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ABSTRACT 

This report summarizes the design, implementation, and results of a randomized controlled 

trial conducted by OhmConnect, Inc. and evaluated by the University of California, Berkeley to 

investigate the causal effect of monetary and non-monetary incentives on the reduction of 

electricity consumption. For this purpose, a total of ~13,000 residential households serviced by 

the three main electric investor-owned utilities (Pacific Gas and Electric, Southern California 

Edison, and San Diego Gas & Electric) across California were subjected to hour-ahead 

interventions over a period of 14 months. 

Households were found to reduce their consumption by 12-14% and appeared to be 

insensitive to the incentive level. Heating and cooling load were identified to be the main 

drivers for reductions, indicating that rebates offered for automated household devices have a 

large potential for residential Demand Response. Further, it was found that targeting 

households with high and low incentive levels based on historical behavior can lower the cost 

of the program significantly. Lastly, it was found that the social value of Demand Response 

events studied in this experiment was small. 

Future work can explore the potential of conveying relative value instead of monetary value to 

customers, the sensitivity of users in regard to targeting events, and further drivers or 

obstacles for automating households. 

Keywords: Demand Response, residential electricity pricing, automation, targeting, machine 

learning, field experiment 

Please use the following citation for this report: 

Gillan, James M., Datong P. Zhou, Maximilian Balandt. (University of California, Berkeley), 

2021. The Causal Effect of Short-Term Monetary Incentives and Automation on 

Residential Electricity Consumption. California Energy Commission. Publication Number: 

CEC-500-2021-XXX-APE. 
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EXECUTIVE SUMMARY 

The purpose of this report is to provide a comprehensive analysis of the residential behavioral 

demand response study conducted by OhmConnect, Inc. and evaluated by the University of 

California, Berkeley. Specifically, this report addresses how demand response (DR) events 

impact residential electricity consumption, how varying incentive levels affects responses to DR 

events, and how automation (i.e., using energy-efficient smart devices to respond to DR) 

affects responses to DR events. 

This report attempts to answer the following key empirical questions: How can a valid 

experiment be designed that both suits the practicality of the problem as well as fulfills 

rigorous academic standards (Chapters 1 and 2)? How many participants respond to monetary 

incentives for DR, and what is the magnitude of this effect (Chapters 3)? Can large or small 

reducers be identified in a systematic fashion in order to optimize the cost of the program 

(Chapter 4)? Do people appeal to their environmental consciousness to reduce electricity 

consumption despite not being offered monetary incentives (Chapter 5)? Does academic 

machinery provide value in evaluating the econometric setup presented in Chapters 1 and 2 

(Chapter 6)? Finally, can we avail ourselves of a survey to learn more granular user 

preferences than observed through pure monetary incentives (Chapter 7), and what is the 

economic value of these preferences (Chapter 8)? 

To answer this set of questions, this report shall use the following structure: 

Chapter 1 summarizes the design of the entire experiment. The experiment was conducted from 

November 15, 2016 to June 1, 2018. The experiment consisted of three distinct phases, which 

define the experimental regime a customer experienced based on the number of days that had 

passed since they had enrolled. Phase 1 consisted of the first 90 days for all users. Phase 2 

consisted of days 91-180 for users that were not assigned to the control group. Phase 3 

consisted of days 181-270 for users that experience Phase 2. Chapter 1 will provide 

informative illustrations about the segmentation of users into different groups within the three 

phases of the experiments and is the foundation for subsequent chapters which describe the 

three phases, their design, underlying econometric theories, and their results in detail. 

Chapter 2 provides summary statistics of the experiment. Firstly, we will introduce recruitment 

statistics. Recruitment began on 11/14/2016 with the launch of the pilot and concluded on 

8/14/17. The pilot period recruitment ran from 11/14/2016 to 12/31/16 and the study period 

recruitment from 1/1/2017 to 8/14/2017. Secondly, we will provide background information on 

the users. Specifically, we investigate how participants are distributed by region, utilities, and 

availability of historical smart meter data. Thirdly, the distribution of users into various 

experimental groups is illustrated with tables, which we refer to as the initial assignment of 

users. Lastly, we provide comprehensive statistics of the dispatch statistics of messages across 

users within the different experimental groups. 

Chapter 3 reports results of Phase 1 of the experiment, which is concerned with the following 

two primary questions: 1) How do participants respond to varying monetary incentives during 

DR events and 2) how does adopting automation affect those responses? We describe the 

research design in further detail and report the empirical results. It also explores how these 

effects vary by time of day and month of year. The main dimension of randomization in Phase 

1 was the assignment to receive DR messages as compared with the 90-day delayed Control 
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Group which received no messages. The other dimension of randomization during Phase 1 was 

assignment to an automation encouragement. In order to measure the causal effect of 

adopting an automation technology, the encouraged households were offered a rebate for the 

full purchase price of a new smart home device up to $240 in value. 

Moreover, we provide balance statistics for the Phase 1 assignment. Given constraints to the 

enrollment pipeline, we were unable to stratify assignment to ensure balance a priori. This is a 

challenge to the design pursued in this section. Further, since the evaluation team did not 

perform the randomization, this check is vital to ensuring experimental validity. We analyze the 

average electricity consumption by hour-of-day in the 90 days prior to enrollment and test for 

balance in observables characteristics between treatment groups to provide evidence on the 

validity of assignment. 

Furthermore, we explain how we use a difference-in-differences estimation strategy to 

evaluate the effect of DR events. This involves controlling for between-household differences 

by including household by hour-of-day fixed effects and data from the 90 days prior to 

enrollment. 

Chapter 3 concludes by estimating the average effect of being enrolled in the program during 

an event hour and the effect of being called. The effect heterogeneity along the dimensions of 

hour of day, temperature, and automation is being investigated as well. 

The main results of Chapter 3 are that households reduce electricity on the order of 12- 14% 

per Demand Response Event. This amount is largely independent from the actual incentive 

level, suggesting that users are insensitive to prices or that electricity consumption follows a 

binary decision model. The main axes along which we observe heterogeneity are ambient air 

temperature and automation status. 

Chapter 4 summarizes the design and outcomes of Phase 2 of the experiment, which attempts 

to answer the question of whether or not the incentives sent during Phase 1 could be modified 

and targeted to improve program efficiency. The targeting strategy developed by UC Berkeley 

reduces costs by identifying the largest responders and sending them lower incentives, but does 

not reflect the optimal cost-reducing dispatch of individuals due to constraints in the 

experimental structure. We achieved this by estimating household-level responses using a ML 

model to predict each individual’s counterfactual consumption during an event and then 

averaged the difference between these counterfactuals and observed consumption to find the 

so-called “Individual Treatment Effect (ITE)”. Next, in a similar fashion to the balance checks 

from Chapter 3, we compare users in the non-targeted and targeted groups by their mean 

consumption in pre-treatment periods (i.e. before enrollment in Phase 1 of the experiment) as 

well as ambient air temperature. 

Before launching Phase 2, we used extensive simulations on actual observations from Phase 1 

and Phase 2 for a small subset of users who had already experienced both phases and 

simulated a continuation of the experiment with hypothetical targeting strategies. We then 

chose the one that had the largest kWh/point reduction in aggregate since it proxies well for 

the cost of the response to the DR provider. Finally, we estimated the causal effect of 

implementing our targeting strategy using the experimental assignment to targeted versus 

non-targeted groups for households that experienced Phase 2 when we implemented the 

preferred targeting strategy on a sample of 2,725 households. 
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Chapter 5 analyzes Phase 3 of the experiment, which is concerned with the potential of using 

messages with moral suasion in the form of green/environmental messaging rather than 

financial incentives, which we explore in Chapters 3 and 4 of the experiment. This section 

describes the research design in further detail and reports the empirical results. It also 

explores how these effects vary by automation status. Phase 3 occurred 180 days after 

enrollment for the Standard and Encouraged users and lasted for 90 days, after which the 

household was transitioned out of the experiment. Using a similar Differences- in-Differences 

approach as in Phase 1, we suggest that moral suasion yields smaller reductions and that there 

is something unique to the monetary incentives, which is consistent with intuition. It is found 

that environmental messaging does not yield a satisfactory amount of electricity reduction, but 

we remark that further analysis of the targeting strategy investigated in Chapter 4 might help 

shed light on this interesting aspect of the experiment. 

Chapter 6 is dedicated to Machine Learning models that estimate treatment effects for Phases 

1-3 using only experimental variation. Specifically, we re-estimate the average treatment 

effect identified in the previous sections using a non-experimental estimator, which does not 

require a control group. Instead, this estimator is capable of estimating individual treatment 

effects, which enable the design of an adaptive targeting scheme (see Chapter 4) to increase 

the per-dollar-reductions of users. Since this approach is not inherently causal, we run 

extensive simulations to benchmark the results predicted by this Machine Learning approach 

on the more classical, econometric approach to find that there exists a promising similarity of 

the results predicted by both techniques. 

Chapter 7 reports results from a survey conducted after users completed the experiment. The 

questions ask about ownership of automation, load sources in the home, strategies to reduce, 

and motivations for joining. We find survey respondents owned few automatable devices and 

that our rebate offer increased the devices as expected. We find the majority of participants 

rank financial gains as their primary motivation for joining. 

Chapter 8 provides an economic valuation of the experiment and hypothetical programs with 

similar structures. We look at the effect of different incentive levels sent during Phase 1 and 

quantify the kWh reduced by points paid for the sample and for groups of automated and non-

automated users. We also examine what the energy return is to the automation technologies 

deployed by the rebates. We evaluate the wholesale market value from the energy markets 

using data from the California Independent System Operator and include the value of reducing 

the externalities from generation. 

Our findings show the savings for households range from $2.66-$6.13 for the 90 days of 

Phase 1. For hypothetical programs that call 100 events per year and set incentives consistent 

with the wholesale price, average household savings range from $1.82-$4.80 annually for all 

households. Savings are larger for automated households, ranging from $3.95-$10.40 and 

adopting automation increases savings by $9.68-$25.48 in the hypothetical programs we 

consider. 

Our estimates on the short-run avoided costs from energy procurement and externalities range 

from $0.17-$3.96 per household per year for a hypothetical 100 event program. The wide range 

comes from assumptions about whether events are called during the highest price periods. We 

find that on average, the DR events for the experiment were called during periods when 
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wholesale prices were about $0.04/kWh compared. These estimates do not include the 

capacity value of the resource which may increase the value of the programs we consider. 

