compareAndReport and plot_funnel functions. Fig. 7.2 shows a 

typical plot generated by use of these functions. 

• Run directly the Python script from terminal. For usage information, run python pyfunnel.py --help. 

For the full documentation of the funnel software, visit https://github.com/lbl-srg/funnel 

 
7.5.4 Verification of Sequence Diagrams 

 
To verify sequence diagrams we developed the Modelica package Buildings.Utilities.IO.Plotters. Fig. 7.3 

shows an example in which this block is used to produce the sequence diagram shown in Fig. 7.4. While in this example, 

we used the control output time series of the CDL implementation, during commissioning, one would use the controller 

output time series from the building automation system. The model is available from the Modelica Buildings Library, see 

the model Buildings.Utilities.Plotters.Examples.SingleZoneVAVSupply_u. 

Simulating the model shown in Fig. 7.3 generates an html file that contains the scatter plots shown in Fig. 7.5. 

 

 
7.6 Example 

 
In this example we validated a trended output time series of a control sequence that defines the cooling coil valve position. 

The cooling coil valve sequence is a part of the ALC EIKON control logic implemented in building 33 on the main LBNL 

  

https://github.com/lbl-srg/funnel
https://github.com/lbl-srg/funnel
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Fig. 7.2: Typical plot generated by pyfunnel.plot_funnel forr comparing test and reference time series. 
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Fig. 7.3: Modelica model that verifies the sequence diagram. On the left are the blocks that generate the control input time series. In a 

real verification, these would be replaced with a file reader that reads data that have been archived by the building automation system. 

In the center is the control sequence implementation. Some of its output values are converted to degree Celsius, and then fed to the 

plotters on the right that generate a scatter plot for the temperatures and a scatter plot for the fan control signal. The block labeled 

plotConfiguration configures the file name for the plots and the sampling interval. 

 

 

Fig. 7.4: Control sequence diagram for the VAV single zone control sequence from ASHRAE Guideline 36. 
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Fig. 7.5: Scatter plots that show the control sequence diagram generated from the simulated sequence. 

 

 
campus in Berkeley, CA. The subsequence is shown in Fig. 7.6. It comprises a PI controller that tracks the supply air 

temperature, an upstream subsequence that enables the controller and a downstream output limiter that is active in case 

of low supply air temperatures. 

We created a CDL specification of the same cooling coil valve position control sequence, see Fig. 7.7, to validate the 

trended output time series. We trended controller inputs and outputs in 5 second intervals for 

• Supply air temperature in [F] 

• Supply air temperature setpoint in [F] 

• Outdoor air temperature in [F] 

• VFD fan enable status in [0/1] 

• VFD fan feedback in [%] 

• Cooling coil valve position, which is the output of the controller, in [%]. 

The trended input and output time series were processed with a script that converts them to the format required by the 

data readers. The data used in the example begins at midnight on June 7 2018. In addition to the trended input and output 

time series, we recorded all parameters, such as the hysteresis offset (see Fig. 7.8) and the controller gains (see Fig. 

7.9), to use them in the CDL controller. 

We configured the CDL PID controller parameters such that they correspond to the parameters of the ALC PI controller. 

The ALC PID controller implementation is described in the ALC EIKON software help section, while the CDL PID controller 

is described in the info section of the model Buildings.Controls.OBC.CDL.Continuous.LimPID. The ALC controller tracks 

the temperature in degree Fahrenheit, while CDL uses SI units. An additional implementation difference is that for cooling 

applications, the ALC controller uses direct control action, whereas the CDL controller needs to be configured to use 

reverse control action, which can be done by setting its parameter reverseAction=true. Furthermore, the ALC controller 

outputs the control action in percentages,  while the CDL controller outputs a signal between 0 and 1.   To  reconcile   the 

differences, the ALC controller gains were converted for CDL as follows:  The proportional gain kp,cdl  was set to  kp,cdl = u 

kp,alc, where u = 9/5 is a ratio of one degree Celsius (or Kelvin) to one degree Fahrenheit of temperature difference. The 

integrator time constant was converted as Ti,cdl = kp,cdl Ialc/(u ki,alc). Both controllers were enabled throughout the whole 

validation time. 

Fig. 7.10 shows the Modelica model that was used to conduct the verification. On the left hand side are the data readers 

  

http://simulationresearch.lbl.gov/modelica/releases/latest/help/Buildings_Controls_OBC_CDL_Continuous.html#Buildings.Controls.OBC.CDL.Continuous.LimPID
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Fig. 7.6: ALC EIKON specification of the cooling coil valve position control sequence. 

 

 
that read the trended input and output time series from files. Next are unit converters, and a conversion for the fan status 

between a real value and a boolean value. These data are fed into the instance labeled cooValSta, which contains the 

control sequence as shown in Fig. 7.7. The plotters on the right hand side then compare the simulated cooling coil valve 

position with the trended time series. 

Fig. 7.11, which was produced by the Modelica model using blocks from the Buildings.Utilities.Plotters 

package, shows the trended input temperatures for the control sequence, the trended and simulated cooling valve control 

signal for the same time period, which are practically on top of each other, and a correlation error between the trended 

and simulated cooling valve control signal. 

The difference in modeled vs. trended results is due to the following factors: 

• ALC EIKON uses a discrete time step for the time integration with a user-defined time step length, whereas CDL 

uses a continuous time integrator that adjusts the time step based on the integration error. 

• ALC EIKON uses a proprietary algorithm for the anti-windup, which differs from the one used in the CDL implemen- 

tation. 

Despite these differences, the computed and the simulated control signals show good agreement, which is also demon- 

strated by verifying the time series with the funnel software, whose output is shown in Fig. 7.12. 
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Fig. 7.7 : CDL specification of the cooling coil valve position control sequence. 

 
 
 
 

 
 

Fig. 7.8: ALC EIKON outdoor air temperature hysteresis to enable/disable the controller 
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Fig.  7.9:   ALC EIKON PI controller parameters 

 

 
 

Fig. 7.10: Modelica model that conducts the verification. 
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Fig. 7.11: Verification of the cooling valve control signal between ALC EIKON computed signal and simulated signal. 
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Fig. 7.12: Verification of the cooling valve control signal with the funnel software (error computed with an absolute tolerance in time of 

1 s and a relative tolerance in y of 1%). 
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7.7 Specification for Automating the Verification 

 
The example Section 7.6 describes a manual process of composing the verification model and executing the verification 

process. In this section, we provide specifications for how this process can be automated. The automated workflow uses 

the same modules as in Section 7.6, except that the unit conversion will need to be done by the tool that reads the CSV 

files and sends data to the Building Automation System, and that reads data from the Building Automation System and 

writes them to the CSV files. This design decision has been done because CDL provides all required unit information, but 

this is not the case in general for a building automation system. Moreover, in the process described in this section, the 

CSV files will be read directly by the Modelica simulation environment rather than using the CSV file reader described in 

Section 7.5.1. 

 
 

7.7.1 Use Cases 

 
We address two use cases. Both uses cases verify conformance of the time series generated by a control control 

sequence specified in CDL against the time series of an implementation of a real controller. For both use cases, the 

precondition is that one control sequence, or several control sequences, are available in CDL. The output will be a report 

that describes whether the real implementation conforms to the CDL implementation within a user-specified error 

tolerance. The difference between the two uses cases is as follows: In scenario 1, the CDL model contains the controller 

that is connected to upstream blocks that generate the control input time series. The time series from this CDL model will 

be used to test the real controller. In scenario 2, data trended from a real controller will be used to verify the controller 

against the output time series of its CDL specification, using as inputs and parameters of the CDL specification the trended 

time series and parameters of the real controller. 

To conduct the verification, the following three steps will be conducted: 

1. Specify the test setup, 

2. generate data from the real controller, and 

3. produce the test results. 

Next, we will describe the specifications for the two scenarios. The specifications focus on the CDL side. In addition, for 

Scenario 1, steps 5 & 6, and for Scenario 2, steps 3 & 4, a data collection tool need to be developed that utilizes the JSON 

and CSV files described below and does the following to generate the data from the real controller: 

1. Identifies which objects in the building automation system match with the desired collection. 

2. Shows the user a list of all objects that don’t match and a list of objects from the building automation system and 

allows for the user to manually match them. 

3. Sets up the data collection. 

4. Starts collecting data at the desired intervals. 

5. Store the data. 

6. Export the desired data in the format specified below. 

 
 

7.7.2 Scenario 1: Control Input Obtained by Simulating a CDL Model 

 
For this scenario, we verify whether a real controller outputs time series that are similar to the time series of a controller 

that is implemented in a CDL model. The inputs of the real controller will be connected to the time series that were 

exported when simulating a controller that is connected to upstream blocks that generate the control input time series. 

  



OpenBuildingControl Verification 

 
60  

 
An application of this use case is to test whether a controller complies with the sequences specified in CDL for a given 

input time series and control parameters, either as part of verifying correct implementation during control development, or 

verifying correct implementation in a Building Automation System that allows overwriting control input time series. 

For this scenario, we are given the following data: 

i. A list of CDL models, and for each model, the instance name of one control sequence to be tested. 

ii. Relative and absolute tolerances, either for all output variables, or optionally for individual output variables of the 

sequence. 

iii. Optionally, a boolean variable in the model that we call an indicator variable. An indicator variable allows to indicate 

when to pause a test, such as during a fast transient, and when to resume the test, for example when the controls 

is expected to have reached steady-state. If its value is true, then the output should be tested at that time instant, 

and if it is false, the output must not be tested at that time instant. 

For example, consider the validation test OBC.ASHRAE.G36_PR1.AHUs.SingleZone.VAV.SetPoints.Validation.Supply_u. 

To verify the sequences of its instances setPoiVAV and setPoiVAV1, a specification may be 

 

 
Listing 7.1: Configuration of test setup. 

 

This specifies two tests, one for the controller setPoiVAV and one for setPoiVAV1. (In this example, setPoiVAV 

and setPoiVAV1 happen to be the same sequence, but their input time series and/or parameters are different, and 

therefore their output time series will be different.) The test for setPoiVAV will use the globally specified tolerances, 

and use a sampling rate of 120 seconds. The mapping of the variables to the I/O points of the real controller is provided 

in the file realControllerPointMapping.json. The test for setPoiVAV1 will use different tolerances on each 

output variable that matches the regular expression setPoiVAV1.TSup*. Moreover, for each variable that matches the 

  

https://simulationresearch.lbl.gov/modelica/releases/v6.0.0/help/Buildings_Controls_OBC_ASHRAE_G36_PR1_AHUs_SingleZone_VAV_SetPoints_Validation.html#Buildings.Controls.OBC.ASHRAE.G36_PR1.AHUs.SingleZone.VAV.SetPoints.Validation.Supply_u
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regular expression, setPoiVAV1.TSup*, the verification will be suspended whenever fanSta.y = false, and the 

sampling rate is 60 seconds. This test will also use realControllerPointMapping.json to map the variables to 

points of the real controller. The tolerances rtolx and atolx are relative and absolute tolerances in the independent 

variable, e.g., in time, and rtoly and atoly are relative and absolute tolerances in the control output variable. 

To create test input and output time series, we generate CSV files. This needs to be done for each controller, and we will 

explain it only for the controller setPoiVAV. For brevity , we call OBC.ASHRAE.G36_PR1.AHUs.SingleZone.VAV. 

SetPoints.Validation.Supply_u simply Supply_u 

The procedure is as follows: 

1. Parse the model to json by running modelica-json as 
 

This will produce Supply_u.json (file name is abbreviated) in the output directory test1. See https://github. 

com/lbl-srg/modelica-json for the json schema. 

2. From Supply_u.json, extract all input and output variable declarations of the instance setPoiVAV and generate 

an I/O list that we will call reference_io.json. Also, extract all public parameters of the instance setPoiVAV 

and store them in a file that we will call reference_parameters.json. For this sequence, the public parame- 

ters are TSupSetMax, TSupSetMin, yHeaMax, yMin and yCooMax. 

3. Obtain reference time series by simulating Supply_u.mo to produce a CSV file reference.csv with time series 

of all input, output and indicator time series. This can be accomplished with the free open-source tool OpenModelica 

by running 
 

with the file simulateReference.py being 
 

4. To  make a CSV file that only contains the control input time series,  read reference_io.json to extract     the 

names of the input variables of the sequence setPoiVAV and write the corresponing time series from 

reference.csv to a new file reference_input.csv. 

5. Apply the parameters from reference_parameters.json to the real controller, and run the real controller for 

the input time series in reference_input.csv. Convert the units of the parameters and the time series as 

needed for the tested controller. Note that reference_io.json will contain the unit declarations. 

6. Convert the output time series of the real controller to the units specified in reference_io.json, and write the 

  

node app.js -f Buildings/Controls/OBC/ASHRAE/G36_PR1/AHUs/SingleZone/VAV/SetPoints/ 

˓→Validation/Supply_u.mo -o json -d test1 

#~/bin/bash 

set -e 

export OPENMODELICALIBRARY=`pwd`:/usr/lib/omlibrary 

python3 simulateReference.py 

rm -f Buildings.* 2&> /dev/null 

import shutil 

from OMPython import OMCSessionZMQ 

model="Buildings.Controls.OBC.ASHRAE.G36_PR1.AHUs.SingleZone.VAV.SetPoints.Validation. 