Lastly, we calculate the private payback period and the discounted social value of automation 

adoption. Payback periods for the 2 smart plugs range from 3.6-12.3 years depending on the 

wholesale market valuation. Thermostat payback periods are longer due to higher up-front 

costs and range from 11.2 years to no finite payback period. The discounted social value is 

also sensitive to assumptions about wholesale market valuation, but range from $24 to an 

upper bound of $147 for a 5-year device life span (plugs) and $47 to $289 for a 12-year life 

span (thermostats). These numbers use experimental estimates on the effect of adopting 

automation, but also make assumptions about future energy prices and externalities that may 

affect the results. 

Chapter 9 concludes and outlines areas for future research. 
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CHAPTER 1: 
Summary of Experiment 

OhmConnect, Inc. (OC) is a third-party Demand Response (DR) provider in California. They 

implemented and experiment designed in collaboration with the team from the Energy 

Institute at Haas and Claire Tomlin’s lab in the Electrical Engineering and Computer Science 

department at University of California Berkeley. OC offers a DR product to residential 

consumers where they can get paid for for reducing their electricity consumption during DR 

events they call #OhmHours. The events can be originated by OC for internal reasons or from 

a scheduling coordinator dispatching OC if it is awarded a bid in the Proxy Demand Resource 

market or from the Demand Response Auction Mechanism designed to procure DR capacity. 

OC’s product has two features that make studying it unique from previous residential DR 

studies. First, it calls events more frequently and with shorter notice than the day-ahead 

studies of the past that focused on critical peak pricing during a limited number of summer 

events. Second, OC offers a unique automation technology that shuts off appliances that 

households have chosen to connect to OC’s platform during DR events. While direct load 

control is not a new concept in DR more broadly, there has been little work studying an 

automation technology with these features within the residential setting. Further, while OC 

calls #OhmHours with day-ahead notice outside of the experiment, we restricted the 

experimental DR events to occur with hour-ahead notice. 

The experiment was conducted from November 15, 2016 to June 1, 2018 with the primary 

period of analysis falling between January 1, 2017 and December 31, 2017. The period of 

November 15, 2016 to December 31, 2016 consisted of a pilot period and the period from 

January 1, 2018 to June 1, 2018 consisted of an unplanned continuation of two of the 

experimental phases. 

There were three phases which defined the experimental regime a customer experienced 

based on the number of days that had passed since they enrolled.  

Figure E-1: Phases of Experiment 

 

Source: UC Berkeley 

Phase 1 consisted of the first 90 days for all users. Phase 2 consisted of days 91-180 for users 

that were not assigned to the control group. Phase 3 consisted of days 181-270 for users that 

experience Phase 2. 

Phase 1 had several dimensions for randomization designed to understand the effect of 

varying incentive levels and automation on DR responses. First, users were assigned to three 
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groups that varied along two treatment dimensions as shown in Figure E-2. The dimensions 

were: 

• Pricing Events: Users received an average of 25 Demand Response (DR) events over 90 

days communicated via email and SMS (see Chapter 3 for more details). Each incentive 

level for a particular DR event was selected at random with equal 20% probability from 

the set of all possible reward levels {5, 25, 50, 100, 300} points/kWh. 

• Automation Rebate: Users were offered a rebate of up to $240 for purchasing a smart 

home automation device, which is paid out to the user upon successful connection of 

the device to their utility account. 

Figure E-2: Phase 1 Experimental Design 

 

Source: UC Berkeley 

Check marks indicate households in that column received the treatment for that row and exes 

denote they did not. 

Users were assigned to three treatment groups upon enrolling with OhmConnect (OC). With 

40% probability users were assigned to “Standard Enrolled” the standard OC experience 

where they received Pricing Events and had the option to connect their Smart Home devices to 

OC’s automation service. With 40% probability users were also assigned to receive the 

Automation Rebate “Enrolled + Encouraged”. With 20% probability were assigned to a recruit 

and delay “Control” group that did not receive either treatment arm, but instead received an 

email telling them they would not receive any events for about 90 days and offering them a 

$10 reward for remaining enrolled over the period. 

The design allows us to address three key empirical questions: 1) What is the effect of DR 

events on electricity consumption for those enrolled versus those who were delayed? 2) What 

is the effect of varying incentive levels? and 3) What is the effect of adopting automation on 

DR responses? 

After 90 days, users in the Standard Enrolled and Enrolled + Encouraged groups were pooled 

and randomly assigned to two groups to understand how targeting users based on estimated 

responses could improve the efficiency of dispatch. Figure 3 shows the design where users are 

assigned after 90 days to a “Targeted” and a control “Non-Targeted” group. Targeted users 

were ranked by a machine learning individual treatment effect (ITE) estimator as most or least 

responsive and then sent either low or high incentives accordingly (see Chapter 4 for more 

details). Non-targeted users continued to receive all five incentive levels the same as they had 



 
E-7  

been receiving during Phase 1. Figure E-3 shows the tree-diagram for Phase 2’s experimental 

design. 

Figure E-3: Phase 2 Experimental Design 

 

Source: UC Berkeley 

Phase 3 was the final phase of the experiment and was meant to understand if moral suasion 

and environmental priming had a differential effect from financial incentives. After Phase 1 

enrolled users had concluded Phase 2 and control users had completed Phase 1, they were 

pooled into an experience for 90 days where each event was randomized between four 

treatments with equal 25% probability as shown in the assignment diagram pictured in Figure 

E-4. 

Figure E-4: Phase 3 Experimental Design 

 

Source: UC Berkeley 

Lastly, all users that have reached 90 days of age in Phase 2 are then rolled into Phase 3 of 

the experiment, which is concerned with the effect of moral suasion on the reduction in 

electricity consumption during a DR event (see Chapter 5). Interventions in this group occur 

on an event-by-event level, that is, for a particular event, each user has the same likelihood of 

experiencing one of the following four treatments: 
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• Control: Users did not receive a DR event. 

• Price Only: Users received a DR event with a 100 point/kWh reward level and the same 

language as in Phase 1 and 2. 

• Moral Suasion Only: Users received an event with no financial reward, but included the 

language such as “Environmental #OhmHour today from 6PM-7PM! Saving energy now 

could keep a dirty power plant turned off!" 

• Price + Moral Suasion: Users received an event that had environmental priming 

language and a 100 point/kWh financial incentive. 

Upon completing Phase 3, users were given the opportunity to complete a survey (Chapter 7) 

to reflect on their experiences and preferences formed during the experiment. These users are 

offered a monetary incentive for successfully completing the survey. 
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CHAPTER 2: 
Summary Statistics 

In this section we describe summary statistics on recruitment and the data used in the analysis 

to provide a foundation for interpreting the results. 

2.1: Recruitment Statistics 
Recruitment began on 11/14/2016 with the launch of the pilot and concluded on 8/14/17. The 

pilot period recruitment ran from 11/14/2016 to 12/31/16 and the study period recruitment 

from 1/1/2017 to 8/14/2017. Due to a technical implementation problem, the recruitment 

period was cut short two weeks and ended prior to the originally planned 9/1/2017. While this 

represents an unfortunate loss in data, it did not seriously affect the statistical power of the 

study. 

Figure E-5 illustrates the number of study participants that were recruited for the RCT broken 

out by time of enrollment. This is done separately for users assigned to the three different 

experimental groups of Phase 1 (Control, Encouraged, Non-Encouraged). Recruitment began 

on November 15, 2016 and ended on August 15, 2017. We observe lower enrollment figures 

from April 2017 – June 2016 with a noticeable peak towards the end of the recruitment period. 

As can be seen from the figure, the height of the red and green bars for a particular vertical 

slice appear to have approximately the same height, indicating that encouraged and non-

encouraged users are balanced in size. In contrast, the blue bar is about half as large as the 

green or red bar, which is consistent with the 40/40/20 assignment of users into encouraged, 

non-encouraged, and control groups we elaborated on in Chapter 1 of this report. 

Figure E-5: Recruitment of Study Participants over Time 

 

In a similar fashion, Figure E-6 plots the number of users that were recruited into the study 

and successfully connected their electric utility accounts. About half of all recruited users 

connected their utility accounts. We were unable to use the recruited users who did not 

connect their utility accounts because we have no energy data for them. We observe that the 

shape of the boxplot looks similar to the one in Figure E-5, suggesting that users across the 

three different experimental groups were equally likely to connect their electric utility accounts. 

The average number of recruits per day was 58 with a standard deviation of 48, a minimum of 

5, and a maximum of 295.  
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Figure E-6: Distribution of Utility Account Connects over Time 

 

The study sample consisted of users who connected their utility accounts and survived a data-

cleaning process. Figure 2.3 describes this process. Step 1 shows users were deemed recruited 

by creating an account with their email. After recruitment, users were randomly assigned to 

their Phase 1 experience assignment– designated Step 2. Note again, users were not notified 

of any assignment other than the Control group delay messaging. Step 3, users completed the 

enrollment process and connected their utility accounts. Step 4, the research team cleaned the 

data, removing users with insufficient pre-enrollment energy data or erroneous meter data. 

Figure E-7: Sample construction process 

 

2.2: Characteristics of Experiment Participants 
Figure E-8 illustrates the distribution of the lengths of available historical smart meter data 

among all users that have successfully connected their utility accounts. Users from Southern 

California Edison (SCE) have the shortest availability and those serviced by San Diego Gas & 

Electric (SDG&E) have the longest. We observe peaks at 365 days and 730 days, which 

correspond to 1 or 2 years of data availability. The black dashed lines reflect the median 

availability of historical smart meter data, which is 374 days for PG&E, 273 days for SCE, and 

403 days for SDG&E. 
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Figure E-8: Availability of Smart Meter Data Across Experimental Users 

 

Figure E-9 provides a scatter plot of the geographic distribution of control, encouraged, and 

non-encouraged users broken out by electric utility. As expected, most users are concentrated 

in the urban areas of the San Francisco Bay Area, San Diego, and Los Angeles. It is visually 

striking that there appear to exist no structural differences in the distribution of users across 

either treatment group or electric utility, which is an intuition to be confirmed in the balance 

checks provided in Chapters 3 and 4. 