˓→Supply_u" 

# Load and simulate the model 

omc = OMCSessionZMQ() 

omc.sendExpression("loadModel(Buildings)") 

omc.sendExpression("simulate({}, outputFormat=\"csv\")".format(model)) 

# Copy output file 

shutil.move("{}_res.csv".format(model), "reference.csv") 

https://github.com/lbl-srg/modelica-json
https://github.com/lbl-srg/modelica-json
https://openmodelica.org/
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time series to a new file controller_output.csv. Use the CDL output variable names in the header of the 

CSV file. 

7. Produce the test results by running the funnel software (https://github.com/lbl-srg/funnel) for each time series in 

controller_output.csv and in reference.csv. Before sending the time series to the funnel software, set 

the value of the reference and the controller output to zero whenever the indicator function is zero for that time 

stamp. This will exclude the value from the verification. This will give, for each time series, output files that show 

where the error exceeds the specified tolerance. 

The sequence above can be run for each test case, and the results from step 7 are to be used to generate a test report 

for all tested sequences. 

 
 

7.7.3 Scenario 2: Control Input Obtained by Trending a Real Controller 

 
For this scenario, we verify whether a real controller produces time series that are similar to the time series of a controller 

that is implemented in a CDL model. As control input time series, the time series trended from the real controller are used. 

An applications of this use case is to test if a controller complies with the sequences specified in CDL for already trended 

data. 

For this scenario, we are given the following data: 

i. The CDL class name of the control sequence to be tested, in our example Buildings.Controls.OBC. 

ASHRAE.G36_PR1.AHUs.SingleZone.VAV.SetPoints.Supply. 

ii. Relative and absolute tolerances, either for all output variables, or optionally for individual output variables of the 

sequence. 

Therefore, a test specification looks as shown in Listing 7.2, which is identical to Listing 7.1, except that the elements 

indicator and sampling are removed because a sequence cannot have an indicator function, and because CDL simulators 

control the accuracy and hence a sampling time step is not needed. However, a time series for an indicator function can 

be provided, see step 4 below. 

 
Listing 7.2: Specification of test setup. 

 

Note that we allow for multiple entries in references to allow testing more than one sequence. 

To create test input and output time series, we generate again CSV files. This needs to be done for each control sequence. 

Here, we only explain it for the one sequence shown in Listing 7.2. 

The procedure is as follows: 

1. Produce the json file Supply.json (name abbreviated) by running modelica-json as 
 

  

references : [ 

{ "model": "Buildings.Controls.OBC.ASHRAE.G36_PR1.AHUs.SingleZone.VAV.SetPoints.Supply" }, 

"tolerances": {"atoly": 0.5, "variable": "TSup*" }, 

} 

], 

"tolerances": {"rtolx": 0.002, "rtoly": 0.002, "atolx": 10, "atoly": 0}, 

node app.js -f Buildings/Controls/OBC/ASHRAE/G36_PR1/AHUs/SingleZone/VAV/SetPoints/ 

˓→Supply.mo -o json -d test1 

https://github.com/lbl-srg/funnel
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2. Generate the list of input and output variable declarations reference_io.json and the parameter list 

reference_parameters.json as in Step 2 in Section 7.7.2. 

3. Trend the input and output time series specified in reference_io.json from the real controller, trending as input 

time series whatever the controller receives from the actual building automation system. (However, make sure there 

is reasonable excitation of the control input.) 

4. Convert the trended input time series of the real controller to the units specified in reference_io.json, and 

write the converted input time series to a new file reference_input.csv, using the format 
 

time, uHea, uCoo, TZonSet, TZon, TOut, uFan 

0, 1, 0, 293.15, 292.15, 283.15, 1 

60, 0.5, 0, 293.15, 292.15, 283.15, 1 

120, 0, 0.5, 293.15, 292.15, 283.15, 1 

180, 0, 1, 293.15, 292.15, 283.15, 1 

3600, 0, 1, 293.15, 292.15, 283.15, 1 

where the first column is time in seconds. 

Do the same for the trended output time series of the real controller and store them in the new file 

controller_output.csv that has the same format as reference_input.csv 

Optionally, also store one or several indicator time series in indicator.csv, with the header of each time series 

being the name of the control output variable whose verification should be suspended whenever the indicator time 

series is 0 at that time instant.  For example,  to suspend the verification of an output called TSupCoo between  t 

= 120 and t = 600 seconds, the file indicator.csv looks like 

5. Convert the parameter values for TSupSetMax, TSupSetMin, yHeaMax,  yMin and yCooMax as used in  the 

real controller to the units specified in reference_parameters.json and store them in a text file 

reference_parameters.txt. For our example, suppose this file is 
 

6. Simulate the sequence specified in the class definition Supply.mo, using the parameter values from 

reference_parameters.txt and the input time series from reference_input.csv. 

This can be accomplished with the free open-source tool OpenModelica by running 
 

with the file simulateCDL.py being 

 

 
(continues on next page) 

  

import shutil 

time, TSupCoo 

0, 1 

120, 0 

600, 1 

TSupSetMax=303.15 

TSupSetMin=289.15 

yHeaMax=0.7 

yMin=0.3 

yCooMax=1 

#~/bin/bash 

set -e 

export OPENMODELICALIBRARY=`pwd`:/usr/lib/omlibrary 

python3 -i simulateCDL.py 

rm -f Buildings.* 2&> /dev/null 

https://openmodelica.org/
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(continued from previous page) 

 
This will produce the CSV file reference.csv that contains all control input and output time series. 

7. Produce the test results as in Step 7 in Section 7.7.2. 

The sequence above can be run for each test case, and the results from step 7 are to be used to generate a test report 

for all tested sequences. 
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Chapter 8 

 
Example Application 

 
8.1 Introduction 

 
In this section, we compare the performance of two different control sequences. The objectives are to demonstrate the 

setup for closed loop performance assessment, to demonstrate how to compare control performance, and to assess the 

difference in annual energy consumption. 

As a test case, we used a simulation model that consists of five thermal zones that are representative of one floor of the 

new construction medium office building for Chicago, IL, as described in the set of DOE Commercial Building Benchmarks 

[DFS+11]. There are four perimeter zones and one core zone. The envelope thermal properties meet ASHRAE Standard 

90.1-2004. The system model consist of an HVAC system,  a building envelope model [WZN11] and a model for air  flow 

through building leakage and through open doors based on wind pressure and flow imbalance of the HVAC system 

[Wet06]. Thus, at every simulation step, a full pressure drop calculation is done to compute the air flow distribution based 

on damper positions, fan control signal and fan curve. 

For the base case, we implemented a control sequence published in ASHRAE’s Sequences of Operation for Common 

HVAC Systems [ASH06]. For the other case, we implemented the control sequence published in ASHRAE Guideline 36 

[ASHRAE16]. The main conceptual differences between the two control sequences, which are described in more detail in 

Section 8.2.5, are as follows: 

• The base case uses two different but constant supply air temperature setpoints for heating and cooling during occu- 

pied hours, whereas Guideline 36 case resets the supply air temperature setpoint based on outdoor air temperature 

and zone cooling requests, as obtained from the VAV terminal unit controllers. The reset is using the trim and 

respond logic. 

• The base case resets the supply fan static pressure setpoint based on the VAV damper positions, whereas the 

Guideline 36 case resets the fan static pressure setpoint based on zone pressure requests from the VAV terminal 

controllers. The reset is using the trim and respond logic. 

• The base case controls the economizer to track a mixed air temperature setpoint, whereas Guideline 36 controls 

the economizer based on supply air temperature control loop signal. 

• The base case controls the VAV dampers based on the zone’s cooling temperature setpoint, whereas Guideline 36 

uses the heating and cooling loop signal to control the VAV dampers. 

The next sections are as follows: In Section 8.2 we describe the methodology, the models and the performance metrics, in 

Section 8.3 we compare the performance, in Section 8.4 we recommend improvements to the Guideline 36 and in Section  
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8.5 we discuss the main findings and present concluding remarks. 

 

 
8.2 Methodology 

 
All models are implemented in Modelica, using models from the Buildings library [WZNP14]. The models are available 

from https://github.com/lbl-srg/modelica-buildings/releases/tag/v5.0.0 

 
 

8.2.1 HVAC Model 

 
The HVAC system is a variable air volume (VAV) flow system with economizer and a heating and cooling coil in the air 

handler unit. There is also a reheat coil and an air damper in each of the five zone inlet branches. 

Fig. 8.1 shows the schematic diagram of the HVAC system. 

 

 

Fig.  8.1:   Schematic diagram of the HVAC system. 

 

In the VAV model, all air flows are computed based on the duct static pressure distribution and the performance curves of 

the fans. The fans are modeled as described in [Wet13]. 

 
 

8.2.2 Envelope Heat Transfer 

 
The thermal room model computes transient heat conduction through walls, floors and ceilings and long-wave radiative 

heat exchange between surfaces. The convective heat transfer coefficient is computed based on the temperature dif- 

ference between the surface and the room air. There is also a layer-by-layer short-wave radiation, long-wave radiation, 

convection and conduction heat transfer model for the windows. The model is similar to the Window 5 model. The physics 

implemented in the building model is further described in [WZN11]. 

There is no moisture buffering in the envelope, but the room volume has a dynamic equation for the moisture content. 

  

https://github.com/lbl-srg/modelica-buildings/releases/tag/v5.0.0
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Fig.  8.2:   Internal load schedule. 

 

 
8.2.3 Internal Loads 

 
We use an internal load schedule as shown in Fig. 8.2, of which 20% is radiant, 40% is convective sensible and 40% is 

latent. Each zone has the same internal load per floor area. 

 
 

8.2.4 Multi-Zone Air Exchange 

 
Each thermal zone has air flow from the HVAC system, through leakages of the building envelope (except for the core 

zone) and through bi-directional air exchange through open doors that connect adjacent zones. The bi-directional air 

exchange is modeled based on the differences in static pressure between adjacent rooms at a reference height plus the 

difference in static pressure across the door height as a function of the difference in air density. Air infiltration is a function 

of the flow imbalance of the HVAC system. The multizone airflow models are further described in [Wet06]. 

 
 

8.2.5 Control Sequences 

 
For the above models, we implemented two different control sequences, which are described below. The control se- 

quences are the only difference between the two cases. 

For the base case, we implemented the control sequence VAV 2A2-21232 of the Sequences of Operation for Common 

HVAC Systems [ASH06]. In this control sequence, the supply fan speed is modulated to maintain a duct static pressure 

setpoint. The duct static pressure setpoint is adjusted so that at least one VAV damper is 90% open. The economizer 

dampers are modulated to track the setpoint for the mixed air dry bulb temperature. The supply air temperature setpoints 

for heating and cooling are constant during occupied hours,  which may not comply with some energy codes.  Priority   is 

given to maintain a minimum outside air volume flow rate. In each zone, the VAV damper is adjusted to meet the  room 

temperature setpoint for cooling, or fully opened during heating. The room temperature setpoint for heating is controlled 

by varying the water flow rate through the reheat coil.  There is also a finite state machine that transitions   the mode of 

operation of the HVAC system between the modes occupied, unoccupied off, unoccupied night set back, unoccupied 

warm-up and unoccupied pre-cool. Local loop control is implemented using proportional and proportional- integral 

controllers, while the supervisory control is implemented using a finite state machine. 
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For the detailed implementation of the control logic, see the model Buildings.Examples.VAVReheat.ASHRAE2006, which 

is also shown in Fig. 8.6. 

Our implementation differs from VAV 2A2-21232 in the following points: 

• We removed the return air fan as the building static pressure is sufficiently large. With the return fan, building static 

pressure was not adequate. 

• In order to have the identical mechanical system as for the Guideline 36 case, we do not have a minimum outdoor 

air damper, but rather controlled the outdoor air damper to allow sufficient outdoor air if the mixed air temperature 

control loop would yield too little outdoor air. 

For  the  Guideline  36  case,  we  implemented  the  multi-zone  VAV   control  sequence  based  on  [ASHRAE16].   Fig. 

8.3 shows the sequence diagram, and the detailed implementation is available in the model Build- 

ings.Examples.VAVReheat.Guideline36. 

In the Guideline 36 sequence, the duct static pressure is reset using trim and respond logic based on zone pressure reset 

requests, which are issued from the terminal box controller based on whether the measured flow rate tracks the set point. 

The implementation of the controller that issues these system requests is shown in Fig. 8.4. The economizer dampers are 

modulated based on a control signal for the supply air temperature set point, which is also used to control the heating and 

cooling coil valve in the air handler unit. Priority is given to maintain a minimum outside air volume flow rate. The supply 

air temperature setpoints for heating and cooling at the air handler unit are reset based on outdoor air temperature, zone 

temperature reset requests from the terminal boxes and operation mode. 

In each zone, the VAV damper and the reheat coil is controlled using the sequence shown in Fig. 8.5, where THeaSet is 

the set point temperature for heating, dTDisMax is the maximum temperature difference for the discharge temperature 

above THeaSet, TSup is the supply air temperature, VAct* are the active airflow rates for heating (Hea) and cooling 

(Coo), with their minimum and maximum values denoted by Min and Max. 