Figure E-9: Geographic Distribution of Enrolled Users 

 

Figure E-10 shows the map of initial assignment by ZIP code. Each ZIP is colored orange if 

there are only Control users, blue if there are only enrolled (E or NE) users, and green if there 

are both enrolled (E or NE) and Control users. The map shows the assignment looks to have 

no significant spatial correlation in the assignment. 
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Figure E-10: Map of Assignment by ZIP Code 

2.3 

Initial Assignment Statistics 
In this subsection, we provide data on the distribution of users across the experimental 

groups. 

Table E-1 shows the total assignment numbers during the study period.1 The assignment 

ratios are very close to the intended design of 40/40/20 for E/NE/C. The number of users with 

data is shown in the third column to be 6,227. The fifth column shows the numbers of users in 

the WP sample is 5,531, which drops users with erroneous meter data or those that appear to 

have on-site generation (net metering). 

 
1 This constitutes dropping 751 users who no populated join date (“NA”) and 2,157 who joined during the pilot period. 
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Table E-1: Treatment Assignment Counts and Ratios for Study Period (1/1/17 – 
8/14/17) 

Treatment 
Group 

Recruited Fraction of 
Total 

Enrolled 
with Data 

Fraction 
with Data 

Enrolled in 
WP Study 

Fraction 
in WP 
Study 

Control (C) 2,759 20.0% 1,166 18.7% 1,035 18.7% 

Non-encr. 
(NE) 

5,533 40.2% 2,507 40.3% 2,271 41.1% 

Encouraged 

(E) 

5,490 39.8% 2,554 41.0% 2,225 40.2% 

Total 13,782 100% 6,227 100% 5,531 100% 

Table E-2 shows there is a small amount of differential attrition, about 4%, in the Control group 

versus the treatment groups between the point of recruitment (making an account with OC) 

and connecting their utility data. Table 2.3.2 also shows there is no attrition between the 

enrollment and being included in the study sample. There is no differential attrition between 

the NE and E groups. Selection concerns cannot be ruled out due to the attrition, but the 

tables shown below indicate there is no observable difference between treatment groups. 

Table E-2: Sample attrition for study period (1/1/17 – 8/14/17) 
Event Incentive Level Pr(Connected if Recruited) Pr(In WP Study if Connected) 

Control (C) 0.417*** 

(0.009) 

0.899*** 

(0.009) 

Non-encouraged (NE) 0.043*** 
(0.012) 

-0.005 

(0.011) 

Encouraged (E) 0.034*** 

(0.012) 

0.002 

(0.011) 

p-value for H0: NE = E 0.39 0.44 

Total 13,782 6,227 

2.4 Dispatch Statistics 
In this subsection, we illustrate the distribution of Demand Response events along various  

Table E-3 shows summary statistics corresponding to the number shown in Figure 2.4.1. The 

numbers are summarized over user-level observations of the number of messages sent per 90 

days for users with at least 90 days in each phase. During Phase 1, users were sent an average 

of 25 messages per 90 days with a median of 28 and a standard deviation of 7.6. During Phase 

2, users were sent an average of 22 messages per 90 days with a median of 26 and a standard 

deviation of 9.4. During Phase 3, users were sent an average and median of 15.7 messages 

per 90 days with a standard deviation of 7.5. The numbers also show there are around 20% of 

users who received zero messages for the 90 day periods. 

Table E-3: Messages per 90 days by user by experimental phase 



 
E-14  

 (1/1/17 – 11/12/17) 

Experimental 

Phase 

Mean Std. 

Dev. 

Minimum 25th 

percentile 

Median 75th 

percentile 

Maximum 

Phase 1 25.1 7.6 0 25 28 29 31 

Phase 2 21.8 9.4 0 20 26 29 30 

Phase 3 15.7 7.5 0 11.6 15.7 23 28 

Figure E-11 shows the distribution of the number of dispatched Phase 1 DR events across all 

treatment users. The mean number is 25.10. Only ~5% of all treatment users were contacted 

less than 10 times during the entirety of Phase 1. 

Figure E-11: Distribution of DR Dispatches in Phase 1 Across Users 

 

Figure E-12 shows the distribution of DR events in Phase 1 across all users by hour of the day. 

As can be seen from the figure, most events occurred in the late afternoon and early evening. 

Figure E-12: Distribution of Events by Hour of Day 

 

  



 
E-15  

Similarly, Figure E-13 and Figure E-14 show the distribution across day of the week and month 

of the year. 

Figure E-13: Distribution of Events by Day of Week 

 

Figure E-14: Distribution of Events by Month of Year Users 

 

Figure E-15 shows the number of hours between consecutive Demand Response Events. We 

will later see (see Chapter 3) that a minimum gap of 18 hours is necessary for our estimation 

framework, as we wish to avoid “spillover” effects that might occur from one event to the 

next. Less than 3% of all events occurred within 18 hours. These events were dropped from 

the analysis. 

Figure E-15: Distribution of Times between Consecutive Demand Response Events 

 

Table E-4 shows the incentive level assignment ratios for Phase 1. The second column reports 

the number of messages sent across all users in the study sample in the E and NE groups for 

each incentive level during Phase 1 of the experiment. These empirical assignment ratios are 
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very close to the intended equal likelihood of receiving each of the incentive levels (20%). In 

total, there were 122,833 events called across 4,496 users across 94 unique events. Not every 

user was called during each event, only around 89% received a message when an event was 

called. 

Table E-4: Incentive level assignment count and ratios for Phase 1 (1/1/17 – 
11/12/17) 

Event Incentive Level Messages Sent Fraction of Total 

5 points per kWh 24,397 19.8% 

25 points per kWh 24,525 20.0% 

50 points per kWh 24,500 20.0% 

100 points per kWh 24,688 20.1% 

300 points per kWh 24,723 20.1% 

Total 122,833 100% 

Table E-5 shows the incentive level assignment ratios for Phase 2. The second column reports 

the number of messages sent across all users initially assigned to treatment in the study 

sample and assigned to the HT targeted group. The third column reports the number of 

messages sent to the LT targeted group. The fourth column reports the messages sent to the 

non-targeted (NT) group. The assignment probabilities were 50/50 and 33/33/33 for the HT 

and LT groups and 20 percent for each incentive level in the NT group. The empirical 

assignment ratios replicate this closely indicating the treatment was implemented according to 

the design at the time this report was written. In total, there were 71,464 events called during 

Phase 2 with the numbers being evenly split between the targeted and the NT groups. 

Table E-5: Incentive level assignment count and ratios for Phase 2 
(2/13/17 – 11/12/17) 

Event Incentive Level Messages Sent 
to HT 

Messages Sent to 
LT 

Messages Sent to 
Non-Targeted 

5 points per kWh - 5,976 (33.0%) 6,991 (19.6%) 

25 points per kWh - 5,921 (32.7%) 7,093 (19.9%) 

50 points per kWh - 6,215 (34.3%) 7,189 (20.2%) 

100 points per kWh 8,837 (49.9%) - 7,277 (20.4%) 

300 points per kWh 8,856 (50.1%) - 7,109 (19.9%) 

Total 17,693 (100%) 18,112 (100%)  

 35,805 35,659 (100%) 

Table E-6 shows the message level assignment ratios for Phase 3. The second column shows 

the number of messages sent in each group and the third column shows the fraction of total 

messages. The intended assignment ratio is 25 percent each group, which is closely replicated 

with slightly more being assigned to the event-level control group. In total 38,634 messages 

had been sent as of the time this report was written. These spanned 53 unique events and 
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1,535 users. The user number is lower than the Phase 1 and Phase 2 numbers because Phase 

3 occurred after Phase 1 and 2 and was not complete at the time this report was written. 

Phase 3 is due to be completed on 12/31/17. 

Table E-6: Incentive level assignment count and ratios for Phase 3 (5/18/17 – 
11/12/17) 

Event Message Level Messages 

Sent 

Fraction of 

Total 

Control Group 10,315 26.7% 

Moral Suasion Only (M) 9,514 24.6% 

Price Only (P) 9,354 24.2% 

Both Moral Suasion & Price (B) 9,451 24.5% 

Total 38,634 100% 

Figure E-16 summarizes the distribution of messages sent per user over time by showing the 

number of messages received for each user as a function of the number of days since 

enrollment. The figure groups E and NE users in blue as “Initially Enrolled” and the Control group 

as “Initially Delayed” in orange. It is clear that the C group did not receive any messages for 

the first 90 days as is consistent with Phase 1. After 90 days C group users begin receiving 

messages, indicated by the increasing shading. Each point represents a single user and points 

are plotted with transparent shading so that darker parts of the plot indicate more users. The 

majority of users receive a consistent amount of 25 events per 90 days enrolled. The flattening 

of the lines indicates some users stopped receiving messages after about 180 days in the 

treated and 90 days in the control group. 

Figure E-16: Message Count per User versus Days Since Enrollment 
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CHAPTER 3: 
Phase 1 – Monetary Incentives and Automation 

Phase 1 investigated two primary questions: 1) How do participants respond to varying 

monetary incentives during DR events and 2) how does adopting automation affect those 

responses. This section describes the research design in further detail and reports the 

empirical results. It also explores how these effects vary by time of day and month of year. 

3.1 Research Design and User Experience 
The main dimension of randomization in Phase 1 was the assignment to receive DR messages 

as compared with the 90-day delayed Control Group which received no messages. The control 

group received an email with the following message: “Due to overwhelming demand for our 

service, there will be a delay before we can send you #OhmHours. We estimate this delay will 

last approximately 3 months. In return for your patience, we'll issue you an extra $10 bonus 

when your account delay is over.” 

Figure E-17 shows sample event language for the Phase 1 DR events as experienced by 

Standard (also interchangeably referred to as Non-Encouraged) and Encouraged respondents. 

This language was consistent across all Phase 1 messages. The only difference was that during 

Phase 1 DR events, the incentive level was randomized between levels of 5, 25, 50, 100 and 

300 points per kWh. The example figures show language for an event of 100 points per kWh. 

The point reward for each event was calculated as follows: 

𝑅𝑒𝑤𝑎𝑟𝑑 = 𝐼𝑛𝑐𝑒𝑛𝑡𝑖𝑣𝑒 ∗ (𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) 

The term Incentive was randomized among the 5 incentive levels with equal probability. 