Our implementation differs from Guideline 36 in the following points: 

• Guideline 36 prescribes “To avoid abrupt changes in equipment operation, the output of every control loop shall be 

capable of being limited by a user adjustable maximum rate of change, with a default of 25% per minute.” 

We did not implement this limitation of the output as it leads to delays which can make control loop tuning more 

difficult if the output limitation is slower than the dynamics of the controlled process. We did however add a first 

order hold at the trim and response logic that outputs the duct static pressure setpoint for the fan speed. 

• Not all alarms are included. 

• Where Guideline 36 prescribes that equipment is enabled if a controlled quantity is above or below a setpoint, we 

added a hysteresis. In real systems, this avoids short-cycling due to measurement noise, in simulation, this is 

needed to guard against numerical noise that may be introduced by a solver. 

 
 

8.2.6 Site Electricity Use 

 
To convert cooling and heating energy as transferred by the coil to site electricity use, we apply the conversion factors 

from EnergyStar [Ene13]. Therefore, for an electric chiller, we assume an average coefficient of performance (COP) of 

3.2 and for a geothermal heat pump, we assume a COP of 4.0. 

  

http://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Examples_VAVReheat.html#Buildings.Examples.VAVReheat.ASHRAE2006
http://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Examples_VAVReheat.html#Buildings.Examples.VAVReheat.Guideline36
http://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Examples_VAVReheat.html#Buildings.Examples.VAVReheat.Guideline36
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Fig.  8.3:   Control schematics of Guideline 36 case. 
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Fig. 8.4: Composite block that implements the sequence for the VAV terminal units that output the system requests. (Browsable 

version.) 

  

http://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Controls_OBC_ASHRAE_G36_PR1_TerminalUnits_Reheat.html#Buildings.Controls.OBC.ASHRAE.G36_PR1.TerminalUnits.Reheat.SystemRequests
http://simulationresearch.lbl.gov/modelica/releases/v5.0.0/help/Buildings_Controls_OBC_ASHRAE_G36_PR1_TerminalUnits_Reheat.html#Buildings.Controls.OBC.ASHRAE.G36_PR1.TerminalUnits.Reheat.SystemRequests
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Fig.  8.5:   Control sequence for VAV terminal unit. 

 

 
8.2.7 Simulations 

 
Fig. 8.6 shows the top-level of the system model of the base case, and Fig. 8.7 shows the same view for the Guideline 36 

model. 

The complexity of the control implementation is visible in Fig. 8.4 which computes the temperature and pressure requests 

of each terminal box that is sent to the air handler unit control. 

All simulations were done with Dymola 2018 FD01 beta3 using Ubuntu 16.04 64 bit. We used the Radau solver with a 

tolerance of 10−6. This solver adaptively changes the time step to control the integration error. Also, the time step is 

adapted to properly simulate time events and state events. 

The base case and the Guideline 36 case use the same HVAC and building model, which is implemented in the base 

class Buildings.Examples.VAVReheat.BaseClasses.PartialOpenLoop. The two cases differ in their im- 

plementation of the control sequence only, which is implemented in the models Buildings.Examples.VAVReheat. 

BaseClasses.ASHRAE2006 and Buildings.Examples.VAVReheat.BaseClasses.Guideline36. 

Table 8.1 shows an overview of the model and simulation statistics. The differences in the number of variables and in the 

number of time varying variables reflect that the Guideline 36 control is significantly more detailed than what may 

otherwise be used for simulation of what the authors believe represents a realistic implementation of a feedback control 

sequence. The entry approximate number of control I/O connections counts the number of input and output connections 

among the control blocks of the two implementations. For example, If a P controller receives one set point, one measured 

quantity and sends it signal to a limiter and the limiter output is connected to a valve, then this would count as four 

connections. Any connections inside the PI controller would not be counted, as the PI controller is an elementary building 

block (see Section 4.6) of CDL. 

 
Table  8.1:   Model and simulation statistics. 

 

Quantity Base case Guideline 36 

Number of components 2826 4400 

Number of variables (prior to translation) 33,700 40,400 

Number of continuous states 178 190 

Number of time-varying variables 3400 4800 

Time for annual simulation in minutes 70 100 
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Fig. 8.6: Top level view of Modelica model for the base case. 

 
 

Fig. 8.7 : Top level view of Modelica model for the Guideline 36 case. 
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8.3 Performance Comparison 

 
 

Fig. 8.8: Comparison of energy use. For the cases labeled ±50%, the internal gains have been increased and decreased as described 

in Section 8.2.3. 

 

 
Table 8.2: Heating, cooling, fan and total site HVAC energy, and savings of 

guideline 36 case versus base case. 

Eh [kWh/(m2 a)] Ec [kWh/(m2 a)] Ef [kWh/(m2 a)] Etot [kWh/(m2 a)] [%] 

6.419 18.98 3.572 28.97  

2.912 14.29 1.74 18.94 34.6 

 
Fig. 8.8 and Table 8.2 compare the annual site HVAC electricity use between the annual simulations with the base case 

control and the Guideline 36 control. The bars labeled ±50% were obtained with simulations in which we changed the 

diversity of the internal loads. Specifically, we reduced the internal loads for the north zone by 50% and increased them 

for the south zone by the same amount. 

In this case study, the Guideline 36 control saves around 30% site HVAC electrical energy. These are significant savings 

that can be achieved through software only, without the need for additional hardware or equipment. Our experience, 

however, was that it is rather challenging to program the Guideline 36 sequence due to their complex logic that contains 

various mode changes, interlocks and timers. Various programming errors and misinterpretations or ambiguities of Guide- 

line 36 were only discovered in closed loop simulations. We therefore believe it is important to provide robust, validated 

implementations of Guideline 36 that encapsulates the complexity for the energy modeler and the control provider. 

Fig. 8.9 shows the outside air temperature temperature Tout and the global horizontal irradiation Hglo,hor for a period in 

winter, spring and summer. These days will be used to compare the trajectories of various quantities of the base case 

and the Guideline 36 case. 

Fig. 8.10 compares the time trajectories of the room air temperatures. The figures show that the room air temperatures 

are controlled within the setpoints for both cases. Small set point violations have been observed due to the dynamic nature 

of the control sequence and the controlled process. 
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Fig. 8.9: Outside air temperature and global horizontal irradiation for the three periods that will be further used in the analysis. 
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Fig. 8.10: Room air temperatures. The white area indicates the region between the heating and cooling setpoint temperatures. 
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Fig. 8.11: VAV control signals for the north and south zones. The white areas indicate the day-time operation. 
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Fig. 8.11 shows the control signals of the reheat coils yhea and the VAV damper yvav for the north and south zones. 