The forecast was calculated consistent with the CAISO 10-in-10 methodology. The 

methodology could generally be replicated by the evaluation team, but did show some non-

systematic differences. These should not affect the estimation of the causal effects reported 

below, but is worth noting. 
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Figure E-17: Sample SMS and Email language for Phase 1 DR Events 

 

The other dimension of randomization during Phase 1 was assignment to an automation 

encouragement. In order to measure the causal effect of adopting an automation technology, 

the Encouraged households were offered a rebate for the full purchase price of a new smart 

home device up to $240 in value. Upon creating an account, these households were shown a 

pop-up notification on the web-portal in addition to being sent an email notifying them they 

had been selected to receive a rebate for purchasing a new smart device. The household was 

offered a choice between 3 smart thermostats ranging in retail prices from $198 to $240 or 

one package of two smart plugs with a retail price of $80. The households were told that they 

would have the purchase price equivalent of points added to their balance when they 

connected the device as to ensure rebates encouraged automation 

3.2 Balance Check 
This section reports balance statistics for the Phase 1 assignment. Given constraints to the 

enrollment pipeline, we were unable to stratify assignment to ensure balance a priori. 

This is a challenge to the design pursued here. Further, since the evaluation team did not 

perform the randomization, this check is vital to ensuring experimental validity. 

Figure E-18 reports the average electricity consumption by hour-of-day in the 90 days prior to 

enrollment. The Standard (Non-Encouraged) and Encouraged are shown to be overlapping 

quite nicely, but the Control group clearly consumes more in a systematic fashion. Averaging 
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across these delivers a statistically insignificant difference, but the figure justifies the use of 

the difference-in-differences estimation strategy described below to ensure cross-sectional 

differences are not interpreted causally. Figure E-19 performs the same exercise for average 

temperature and shows a more overlapping assignment. Figure E-19 shows the distributions of 

the length of historical data for control and treatment (Standard and Encouraged) groups are 

also generally overlapping with control households showing on average longer pre-period 

series. 

Figure E-18: Electricity consumption by hour-of-day by Phase 1 Assignment 

 

Figure E-19: Average temperature by hour-of-day across by Phase 1 treatment 
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Table E-7 reports the full balance check. We test for balance in observables characteristics 

between treatment groups to provide evidence on the validity of assignment. Columns (1), (2), 

and (3) report means and standard deviations in parentheses for the Control, Standard, and 

Encouraged groups calculated using pre-enrollment data. Columns (4)-(6) report p-values on 

the t-test on the difference in means permuted between each of the treatment groups. 

Standard errors for the balance tests are assumed to be independent between households. 

Rows 1-6 report statistics for the data used in the empirical analysis and row 7 and above for 

the census variables, where available. Only one comparison is significantly different at the 10 

percent significance level: the maximum consumption between the Encouraged and the 

Control group. This provides strong evidence that the assignment was random. 

Table E-7: Statistical Checks of Phase 1 Randomization 
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Figure E-20: Length of Consumption Histories Before Enrollment 

 

3.3 Phase 1 Empirical Strategy 
We use a difference-in-differences estimation strategy to evaluate the effect of DR events. This 

involves controlling for between-household differences by including household by hour-of-day 

fixed effects and data from the 90 days prior to enrollment. We also include hour-of-sample 

fixed effects to take out seasonal shifts in consumption across all treatment and control 

groups. We also include temperature controls to improve the precision of our estimates. The 

specific estimating equation is: 

𝑌@AB = 𝛿DEDFA𝐸𝑣𝑒𝑛𝑡𝐻𝑜𝑢𝑟@A + 𝛿FJFDEDFA 𝑁𝑜𝐸𝑣𝑒𝑛𝑡@A + 𝛼@B + 𝛾A + 𝛽O 𝐶𝐷𝐻@A + 𝛽Q𝐻𝐷𝐻@A + 𝜂@AB 

Where the indices are i = household, t = hour-of-sample, h = hour-of-day (redundant with t). 

The outcome variable is either kWh consumed during that hour or the log of it to provide 

estimates that are approximate to percent changes. The EventHour variable indicates an event 

hour occurred (after enrollment) for that household and the NoEvent variable indicates the 

household was enrolled, but no event occurred during that hour. 

𝛼@B are household by hour-of-day fixed effects and 𝛾A are hour-of-sample fixed effects. We use 

linear parametric controls in terms of cooling and heating degree hours, defined as positive 

deviations above and below 65 degrees Fahrenheit, respectively. There was a slight non-

compliance issue in the assignment of hours because around 10% household opted-out of 

receiving events during certain hours of the day. To address this selection issue we instrument 

EventHour with Enrollment interacted with EventHour, but it does not substantively affect the 

estimates. 

To estimate the effect of automation, we leverage the encouragement design. This involves 

estimating an instrumental variables (IV) approach as follows. We estimate the same 

difference-in-differences style approach among the Standard and Enrolled households, 

excluding the Control Group: 

𝑌@AB = 𝛿STAJDEDFA 𝐴𝑢𝑡𝑜𝑥𝐸𝑣𝑒𝑛𝑡𝐻𝑜𝑢𝑟@A + 𝛿STAJFJFDEDFA 𝐴𝑢𝑡𝑜𝑥𝑁𝑜𝐸𝑣𝑒𝑛𝑡@A 

+𝛼@B + 𝛾A + 𝛽O𝐶𝐷𝐻@A + 𝛽Q𝐻𝐷𝐻@A + 𝜂@AB 

AutoxEventHour indicated the household was automated and AutoxNoEvent indicates hours 

after enrollment for automated households when no event was called. The outcome variable, 

controls, and fixed effects are defined the same as above. The key difference in the IV 
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approach is the Auto variables are instrumented using the Encouragement assignment and 

2SLS. 

3.4 Phase 1 Experimental Results 

3.4.1 Average Effect of DR Events 

Table E-8 reports the results for estimating the average effect of being enrolled in the program 

during an event hour and the effect of being called. The first two columns report results in 

terms of kWh and the third and fourth in terms of log which approximately represent percent 

changes. The results show statistically significant effects at the 99 percent level and estimates 

on the order of 0.12 kWh or 13 percent pooling across all incentive levels. The standard errors 

are clustered two-ways by household and hour-of- sample. Because only around 10 percent of 

household opted-out the OLS and the IV estimates are similar with the OLS being closer to 0 

due to the averaging across households that were not called during that event hour. 

Table E-8: Effect of DR Events 

 kWh kWh log(kWh) log(kWh) 

Enrolled x DR Hour 
vs. Control (OLS) 

-0.107*** 
(0.012) 

 -0.117*** 
(0.009) 

 

Called x DR Hour 
vs. Control (IV) 

 -0.120*** 
(0.014) 

 -0.132*** 
(0.010) 

Enrolled x No DR 

vs. Control 

-0.017 

(0.006) 

-0.017 

(0.006) 

-0.017 

(0.006) 

-0.017 

(0.006) 

Households 5,491 5,491 5,491 5,491 

N (observations) 22,926,631 22,926,631 22,926,631 22,926,631 

We also show the effect of events as an event-study that shows how consumption differed in 

the hours leading up to and following the event. Figure E-21 and Figure E-22 show the event-

study for kWh and log(kWh), respectively, with zero indicated the DR event hour. The dashed 

line delineates the time before the household was notified and the two solid lines the event 

hour. Vertical bars indicate 95 percent confidence intervals and the estimates are normalized 

to period -2. 
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Figure E-21: Effect of DR Events in kWh 

 

Figure E-22: Effect of DR Events in log(kWh) (approximately percent) 

 

Automation 
Before moving to the effect of adopting automation we also report differences in automated 

and non-automated household relative to control. These provide non-causal estimates on the 

difference between automated and non-automated DR events and serve to show how much of 

the average effects reported in Table E-8 are due to automation. Figure E-23 and Figure E-24 

show the same event-study figures as above and indicate automated users reduced about 25 

kWh and 25 percent of their consumption as compared with the non-automated who reduced 

around 0.07 kWh or 7 percent. This comparison cannot be interpreted causally because it 

compares households who chose to sign up for the automation service to those who did not. 
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Figure E-23: Automated vs. Non-automated DR Events in kWh 

 

Figure E-24: Automated vs. Non-automated DR Events in log(kWh) (approximately 
percent) 

 

The encouragement provides random variation that can be used to estimate the causal effect 

of automation. First we report the effect of the encouragement on the automation take-up. 

Figure E-25 plots the number of households and the number of devices for the Standard group 

(no rebate offer) and the Encourage group (rebate offered). Given the groups were roughly of 

equal size, the results show a sharp increase in the number of households with automation 

driven by thermostats and smart plug adoption. 
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Figure E-25: Effect of Rebate Encouragement on Automation Take-up 

 

Table E-9: Summary of Encouragement Results 

 

Table E-9 summarizes the effect of the encouragement on automation take-up, reporting the 

number of devices in each of the Standard and Encouraged groups in Panel A. Panel B reports 

estimates of the instrument’s “first stage”, showing that the fraction of automation take-up 
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increased a statistically significant amount of 4.5 percentage points (83 percent) over the 

baseline take-up of 5.3 percentage points. 

Panel B also breaks out the take-up by the average consumption during the 90-day pre- 

period. This shows that the rebate was disproportionately taken-up by households in the 

bottom quartiles of consumption (0-0.34kWh). This has an important implication for 

interpretation. The households who are induced to take up automation by the rebate are 

observably different from those who sign up without the rebate. This means the causal 

adoption estimates we provide below may not be representative of causal estimates for the 

households who sign up without a rebate. 

Figure E-26 plots the take-up by consumption quartile by technology and shows that the 

significant increase in the bottom quartile is driven by the adoption of plugs whereas the 

increase in the top quartile is driven by thermostats. These differences are intuitive if 

thermostats are typically used in larger households and plugs may be more appropriate for 

households without central heating/cooling. 

Figure E-26: Effect of Rebate Encouragement on Automation Take-up 

 

Using the adoption variation induced by the encouragement, we report the estimates of the 

causal effect of adopting automation on responses in Table E-10. The Results show the OLS 

non-causal estimates for comparison in columns 1 and 3. The IV estimates of the causal effect 

are reported in columns 2 and 4 and show that adopting automation yields an additional 0.567 

kWh reduction or around 0.668 log points. Logs are a worse approximation of percent the 

further from 0 so the second estimate is approximately a 49 percent reduction. The results are 

statistically significant at the 99 percent level. Comparing to the OLS estimates shows that the 

marginal treatment effect is larger for those nudged into adopting by the rebate. One 

interpretation of this is that household who have already adopted have less flexible demand 

because they’ve already taken adaptation measures. Another interpretation would be 

individuals who have chosen to adopt without rebate are less inclined to take additional action. 