Fig. 8.12 shows the temperatures of the air handler unit.  The figure shows the supply air temperature after the fan   Tsup, 

its control error relative to its set point Tset,sup, the mixed air temperature after the economizer Tmix and the return  air 

temperature from the building Tret . A notable difference is that the Guideline 36 sequence resets the supply air 

temperature, whereas the base case is controlled for a supply air temperature of 10∘C for heating and 12∘C for cooling. 

Fig. 8.13 show reasonable fan speeds and economizer operation. Note that during the winter days 5, 6 and 7, the outdoor 

air damper opens. However, this is only to track the setpoint for the minimum outside air flow rate as the fan speed is at 

its minimum. 

Fig. 8.14 shows the volume flow rate of the fan V̇fan,sup /Vbui , where Vbui is the volume of the building, and of the outside air 

intake of the economizer V̇eco,out /Vbui , expressed in air changes per hour. Note that Guideline 36 has smaller outside air 

flow rates in cold winter and hot summer days. The system has relatively low air changes per hour. As fan energy is low 

for this building, it may be more efficient to increase flow rates and use higher cooling and lower heating temperatures, in 

particular if heating and cooling is provided by a heat pump and chiller. We have however not further analyzed this trade-

off. 

Fig. 8.15 compares the room air temperatures for the north and south zone for the standard internal loads, and the case 

where we reduced the internal loads in the north zone by 50% and increased it by the same amount in the south zone. The 

trajectories with subscript ±50% are the simulations with the internal heat gains reduced or increased by 50%. The room 

air temperature trajectories are practically on top of each other for winter and spring, but the Guideline 36 sequence shows 

somewhat better setpoint tracking during summer. Both control sequences are comparable in terms of compensating for 

this diversity, and as we saw in Fig. 8.8, their energy consumption is not noticeably affected. 

  



OpenBuildingControl Example Application 

 
78  

 

 

Fig.  8.12:   AHU temperatures. 
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Fig. 8.13: Control signals for the supply fan, outside air damper and return air damper. 
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Fig. 8.14: Fan and outside air volume flow rates, normalized by the room air volume. 
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Fig. 8.15: Outdoor air and room air temperatures for the north and south zone with equal internal loads, and with diversity added to 

the internal loads. The white area indicates the region between the heating and cooling setpoint temperatures. 
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8.4 Improvement to Guideline 36 Specification 

 
This section describes improvements that we recommend for the Guideline 36 specification, based on the first public 

review draft [ASHRAE16]. 

 
 

8.4.1 Freeze Protection for Mixed Air Temperature 

 
The sequences have no freeze protection for the mixed air temperature. 

Guideline 36 states (emphasis added): 

If the supply air temperature drops below 4.4∘C (40∘F) for 5 minutes, send two (or more, as required to ensure 

that heating plant is active) Boiler Plant Requests, override the outdoor air damper to the minimum position, 

and modulate the heating coil to maintain a supply air temperature of at least 5.6∘ C (42∘F). Disable this 

function when supply air temperature rises above 7.2∘C (45∘F) for 5 minutes. 

Depending on the outdoor air requirements, the mixed air temperature Tmix may be below freezing, which could freeze the 

heating coil if it has low water flow rate. Note that the Guideline 36 sequence controls based on the supply air temperature 

and not the mixed air temperature. Hence, this control would not have been active. 

Fig. 8.16 shows the mixed air temperature and the economizer control signal for cold climate. The trajectories whose 

subscripts end in no are without freeze protection control based on the mixed air temperature, as is the case for Guideline 

36, whereas for the trajectories that end in with, we added freeze protection that adjusts the economizer to limit the mixed 

air temperature. For these simulations, we reduced the outdoor air temperature by 10 Kelvin (18 Fahrenheit) below the 

values obtained from the TMY3 weather data. This caused in day 6 and 7 in Fig. 8.16 sub-freezing mixed air temperatures 

during day-time, as the outdoor air damper was open to provide sufficient fresh air.  We also observed that outside air   is 

infiltrated through the AHU when the fan is switched off. This is because the wind pressure on the building causes  the 

building to be slightly below the ambient pressure, thereby infiltrating air through the economizers closed air dampers (that 

have some leakage). This causes a mixed air temperatures below freezing at night when the fan is off. Note that these 

temperatures are qualitative rather than quantitative results as the model is quite simplified at these small flow rates, which 

are about 0.01% of the air flow rate that the model has when the fan is operating. 

We therefore recommend adding the following wordings to Guideline 36, which is translated from [Bun86]: 

Use a capillary sensor installed after the heating coil. If the temperature after the heating coil is below 4∘C, 

1. enable frost protection by opening the heating coil valve, 

2. send frost alarm, 

3. switch on pump of the heating coil. 

The frost alarm requires manual confirmation. 

If the temperature at the capillary sensor exceeds 6∘C, close the valve but keep the pump running until the frost alarm is 

manually reset. (Closing the valve avoids overheating). 

Recknagel [RSS05] adds further: 

1. Add bypass at valve to ensure 5% water flow. 

2. In winter, keep bypass always open, possibly with thermostatically actuated valve. 

3. If the HVAC system is off, keep the heating coil valve open to allow water flow if there is a risk of frost in the AHU 

room. 
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Fig. 8.16: Mixed air temperature and economizer control signal for Guideline 36 case with and without freeze protection. 
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4. If the heating coil is closed, open the outdoor air damper with a time delay when fan switches on to allow heating 

coil valve to open. 

5. For pre-heat coil, install a circulation pump to ensure full water flow rate through the coil. 

 
 

8.4.2 Deadbands for Hard Switches 

 
There are various sequences in which the set point changes as a step function of the control signal, such as shown in 

Fig. 8.5. In our simulations of the VAV terminal boxes, the switch in air flow rate caused chattering. We circumvented the 

problem by checking if the heating control signal remains bigger than 0.05 for 5 minutes. If it falls below 0.01, the timer 

was switched off. This avoids chattering. We therefore recommend to be more explicit for where to add hysteresis or time 

delays. 

 
 

8.4.3 Averaging Air Flow Measurements 

 
The Guideline 36 sequence does not seem to prescribe that outdoor airflow rate measurements need to be time averaged. 

As such measurements can fluctuate due to turbulence, we recommend to consider averaging this measurement. In the 

simulations, we averaged the outdoor airflow measurement over a 5 second moving window (in the simulation, this was 

done to avoid an algebraic system of equations, but, in practice, this would filter measurement noise). 

 
 

8.4.4 Cross-Referencing and Modularization 

 
For citing individual sections or blocks of the Guideline, it would be helpful if the Guideline where available at a permanent 

web site as html, with a unique url and anchor to each section. This would allow cross-referencing the Guideline from a 

particular implementation in a way that allows the user to quickly see the original specification. 