Important to note is that the adoption effect is in addition to what otherwise would have been 

done to respond, which may not be zero. Thus, the total DR event response for these 

households could be larger than the estimates provided. 
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Table E-10: Effect of Automation 

 kWh kWh log(kWh) log(kWh) 

Auto x DR Hour vs. -0.190***  -0.222***  

Non-Auto x DR Hour (0.028) (0.029) 

(non-causal OLS)   

Auto + DR Hour vs.  -0.567***  -0.668*** 

Non-Auto x DR Hour (0.165) (0.160) 

(causal IV)   

Auto x No DR Hour 0.021 -0.139 -0.005 -0.112 

vs. Non-Auto x No (0.013) (0.106) (0.015) (0.127) 

DR Hour     

Households 4,448 4,448 4,448 4,448 

N (observations) 18,559,930 18,559,930 18,559,930 18,559,930 

Figure E-27 and Figure E-28 plot the same event-study style figure for the automation 

adoption and shows a similar pattern to those above for kWh consumed and log(kWh), 

respectively. A precise response during event periods that quickly reverts to past consumption 

levels. 

Figure E-27: Effect of Adopting Automation on DR Events in kWh 
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Figure E-28: Effect of Adopting Automation on DR Events in log(kWh) 
(approximately percent) 

 

Effect of Difference Incentive Levels 
We now report the effect of different incentive levels in the DR events. This is achieved by 

decomposing the average effects reported above by the incentive level. Because the incentive 

level was randomly assigned within each event and within individual over time, we can 

interpret the relative effect between incentive levels as the causal effect of changing the 

incentive level. 

Figure E-29: Effect of Different Incentive Levels during DR Events in kWh 
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Figure E-30: Effect of Different Incentive Levels during DR Events in log(kWh) 
(approximately percent) 

 

Figure E-29 and Figure E-30 plot the estimates of this effect by incentive level (written in 

$/kWh) for kWh consumed and log(kWh), respectively. Recall 100 points = $1 so the x- axis 

can be multiplied by 100 to get the points per kWh equivalent. The left panels in the figure 

show the causal estimates of each incentive level. Across both outcome measures, the results 

show a significant decrease in consumption of -0.125 kWh, around 12 percent for the 5 point 

per kWh ($0.05/kWh) incentive level and -0.145 kWh, around 14 percent for the 300 point per 

kWh ($3/kWh) incentive. We also report a linearly fitted slope through the incentive levels 

which is estimated to be negative and statistically significant from zero. However, the 

insensitivity of the response to the level is remarkable considering the change in incentive 

levels relative to the utility price. Table E-11 reports the estimates plotted in Figure E-29 and 

Figure E-30. 

The right panels in Figure E-29 and Figure E-30 show the decomposition of the effect by users 

were automated to show that the automation was not driving the price insensitivity. In fact, 

automated users appear to be more price sensitive than their non-automated counterparts. 

The interpretation of the slopes in the right panel is not causal and the design was statistically 

underpowered to explore how price sensitivity changed due to automation adoption using the 

encouragement. 
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Table E-11: Effect of Varying Incentive Levels 

 kWh kWh log(kWh) log(kWh) 

5 points per kWh 

($0.05/kWh) 

-0.128*** 

(0.013) 

 -0.124*** 

(0.010) 

 

25 points per kWh 
($0.25/kWh) 

-0.131*** 
(0.014) 

 -0.132*** 
(0.011) 

 

50 points per kWh 
($0.50/kWh) 

-0.119*** 
(0.014) 

 -0.117*** 
(0.011) 

 

100 points per kWh 

($1.00/kWh) 

-0.134*** 

(0.014) 

 -0.139*** 

(0.011) 

 

300 points per kWh 
($3.00/kWh) 

-0.146*** 
(0.015) 

 -0.147*** 
(0.012) 

 

Response Intercept  -0.125*** 

(0.010) 

 -0.124*** 

(0.009) 

Response Slope 

per $0.01 in Incentive 

 -0.0067*** 
(0.0025) 

 -0.0079*** 
(0.0024) 

Households 5,491 5,491 5,491 5,491 

N (observations) 22,926,631 22,926,631 22,926,631 22,926,631 

We explored whether the insensitivity was short-lived by estimating the slope and intercept 

parameters as shown by the dashed lines in the left panels of Figure E-29 and Figure E-30 for 

kWh consumed and log(kWh), respectively. Figure E-31 and Figure E-32 show these estimates 

broken out by 30-day period after enrollment. The left estimate in each panel is the pooled 

estimate as shown in Table E-11. The estimates do not change much over the 90 days period, 

indicating that familiarity with the program over a 90 day period does not substantively change 

the insensitivity result. Figure E-33 and Figure E-34 show the results broken out (non-causally) 

by automation to again show that the results are not driven by automated users. 

Figure E-31: Demand Intercept and Slope Over Time in kWh 

 



 
E-32  

Figure E-32: Demand Intercept and Slope Over Time in log(kWh) (approximately 
percent) 

 

Figure E-33: Demand Intercept and Slope Over Time by Automated and Non- 
Automated in kWh 
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Figure E-34: Demand Intercept and Slope Over Time by Automated and Non- 
Automated in log(kWh) (approximately percent) 

 

3.4.4 Effect Heterogeneity by Temperature, Hour-of-Day and Season 

In this section we report heterogeneity in the average effect of a DR event by outdoor 

temperature, hour-of-day, and month-of-year. 

For temperature, we interact the treatment indicator for an event hour or a non-event hour 

after enrollment with a set of temperature bin dummies that span 5 degrees Celsius between 

10 and 35 degrees. This corresponds to temperatures ranging from 50 to 95 degrees 

Fahrenheit. The differences can be interpreted as the difference in effect relative to the 

omitted bin 15-20 degrees Celsius (59-68 degrees Fahrenheit). Figure E-35 plots the estimates 

broken out by automated and non automated households.  

Figure E-35: Effect by Outdoor Temperature and Automation Status 

 

The left and right panels show results in terms of kWh consumed and log(kWh), respectively. 

The rightmost estimates in each figure can be interpreted as follows. Automated households 

reduced consumption by 1 kWh or 0.75 log points (53 percent) more during DR events when 

the temperature was hotter than 35C relative to the baseline. Non-automated households also 

reduced significantly more on hot days, showing responses on the order of 0.25kWh and 0.2 
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log points (18 percent). We plot non-event hours as well and show that there is little evidence 

of spillover behavior that correlates with temperature. We might expect this if thermostat 

presets were being changed.We perform similar interactions for hour-of-day and month-of-

year, both of which confirm that times of the day and times of the year with hotter 

temperatures tend to have larger effects. Figure E-36 and Figure E-37 show results for hour-

of-day and Figure E-38 and Figure E-39 show results for month-of-year. For each figure the 

left panel reports results in kWh consumed and the right panel for log(kWh). Figure E-37 and 

Figure E-39 show automated and non-automated responses decomposed non-causally. Since 

the hour of the event was not randomized, comparing between hours should be performed 

with caution. Further, events may have been called at different times of the day for different 

times of the year. The results show a pattern that is consistent with the interpretation that 

cooling load drives larger responses. 

Figure E-36: Effect of DR Event by Hour-of-Day 

 

Figure E-37: Effect of DR Event by Hour-of-Day and Automation 

 

Figure E-38: Effect of DR Event by Month-of-Year 
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Figure E-39: Effect of DR Event by Month-of-Year and Automation 
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CHAPTER 4: 
Phase 2 – Targeting Household Incentives 

Phase 2 investigated the question: Can the incentives sent during Phase 1 be modified and 

targeted to improve program cost efficiency? The targeting strategy studied was developed by 

UC Berkeley to reduce costs by identifying the largest responders and sending them lower 

incentives, but does not reflect the optimal cost-reducing dispatch of individuals due to 

constraints in the experimental structure. This section describes the research design in further 

detail and reports the empirical results. It also explores how these effects vary by month of 

year. 

4.1  Research Design and User Experience 
Phase 2 explored whether the incentives could be targeted based on Phase 1 responses in 

order to reduce the cost to the DR provider of calling events. We achieved this by estimating 

household-level responses using a ML model to predict each individual’s counterfactual 

consumption during an event and then averaged the difference between these counterfactuals 

and observed consumption to come up with what we termed the Individual Treatment Effect 

(ITE). Each week as users reached 90 days we would estimate each eligible household’s ITE 

and then rank them within the cohort to be transitioned. Phase 2 lasted for a duration of 90 

days for households assigned to the Standard or Encouraged groups initially. On day 181 

households were transitioned out of Phase 2. 

To causally estimate the effect of the targeting strategy we employed, we randomly assigned 

individuals to a control group that continued to receive event messaging in the same fashion 

as Phase 1: receiving 5, 25, 50, 100, and 300 point per kWh incentive levels with equal 

probability. The targeted group received a limited set of incentive levels based on their ITE 

ranking. Given the insensitivity documented in the previous section, we pursued a strategy 

that sent the most responsive users lower incentive levels (5, 25, and 50 points per kWh) and 

the least responsive users the highest incentive levels (100 and 300 points per kWh). 

Comparing the entire targeted group to the control provides estimates of how effective this 

shuffling of incentives was at reducing payouts without reducing the kWh response. 

Figure E-40 shows the number of messages for each group by days since sign-up. This shows 

the messages continued in a pattern similar for all three groups. The only differences were the 

incentive levels received. 
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Figure E-40: Number of Phase 2 DR Events per Individual Over Time 

 

4.2 Balance Check 
As in Phase 1 of the experiment, we check that the experimental groups are balanced, such 

that any observational differences in the groups – in expectation - can be attributed to the 

intervention of interest. 

In a similar fashion to the balance checks from Chapter 3, we compare users in the non- 

targeted and targeted groups by their mean consumption in pre-treatment periods (i.e. before 

enrollment in Phase 1 of the experiment) as well as ambient air temperature. Figure E-41 and 

Figure E-42 show these metrics for both experimental groups broken out by the hour of the 

day. Both figures confirm that targeted and non-targeted users are indeed balanced in terms of 

electricity consumption and ambient air temperature. 

Figure E-41: Consumption for Targeted vs. Non-Targeted Users by Hour of the Day 
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Figure E-42: Temperature for Targeted vs. Non-Targeted users by Hour of the Day 

 

We also test for observable differences for the Phase 1 period. We use a sample of 2,725 

households who experienced any Phase 2 before the completion of the experimental period. 

4.3 Simulation to Determine Targeting Metric 
At the outset of the experiment, we intended to estimate each individual’s elasticity since we 

had within-household incentive variation. However, after the results began to come in that 

individuals were not very responsive to the incentive level, our ability to measure (and target) 

based on these slopes was drawn into question. This is due to the fact that differentiating 

users on slopes that were very close to zero would result in targeting based on a metric that was 

a poor differentiator. As such, we took on an intermediate step to determine if elasticity 

estimation was feasible and if not, if there were other strategies to target incentives. 

We turned to simulation to tackle this problem and updated our targeting strategy on 

6/27/2017. That is, we utilized actual observations from Phase 1 and Phase 2 for a small 

subset of users who had already experienced both phases and simulated a continuation of the 

experiment with hypothetical targeting strategies. We then chose the one that had the largest 

kWh/point reduction in aggregate since it proxies well for the cost of the response to the DR 

provider. We selected from the following targeting strategy candidates. 

1. Individual Treatment Effect (ITE) – the pooled response per individual for any incentive 

level 

2. ITE normalized by average reward level received – the response normalized by the 

incentive level offered 

3. Intercept of estimated individual demand curve – the intercept of the individual demand 

estimation 

4. Slope of estimated individual demand curve – the slope of the individual demand 

estimation (the original targeting criteria) 

5. Random assignment – this provided a benchmark to validate the simulation 

Each of the candidates was computed in kWh and %-values as the outcome variable, giving a 

total of 10 candidates. 

The process of the simulation was as follows: 

1. Use the sample of non-targeted users prior to 6/27/17. 
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2. Randomize 50% of the sample to simulated targeted and non-targeted groups 

3. Sort targeted users on a given targeting criteria and assign households with the most 

negative estimates to the low incentive group and those with the least negative 

estimates to the high incentive group. 

4. We then simulated Phase 2, drawing incentive levels with equal probability for each 

group. Simulated non-targeted were given all 5 incentive levels with 50% probability. 

Simulated low-targeted were given 5, 25, and 50 point per kWh incentive levels with 

approximately 33% probability. Simulated high-targeted were given incentive levels 100 

and 300 points per kWh with 50% probability. 

5. Using actual #OhmHours and variation from Phase we calculated the following: 

o The difference in average consumption in targeted vs. non-targeted groups 

o The difference in measured reductions (forecast less actual consumption) 

o The difference in payouts 

6. Repeat this process 1000 times and take the mean across simulations 

Figure E-43 plots the distribution of payouts from the Demand Response Provider (DRP) to 

targeted and non-targeted simulated users. The top panel verifies that random assignment of 

targeted users to simulated-high-targeted and simulated-low-targeted groups achieves an 

average payout that matches the payout of the non-targeted group, thereby verifying the 

validity of random assignment. Panels 2-5 include this random benchmark, which serves as a 

comparison for the payout to the targeted users under varying targeting criteria. We observe 

that the criteria ITE, ITE normalized, as well as intercept all reduce the payout significantly, 

however, ITE performs best. According to the bottom panel, the slope criterion underperforms. 
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Figure E-43: Differences in Payouts from Simulated Experiment 

 

Figure E-44 plots the distribution of differences in means between estimated Phase 2 

reductions of simulated low and high targeted users. Random assignment (top panel) shows a 

distribution centered around zero. Panels 2-4 graph distributions centered around a positive 

value, which is consistent with the objective of assigning high (low) rewards to low (large) 

Phase 1 reducers. ITE (kWh) achieves the largest mean difference whereas the slope criterion 

appears to be ineffective. 
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Figure E-44: Differences in Measured Reductions from Simulated Experiment 

 

Lastly, Figure E-45 supports the results in Figure E-44, as it breaks down the reductions of 

simulated low and high targeted users. The differences in means between the reductions 

estimated for simulated-low and simulated-high-targeted users (for a particular targeting 

criterion) is exactly the mean given in Figure E-44. 
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Figure E-45: Differences in Consumption from Simulated Experiment 

 

The simulations showed how poor the slope of each individual demand performed in 

differentiating users. Instead, the ITE in terms of kWh candidate provided the greatest 

reduction in payouts according to the simulation. Thus, after 7/1/17 we continued the 

experiment with this targeting strategy. 

4.4 ITE Estimator and Targeting Methodology 
The targeting methodology used required an estimate of each household’s event 

responsiveness. The estimate we use is our ITE estimate. In its simplest form, each 

household’s ITE estimate was given by the following formula: 

where i = household and t = the hour-of-sample. The formula basically averages over the 

difference between the observed consumption in kWh and the Counterfactual. We produce the 

counterfactual using a random forest estimator with 5 lagged hours of consumption 

and outdoor temperature along with a host of fixed effects. Chapter 6 goes into more detail on 

the machine learning algorithm. We then rank individuals based on the 𝐼Y𝑇𝐸@ which is what we 

estimate the response per event is for household i. 



 
E-43  

4.5 Phase 2 Experimental Results 
We estimate the causal effect of implementing our targeting strategy using the experimental 

assignment to targeted versus non-targeted groups for households that experienced Phase 2 

after 6/27/2017 when we implemented the preferred targeting strategy to 3/1/2018 – a 

sample of 2,725 households. We only use data from event hours during Phase 2, giving a total 

sample of 73,165. 

Table E-12 shows the results of the targeting by comparing the averages between the two 

groups. We examine the reductions from baseline and the number of points paid out per event 

as outcomes. Each column represents a separate regression. Rows 1-3 report the difference in 

the groups which is the effect of targeting and rows 4-6 report the means in the non-targeted 

control group to facilitate interpretation. Rows 1 and 4 report the effect for both types of 

households and Rows 2-3 and 5-6 break out the effect by the Most and Least Responsive 

types. 

Columns 1 and 2 of Table E-12 show the effect of targeting on reductions from baseline. The 

results show reductions were on average 0.070 kWh smaller, but on the order of the effects 

found in Phase 1 and that the targeting strategy made these reductions smaller by 0.013 kWh. 

This represents a 19 percent reduction, although the difference is not statistically significant at 

1 and 5 percent levels. We also see the most responsive types reduce around 0.102 kWh 

versus 0.035 kWh which also suggests that the ITE estimation replicates the reductions as 

measured by the baseline. 

Columns 3 and 4 of Table E-12 show the effect of targeting on points paid per event. The 

results show on average all participants were paid 6.3 points per event in the control group 

and that the targeting strategy decreased this payout by 3.1 points, a reduction of 49 percent. 

Households designated as most responsive households were paid 8.7 points per event in the 

control group and targeting (offering only 5, 25, and 5 point per kWh incentives) reduced this 

payment by 6.3 points and lowered the payout by 72 percent. 

Conversely, the least responsive households are paid 3.8 points per event and targeting 

(offering only 100 or 300 point per kWh incentives) did not significantly change payouts. 

Table E-12: Effect of Targeting on kWh Reduced and Points Paid per Event 

 Reduction 
from BL 
(kWh) 

Reductions 
from BL 
(kWh) 

Points per 
Event 

(1 pt = $0.01) 

Points per 
Event 

(1 pt = $0.01) 

Difference from -0.013*  -3.06***  

Targeting Strategy (0.008) (0.82) 

Difference for  -0.012  -6.30*** 

Most Responsive (0.013) (1.07) 

Difference for  -0.014***  0.41 

Least Responsive (0.007) (1.23) 

Mean for Non- 0.070*** 6.31*** 
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Targeted Group (0.011)  (0.65)  

Mean for  0.102***  8.67*** 

Most Responsive (0.010) (1.05) 

Mean for  0.035***  3.76*** 

Least Responsive (0.005) (0.72) 

Households 2,725 2,725 2,725 2,725 

N (observations) 73,165 73,165 73,165 73,165 

The results in Table E-12 suggest the cost of payouts can be dramatically reduced by sending 

lower incentives to those designated as most responsive with little effect on the reduction. 

Dividing the points paid by the kWh reduced gives a rough metric on the average cost of the 

events. These suggest the 85 points per kWh cost of the most responsive types can be reduced 

to 26 points per kWh. Further, the least responsive types have a cost of 107 points per kWh. 

While we do not verify that these payments are cashed out, they can be roughly translated to 

dollars as 1 point for $0.01. 

Figure E-46 shows the cost in points per kWh reduced from baseline broken out by month-of 

year. The left panel shows the least responsive households and the right panel the most 

responsive with All Incentives indicating the Control Group and High/Low Incentives indicating 

the Targeted Group. We omit one data point from the plot for scale: the Least Responsive 

targeted (high incentive) group estimate for August 2017 because it indicated a negative cost 

of 148.7 points per kWh. 

The costs for both groups are comparable for the non-targeted group and generally around 

the 96 points per kWh average incentive level. The figure shows consistent reductions in the 

cost for summer months (August and September) and the colder winter months (October-

February). The costs decrease for sending most responsive households lower incentives is 

fairly consistent around 50 points per kWh. The costs do not systematically rise if least 

responsive households are sent higher incentives, but do on average. 

Figure E-46: Effect of Targeting on Cost in Points per kWh by Month-of-Year 
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CHAPTER 5: 
Phase 3 – Incentives vs. Moral Suasion 

Phase 3 explored how households respond to different event messaging. Specifically, we 

address the question: are responses to financial incentives different from responses to 

messages with moral suasion in the form of green/environmental messaging? This section 

describes the research design in further detail and reports the empirical results. It also 

explores how these effects vary by automation status. 