As part of such a restructuring, it would be helpful to the reader to clearly state what are the input signals, what are 

configurable parameters, such as the control gain, and what are the output signals. This in turn would structure the 

Guideline into distinct modules, for which one could also provide a reference implementation in software. 

 
 

8.4.5 Lessons Learned Regarding the Simulations 

 
A few lessons regarding simulating such systems have been learned and are reported here. Note that related best  

practices are also available at http://simulationresearch.lbl.gov/modelica/userGuide/bestPractice.html 

• Fan with prescribed mass flow rate: In earlier implementations, we converted the control signal for the fan to a mass 

flow rate, and used a fan model whose mass flow rate is equal to its control input, regardless of the pressure head. 

During start of the system, this caused a unrealistic large fan head of 4000 Pa (16 inch of water) because the fan 

increased its mass flow rate faster than the VAV dampers opened. The large pressure drop also lead to large power 

consumption and hence unrealistic temperature increase across the fan. 

• Fan with prescribed presssure head: We also tried to use a fan with prescribed pressure head. Similarly as above, 

the fan maintains the presssure head as obtained from its control signal, regardless of the volume flow rate. This 

caused unrealistic large flow rates in the return duct which has very small pressure drops. (Subsequently, we 

removed the return fan as it is not needed for this system.) 
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• Time sampling certain physical calculations: Dymola 2018FD01 uses the same time step for all continuous-time 

equations. Depending on the dynamics, this can be smaller than a second. Since some of the control samples every 

2 minutes, it has shown to be favorable  to also time sample the computationally expensive simulation of  the long-

wave radiation network in the rooms. Because surface temperatures change slowly, computing it every 2 minutes 

suffices. We expect further speed up can be achieved by time sampling other slow physical processes. 

• Non-convergence: In earlier simulations, sometimes the solver failed to converge. This was due to errors in the 

control implementation that caused event iterations for discrete equations that seemed to have no solution. In 

another case, division by zero in the control implementation caused a problem. The solver found a way to work 

around this division by zero (using heuristics) but then failed to converge. Since we corrected these issues, the 

simulations are stable. 

• Too fast dynamics of coil: The cooling coil is implemented using a finite volume model. Heat diffusion among the 

control volumes of the water and among the control volumes of air used to be neglected as the dominant mode   of 

heat transfer is forced convection if the fan and pump are operating. However, during night when the system is off, 

the small infiltration due to wind pressure caused in earlier simulations the water in the coil to freeze. Adding diffusion 

circumvented this problem, and the coil model in the library includes now by default a small diffusive term. 

 

 

8.5 Discussion and Conclusions 

 
In this case study, the Guideline 36 sequence reduced annual site HVAC energy use by 30% compared to the baseline 

implementation with comparable thermal comfort. Such savings are significant, and have been achieved by changes in 

controls programming only which can relatively easy be deployed in buildings. 

Implementing the Guideline 36 sequence was, however, rather challenging due to its complexity caused by the various 

mode changes, interlocks, timers and cascading control loops. These mode changes, interlocks and dynamic dependen- 

cies made verification of the correctness through inspection of the control signals difficult. As a consequence, various 

programming errors and misinterpretations or ambiguities of the Guideline were only discovered in closed loop simu- 

lations, despite of having implemented open-loop test cases for each block of the sequence. We therefore believe it is 

important to provide robust, validated implementations of the sequences published in Guideline 36. Such implementations 

would encapsulate the complexity and provide assurances that energy modeler and control providers have correct imple- 

mentations. With the implementation in the Modelica package Buildings.Controls.OBC.ASHRAE.G36_PR1, we made a 

start on such an implementation and laid out the structure and conventions, but have not yet covered all of Guideline 36. 

Furthermore, conducting field validations would be useful too. 

A key short-coming from an implementer point of view was that the sequence was only available in English language, and 

as an implementation in ALC EIKON of sequences that are “close to the currently used version of the Guideline”. Neither 

allowed a validation of the CDL implementation because the English language version leaves room for interpretation (and 

cannot be executed) and because EIKON has quite limited simulation support that is cumbersome to use for testing the 

dynamic response of control sequences for different input trajectories. Therefore, a benefit of the Modelica implementation 

is that such reference trajectories can now easily be generated to validate alternate implementations. 

A benefit of the simulation based assessment was that it allowed detecting potential issues such as a mixed air temper- 

ature below the freezing point (Section 8.4.1) and chattering due to hard switches (Section 8.4.2). Having a simulation 

model of the controlled process also allowed verification of work-arounds for these issues. 

One can, correctly, argue that the magnitude of the energy savings are higher the worse the baseline control is. However, 

the baseline control was carefully implemented, following our interpretation of ASHRAE’s Sequences of Operation for 

Common HVAC Systems [ASH06]. While higher efficiency of the baseline may be achieved through supply air temperature 
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reset or different economizer control, such potential improvements were only recognized after seeing the results of the 

Guideline 36 sequence. Thus, regardless of whether a building is using Guideline 36, having a baseline control against 

which alternative implementations can be compared and benchmarked is an immensely valuable feature enabled by a 

library of standardized control sequences. Without a benchmark, one can easily claim to have a good control, while not 

recognizing what potential savings one may miss. 
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Chapter 9 

 
Benefits to Rate Payers 

 
9.1 Estimates of Potential Benefits 

 
The adoption of the technology developed in the OpenBuildingControl project will result in improved design and imple- 

mentation of building controls, resulting in more robust and efficient operation of commercial buildings. This will lead to 

more reliable provision of thermal and visual comfort while reducing both energy costs and equipment maintenance costs 

[FXK+17]. 

The energy savings from widespread adoption of the processes and tools can be estimated as follows. A major barrier to 

achieving the state’s statutory energy goals is the failure of most commercial buildings to perform close to the technical 

potential of the design and its associated equipment. An LBNL meta-study identified 16% median actual savings from 

retro-commissioning [Mil11] and a study of 481 operational issues identified in existing commercial buildings found that 

control problems accounted for more than 75% of the potential energy savings [EFM+09]. Therefore, we assume that 

around 75% of the 16% expected energy savings associated with commissioning relate to controls, i.e. 12%. Assuming 

that the technologies being developed in the project can save 12% in the 50% of the commercial building floor area that 

is in buildings larger than 50,000 sf, the estimated savings average 6% across all commercial buildings. 

We assume a value of 2.8 for the ratio of site energy to source energy for electricity, both for California and nationally.1 

The California savings are estimated as follows: The annual energy consumption of California commercial buildings is 

about 67.1 TWh of electricity, equivalent to 0.64 quads (188 TWh) of source energy, and 1278.6 Mtherms (0.13 quads, 

37.4 TWh) of natural gas (see Table 8-1 in [Com06]). The estimated 6% savings correspond to 4.03 TWh of electricity, 

equivalent to 0.038 quads (11.28 TWh) of source energy, and 0.00764 quads (2.24 TWh) of natural gas. Assuming a price 

of 0.17 $/kWh for electricity and 8 $/(1000 ft3) for natural gas (corresponding to 0.027 $/kWh), the cost savings would be 

$0.69B in electricity and $0.064B in natural gas. 