5.1 Research Design and User Experience 
Phase 3 occurred 180 days after enrollment for the Standard and Encouraged users and lasted 

for 90 days, after which the household was transitioned out of the experiment. The 

randomization for Phase 3 was by event so that each time a DR event occurred, households 

had a 25% probability of being in a control group that did not receive an event that hour or 

equal 25% probability of receiving one of three messages. One of the messages was a 100 

point per kWh message identical to the Phase 1 messaging – “Points Only”. The other two 

included messaging that suggested there were potential environmental benefits to reducing 

electricity consumption. Specifically, there was a “Suasion Only” message that included the 

environmental messaging and no potential for a monetary reward in points and a “Price and 

Suasion” that included the messaging and a 100 point per kWh incentive level. 

5.2 Empirical Strategy 
In order to estimate the effect of each message we use a similar difference-in-differences 

strategy to Phase 1. We use pre-enrollment data to control for between household time- 

invariant differences and hour-of-sample fixed effects to control for differences in aggregate 

consumption. We also include the same parametric temperature controls as Phase 1. The 

estimating equation is given by: 

 

where MoralOnly, PointsOnly, and Both are indicator variables that the household received that 

event during that period. We do not include non-event hours since there is no obvious control 

group for comparison. 

5.3 Phase 3 Experimental Results 
This section reports estimates of the causal average effect for each message. Figure E-47 and 

Figure E-48 summarize the results visually in kWh consumed and log(kWh), respectively. The 

leftmost estimates show the effect of suasion and no monetary incentives, the middle estimate 

is the effect of points only consistent with Phase 1 and the rightmost estimates are for the 

combination of points plus suasion. The black circles are estimated from the equation 

described in 5.2 and the blue X’s and orange triangles break that effect out by automated and 

non-automated households. All estimates can be interpreted as causal for the sample cut 
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described, but comparisons between automated and non-automated cannot be causally 

interpreted. 

Figure E-47: Effect of Moral Suasion Versus Points in kWh 

 

Figure E-48: Effect of Moral Suasion Versus Points in log(kWh) (approximately 

percent) 

 

The results show that moral suasion has a smaller impact on consumption than the messages 

with the monetary incentives and this is driven in large part by the non- automated households 

that are making active decisions. Table E-13 reports the estimates for Figure E-47 and Figure 

E-48 along with the p-values on statistical tests that the coefficients are the same. 
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Table E-13: Effect of Moral Suasion vs. Monetary Incentives 

 kWh kWh log(kWh) log(kWh) 

Moral Suasion Only -0.031*** 
(0.011) 

 -0.038*** 
(0.011) 

 

Moral Suasion Only x 

No Automation 

 -0.132*** 

(0.011) 

 -0.030*** 

(0.037) 

Moral Suasion Only x 
Automation 

 -0.117*** 
(0.011) 

 -0.110*** 
(0.011) 

Points Only ($1/kWh) -0.058*** 

(0.011) 

 -0.082*** 

(0.012) 

 

Points Only ($1/kWh) x 
No Automation 

 -0.147*** 
(0.012) 

 -0.071*** 
(0.012) 

Points Only ($1/kWh) x 

Automation 

 -0.124*** 

(0.009) 

 -0.182*** 

(0.038) 

Suasion & Points -0.046*** 
(0.012) 

 -0.071*** 
(0.012) 

 

Suasion & Points x No 
Automation 

 -0.147*** 
(0.012) 

 -0.063*** 
(0.013) 

Both Suasion & Points x 

Automation 

 -0.124*** 

(0.009) 

 -0.230*** 

(0.038) 

p-values on null 
hypothesis: 

Pooled Auto- 
mated 

No 
Auto 

Pooled Auto- 
mated 

No 
Auto 

Moral = Points 0.000 0.302 0.001 0.000 0.011 0.000 

Moral = Both 0.043 0.054 0.201 0.000 0.000 0.010 

Points = Both 0.104 0.343 0.055 0.158 0.073 0.038 

Moral + Points = Both 0.001 0.029 0.008 0.000 0.152 0.000 

Households 3,391 3,391 3,391 3,391 

N (observations) 6,836,711 6,836,711 6,836,711 6,836,711 

The first row Moral = Points tests that the MoralOnly coefficient is equal to the PointsOnly. In 

all models for the pooled estimates or the non-automated households, the Moral Suasion 

estimates are statistically significantly different at the 99 percent level. The results are 

generally consistent with the Moral and Combined as well. The test that Points is the same as 

Combined on the other hand is insignificant for the pooled estimates and less significant for the 

non-automated, although still borderline significant at the 90 and 95 percent significance 

levels. 

Taken together, we suggest these estimates imply moral suasion yields smaller reductions and 

that there is something unique to the monetary incentives. Further, the fact that automated 
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users respond to all messages could be evidence of a default effect in the automation 

technology. 
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CHAPTER 6: 
Machine Learning Models 

6.1 Comparison with Non-Experimental, Individual 
Treatment Effect Estimator 
The methodology presented in the previous section(s) estimates the average treatment effect 

and follows the experimental gold standard to evaluate the causal effect of the Demand 

Response intervention on the temporary reduction in electricity consumption of residential 

households. We now re-estimate this average treatment effect using a non- experimental 

estimator, which does not require a control group. Instead, this estimator is capable of 

estimating individual treatment effects, which enable the design of an adaptive targeting 

scheme (see Chapter 4) to increase the per-dollar-reductions of users. Since this non-

experimental estimator is not intrinsically causal, we benchmark the estimates to the 

experimental estimator to find that the estimates are close to each other. Importantly, this 

finding suggests that we are capable of estimating unbiased treatment effects on a more 

granular level compared to the standard, average treatment effects estimator. 

6.2 Non-Experimental Treatment Effect Estimation 
To estimate the effect of the DR intervention program, we adopt the potential outcomes 

framework introduced by Rubin (1974). Let 𝐼 = {1, … , 𝑛} denote the set of users. The indicator 
𝐷@A ∈ {0, 1} encodes the fact whether or not user 𝑖 received DR treatment at time 𝑡. Each user 

is equipped with a consumption time series 𝑦@ = {𝑦@t, … , 𝑦@u } and associated covariates 𝑋@ = {𝑥@t, 

… , 𝑥@u }, where time is indexed by 𝑡 ∈ 𝑇 = {1, … , 𝜏}. Let 𝑦x and 𝑦t denote @A @A user 𝑖 ’s 
electricity consumption at time 𝑡 for 𝐷@A = 0 and 𝐷@A = 1, respectively. Let 𝐶@ and 𝑇@ denote the set 

of control and treatment times for user 𝑖. 

The number of treatment hours is much smaller than the number of non-treatment hours. 

 

Since users were put into different experimental groups in a randomized fashion (see Chapter 

3.2), the ATT and the average treatment effect (ATE) are identical. 
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The fundamental problem of causal inference refers to the fact that either the treatment or the 

control outcome can be observed, but never both (provided there are no missing 

observations). That is, 

𝑦@A = 𝑦x + 𝐷@A ⋅ (𝑦t − 𝑦x). 

@A @A @A 

Thus, the ITE is not identified, because one and only one of both potential outcomes is 

observed, namely {𝑦t | 𝑡 ∈ 𝑇@ } for the treatment times and {𝑦x | 𝑡 ∈ 𝐶@} for the control times. 

@A @A 

It therefore becomes necessary to estimate counterfactuals. 

Consider the following model for the estimation of such counterfactuals: 

𝑦@A = 𝑓@(𝑥@A ) + 𝐷@A ⋅ 𝛽@A (𝑥@A ) + 𝜀@A , 

where 𝜀 denotes noise uncorrelated with covariates and treatment assignment. 𝑓@ (⋅) ∶ ℝFû ↦ ℝ is 

the conditional mean function and pertains to 𝐷@A = 0. To obtain an estimate for 𝑓@(⋅), denoted 

with 𝑓ä
@(⋅), control outcomes {𝑦x | 𝑡 ∈ 𝐶@} are first regressed on {𝑥@A | 𝑡 ∈ 

𝐶@}, namely their observable covariates. In a second step, the counterfactual 𝑦x for any 𝑡 ∈ 

𝑇@ can be estimated by evaluating 𝑓ä
@(⋅) on its associated covariate vector 𝑥@A . Finally, subtracting 

𝑦x from 𝑦t isolates the one-sample estimate 𝛽@A (𝑥@A ), from which the user-specific ITE can be 

estimated.  

Figure E-49 illustrates this process of estimating the reduction during a DR event by 

subtracting the actual consumption 𝑦t from the predicted counterfactual 𝑦ãx = 𝑓ä
@(𝑥@A ). Despite the 

fact that consumption can be predicted for horizons longer than a single hour, we restrict our 

estimators 𝑓@(⋅) to a single hour prediction horizon as DR events are at most one hour long. 

Figure E-49: Estimation of the Counterfactual y0/it using Treatment Covariates 𝒙𝒊𝒕. 

 

To estimate the conditional mean function 𝑓@ (⋅), we use the following classical regression 

methods [Hastie et al. 2009], referred to as estimators: 

• (E1): Ordinary Least Squares Regression (OLS) 
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• (E2): L1 Regularized (LASSO) Linear Regression (L1) 

• (E3): L2 Regularized (Ridge) Linear Regression (L2) 

• (E4): k-Nearest Neighbors Regression (KNN) 

• (E5): Decision Tree Regression (DT) 

• (E6): Random Forest Regression (RF) 

DT (E5) and RF (E6) follow the procedure of Classification and Regression Trees [Breiman et 

al. 1984]. We compare estimators (E1)-(E6) to the CAISO 10-in-10 Baseline (BL) [CAISO 

2014], which, for any given hour on a weekday, is calculated as the mean of the hourly 

consumptions on the 10 most recent business days during the selected hour. For weekend days 

and holidays, the mean of the 4 most recent observations is calculated. This BL is further 

adjusted with a Load Point Adjustment, which corrects the BL by a factor proportional to the 

consumption three hours prior to a DR event [CAISO 2014]. 

Since users tend to exhibit a temporary increase in consumption in the hours following the DR 

intervention [Palensky and Dietrich 2011], we remove 8 hourly observations following each DR 

event in order to prevent estimators (E1)-(E6) from learning from such spillover effects. This 

process is illustrated in Figure E-50. 