The US national savings are estimated as follows: The annual energy consumption of US commercial buildings is about 

1240 TWh of electricity, equivalent to 11.9 quads (3472 TWh) of source energy, and about 22,500 MTherms (2.25 quads, 

659 TWh) of natural gas.2 The estimated 6% savings correspond to 74.4 TWh of electricity, equivalent to 0.71 quads (208 

TWh) of source energy, and 0.135 quads (39.5 TWh) of natural gas. Assuming a price of 0.11 $/kWh for electricity and 8 

$/(1000 ft3) for natural gas, the electricity cost savings would be $8.2B and the natural gas savings $1.07B. 

1 See https://portfoliomanager.energystar.gov/pdf/reference/Source%20Energy.pdf 
2 See Table 1 in https://www.eia.gov/consumption/commercial/reports/2012/energyusage/. 
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These electricity savings correspond to 25 Rosenfelds in the US and 1.5 Rosenfelds in California.3 

 

 

9.2 Timeframe and Assumptions for Estimated Benefits 
 

 

 
Fig.  9.1:   Estimated benefits of OpenBuildingControl. 

 

If we assume 75% adoption of OpenBuildingControl over the next ten years, a controls retrofit rate of 10% per year and a 

new building construction rate of 1.5% per year, then, after 10 years, the fraction of the building stock, weighted by floor 

area, that is impacted by OpenBuildingControl is 21% (see Fig. 9.1). Assuming the potential benefit of $0.69B savings in 

electricity, the estimated benefits are $146M/yr savings for California ratepayers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3 The unit of one Rosenfeld is equal to the electricity savings of 3 billion kWh per year, the amount needed to replace the annual generation of a 500 

megawatt coal-fired power plant. 
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Chapter 10 

 
Glossary 

 
This section provides definitions for abbreviations and terms introduced in the Open Building Controls project. 

Analog Value In CDL, we say a value is analog if it represents a continuous number. The value may be presented by an 

analog signal such as voltage, or by a digital signal. 

Binary Value In CDL, we say a value is binary if it can take on the values 0 and 1. The value may however be presented 

by an analog signal that can take on two values (within some tolerance) in order to communicate the binary value. 

Building Model Digital model of the physical behavior of a given building over time, which accounts for any elements of 

the building envelope and includes a representation of internal gains and occupancy. Building model has connectors 

to be coupled with an environment model and any HVAC and non-HVAC system models pertaining to the building. 

CDL See Control Description Language. 

CDL-JSON The JSON representation of the Control Description Language, which can be generated with the 

modelica-json translator that is available at https://github.com/lbl-srg/modelica-json. 

Control Description Language The Control Description Language (CDL) is the language that is used to express control 

sequences and requirements. It is a declarative language based on a subset of the Modelica language and specified 

in Section 4. 

Controls Design Tool The Controls Design Tool is a software that can be used to 

• design control sequences, 

• declare formal, executable requirements, 

• test the control sequences and the requirements with a model of the HVAC system and the building in the loop, 

and 

• export the control sequence and the verification test in the Control Description Language. 

Control Sequence Requirement A requirement is a condition that is tested and either passes, fails, or is untested. For 

example, a requirement would be that the actual actuation signal is within 2% of the signal computed using the CDL 

representation of a sequence, provided that they both receive the same input data. 

Control System Any software and hardware required to perform the control function for a plant. 

Controller A controller is a device that computes control signals for a plant. 

Co-simulation Co-simulation refers to a simulation in which different simulation programs exchange run-time data at 

certain synchronization time points. A master algorithm sets the current time, input and states, and request the 

simulator to advance time, after which the master will retrieve the new values for the state. Each simulator is 

responsible for integrating in time its differential equation. See also model-exchange. 

Events An event is either a time event if time triggers the change, or a state event if a test on the state triggers the change. 
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Functional Mockup Interface The Functional Mockup Interface (FMI) standard defines an open interface to be imple- 

mented by an executable called Functional Mockup Unit (FMU). The FMI functions are called by a simulator to 

create one or more instances of the FMU, called models, and to run these models, typically together with other 

models. An FMU may either be self-integrating (co-simulation) or require the simulator to perform the numerical 

integration (model-exchange). The first are sometimes called FMU-CS, while the second are called FMU-ME. See 

further http://fmi-standard.org/. 

Functional Mockup Unit Compiled code or source code that can be executed using the application programming inter- 

face defined in the Functional Mockup Interface standard. 

Functional Verification Tool The Functional Verification Tool is a software that takes as an input the control sequence in 

CDL, requirements expressed in CDL, a list of I/O connections, and a configuration file, and then tests whether the 

measured control signals satisfy the requirements, violate them, or whether some requirements remain untested. 

G36 Sequence A control sequence specified by ASHRAE Guideline 36. See also control sequence. 

HVAC System Any HVAC plant coupled with the control system. 

HVAC System Model Consists of all components and connections used to model the behavior of an HVAC System. 

Open Building Controls Open Building Controls (OBC) is the name of project that develops open source software for 

building control sequences and for testing of requirements. 

OBC See Open Building Controls. 

Mode In CDL, by mode we mean a signal that can take on multiple distinct values, such as On, Off, PreCool. 

Model-exchange Model-exchange refers to a simulation in which different simulation programs exchange run-time data. 

A master algorithm sets time, inputs and states, and requests from the simulator the time derivative. The master 

algorithm integrates the differential equations in time. See also co-simulation. 

Non-HVAC System Any non-HVAC plant coupled with the control system. 

Plant A plant is the physical system that is being controlled by a controller . In our context, plant is not only used for 

example a chiller plant, but also for an HVAC system or an actuated shade. 

Standard control sequence A control sequence defined in the CDL control sequence library based on a standard or 

any other document which contains a full English language description of the implemented sequence. 

State event We say that a simulation has a state event if its model changes based on a test that depends on a state 

variable. For example, for some initial condition x (0) = x0, 

has a state event when x = 1. 
Structural parameter We say that a parameter is a structural parameter if changing its value can change the system of 

equations that is being evaluated in the control logic. For example, a parameter that changes a controller from a P 

to a PI controller is a structural parameter because an integrator is being added. A parameter that enables an input 

or that changes the size of an array is a structural parameter. 

Time event We say that a simulation has a time event if its model changes based on a test that only depends on time. 

For example, 

has a time event at t = 1. 

http://fmi-standard.org/
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