Figure E-50: Separation of Consumption Time Series into training set (green), DR 
Events (grey), and Spillover Periods (blue) 

 

Hence the training data used to estimate the conditional mean function 𝑓@(⋅) consists of all 

observations leading up to a DR event, excluding those that are within 8 hours of any DR 

event. To estimate user i’s counterfactual outcome 𝑦ãx during a DR event, we use the following 

covariates: 

• 5 hourly consumption values preceding time t 

• Air temperature at time t and 4 preceding measurements 

• Hour of the day, an indicator variable for business days, and month of the year as 

categorical variables 

Thus, the covariate vector writes 
𝑥@A = [𝑦x

ít ⋯ 𝑦x
íî 𝑇@A ⋯ 𝑇@A íï 𝐶(𝐻𝑜𝐷@A ) ∶ 𝐶(𝑖𝑠𝐵𝑑𝑎𝑦@A) 𝐶(𝑀𝑜𝑌)], 

@A @A 

where 𝑇@A denotes temperature, 𝐻𝑜𝐷@A hour of day, 𝑖𝑠𝐵𝑑𝑎𝑦@A an indicator for business days, and 

𝑀𝑜𝑌@A the month of year for user i at time t. “C” denotes categorical variables and “:” their 

interaction. 
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6.3 Simulation of Non-Experimental Estimators on Semi-Synthetic 
Data  
To reduce the propagation of model bias into the estimation of treatment effects, we 

empirically de-bias estimators by subtracting the empirical bias, which is the difference in 

means between the observed control outcomes and their predictions, from all estimated 

counterfactuals: 

 

Although this operation leads to an increase of variance of counterfactual estimates, the 

reasoning behind this operation is that an unbiased estimator provides a fair economic 

settlement for DR reductions. If the estimator were biased in favor of the consumer, then the 

user, in expectation, would receive an additional payment proportional to the bias each time a 

DR event is called despite not having actually reduced his consumption by the amount of bias. 

Likewise, an estimator biased in favor of the utility results in the opposite effect. 

Figure E-51 shows the distribution of one-sample prediction errors on the placebo treatment 

set for a selected subset of estimators. RF outperforms all other estimators as it is centered 

most sharply around zero, thus having the smallest sample standard deviation. The 

performance of L1, L2, and OLS is similar, indicating that the training data is of suffcient length 

such that overfitting is not a concern. The performance of KNN lies between L1/L2/OLS and 

BL. The CAISO BL performs worst. The sample bias and standard deviation of estimated 

residuals are provided in Table E-14. As the estimators have been calibrated with the de-

biasing operation, the one-sample estimation errors (whose mean is the bias) for all estimators 

varies insignificantly around zero. 

Figure E-51: Distribution of One-Sample Absolute Prediction Errors on Placebo 

Events 

 

Table E-14 also provides the median of the set of Mean Absolute Percentage Errors (MAPE) 

across all users, for all estimators. The MAPE for a given user i is defined as follows: 

 

Table E-14: Sample Standard Deviations of ATT Estimates 

Estimation 

Method 

Bias Standard 
Deviation 

Median 
MAPE 
[%] 

RF 0.00280 0.34460 30.779 

OLS 0.00157 0.35981 35.088 
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L1 0.00184 0.35969 34.945 

L2 0.00153 0.35977 35.079 

DT -8.26e-05 0.40386 35.461 

KNN -0.00129 0.41011 41.341 

BL 0.00684 0.49550 50.496 

where 𝑉@ ⊂ 𝐶@ is a subset of the set of training times used for validation of the estimators during 

the training step. Using standard k-fold cross validation on the training data set 𝐷@,Af (i.e. we 

chose k = 10), 𝑉@ can be interpreted as the set of time indices in the holdout set of any given 

fold. Figure E-52 compares the MAPEs weighted across users, where users with more 

observations are given a larger weight. 

Figure E-52: Distribution of weighted MAPEs across Training Data for Different 
Estimators 

 

Figure E-53 shows the distribution of MAPEs across the user population for each of the 

estimators, which again illustrates the inferiority of the CAISO BL compared to RF, which is the 

estimator with the lowest MAPE. 

Figure E-53: Distribution of MAPEs Across User Population for Various Estimators 
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We now generate synthetic treatments to evaluate how closely various estimators can 
replicate a known, synthetic treatment effect. The synthetic treatment set 𝐷@,cûF is used as a set 

of ground truth counterfactuals {𝑦x | 𝑡 ∈ 𝐷@,cûF} for which treatment outcomes 

{𝑦t | 𝑡 ∈ 𝐷@,cûF} are synthetically generated. We assume a constant ITE, namely −1 ≤ 𝛽t = 

… = 𝛽† =: 𝛽 ≤ 0, across all synthetic times and the covariate space for each user 𝑖, as a 

percentage of user 𝑖’s mean counterfactual consumption. The one-sample reductions are 

varied around the mean reduction through Gaussian noise with an appropriately chosen 

standard deviation: 

Since 𝛽 is random in 𝜎ß, the realized ITE 𝛽 is distributed according to 𝛽 

which follows from the above equations and noting that {𝑦@A }, 𝑡 ∈ 𝑆@ are independent random 

variables. Using this semi-synthetic treatment data, one can evaluate the ability of the 
estimators to recover the generated ITE 𝛽𝜇@ (non-normalized) and 𝛽 (normalized). The sample 

variance of the ITE estimation errors will again serve as a measure for the predictive power of 

an estimator, similar to the estimation error of placebo treatments. 

Figure E-54 shows the distribution of estimated normalized ITEs {𝛽ä
@}, 𝑖 ∈ 𝐼 generated in the 

above equations across all users, for selected estimators, and for two different ground truth 
ITEs 𝛽@ ∈ {−0.01, −0.15}. Each ITE draw is obtained from a randomly drawn subset 𝑀@ ⊂ 𝑆@, 

where we chose |𝑀@|= 25. 
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Figure E-54: Comparison of Synthetic ITEs and their Estimations for Various 
Estimators 

 

Random Forest outperforms estimators (E1) – (E5) and the CAISO BL, as the histograms 

around the sample mean become wider as we move to the more inaccurate methods towards 

the bottom of the figure. 

Given a ground truth ATT 𝛽, an atomic ATT estimate is obtained by taking the mean of the 

estimated ITEs (Figure 6.3.4) across all users. Repeating this process M times for each 
estimator on a newly randomly drawn subset 𝑀@ ⊂ 𝑆@ for each iteration yields a distribution of 

ATT estimates. The ensuing sample standard deviations for |𝑀@ | = 25, M = 1000, and different 

ground truth ATTs 𝛽 ∈ {−0.01, −0.05, −0.10, −0.15} are shown in Table. For 𝛽 ∈ {−0.05, −0.10}, 

Figure E-55 shows a histogram of the ATTs for each iteration as well as the empirical mean 

across all iterations. As in Figure 6.234, it can be seen that the sample variance increases as we 

move towards more inaccurate estimators at the bottom panels. 
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Figure E-55: Comparison of Synthetic ATTs and their Estimations for Various 
Estimators 

 

Lastly, Figure E-56 shows a Quantile-Quantile-Plot for the distribution of the residuals 

estimated with Random Forest. We expect the residuals to be approximately normally 

distributed, as this is a crucial assumption to justify linear regression using the mean squared 

error as the loss function. It appears that the residuals are indeed approximately normally 

distributed around zero, but show a heavy-tailed property for larger deviations. This is 

sufficient evidence to utilize linear regression for the estimation of counterfactuals. 
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Figure E-56: Comparison of Synthetic ITEs and their Estimations for Various 
Estimators 

 

6.4 Non-Experimental Estimation Results 
Having validated non-experimental estimators (E1)-(E6) on placebo and semisynthetic data in 

the previous subsection, we can finally report estimates of the average treatment effect. Figure 

E-57 shows ATE point estimates and their 99% bootstrapped confidence intervals conditional 

on differing reward levels for all estimators as well as the CAISO BL. Due to the empirical de-

biasing procedure (see previous subsection), the point estimates for estimators (E1)-(E6) are 

close to each other. BL appears to be biased in favor of the users, as it systematically predicts 

larger reductions than (E1)-(E6). 

Figure E-57: Comparison of Synthetic ITEs and their Estimations for Various 
Estimators 

 

The ATE averaged over the predictions of estimators (E1)-(E6) is -0.105 kWh / 11.5%. The 

intercept and the slope of the demand curve are -0.099 kWh / -0.013 kWh/USD, suggesting that 

users reduce an additional 0.013 kWh per dollar offered, which is only a small change. Due to 

the idiosyncratic nature of the CATE for r = 0.5 USD/kWh, the slope and the intercept have to 

be interpreted with caution. However, the results give rise to a notable correlation between 

incentive levels and reductions. 
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To compare the prediction accuracy of the estimators, Table E-15 reports the width of the 

confidence intervals for each method and incentive level. The inferiority of the CAISO baseline 

compared to the non-experimental estimators, among which RF achieves the tightest 

confidence intervals, becomes apparent. Therefore, in the remainder of this paper, we restrict 

all results achieved with non-experimental estimators to those obtained with RF. 

Table E-15: Width of CATE Confidence Intervals (kWh) by Incentive Level 

Estimation 
Method 

0.05 

USD/kWh 

0.25 

USD/kWh 

0.5 

USD/kWh 

1.0 

USD/kWh 

3.0 

USD/kWh 

RF 0.0211 0.0210 0.0212 0.0211 0.0205 

OLS 0.0214 0.0217 0.0230 0.0219 0.0219 

L1 0.0217 0.0211 0.0233 0.0219 0.0219 

L2 0.0221 0.0214 0.0214 0.0219 0.0218 

DT 0.0255 0.0251 0.0247 0.0241 0.0250 

KNN 0.0218 0.0219 0.0235 0.0227 0.0214 

BL 0.0277 0.0273 0.0269 0.0289 0.0266 

Figure E-58 plots ITEs for a randomly selected subset of 800 users who received at least 10 

DR events in Phase 1, estimated with RF. Users are sorted by their point estimates (blue), 

whose 95% bootstrapped confidence intervals are drawn in black. Yellow lines represent users 

with at least one active smart home automation device. By marginalizing the point estimates 

over all users with at least 10 events, we obtain an ATE of -0.104 kWh (-11.4%), which is close 

to -0.105 kWh as reported earlier. The difference ensues from only considering users with at 

least 10 DR events. The 99% ATE confidence interval is [-0.115, -0.093] kWh. 
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Figure E-58: Estimated Individual Treatment Effects of 800 Randomly Selected 
Users with at least 10 Demand Response Events in Phase 1, Estimated with 

Random Forest (RF) 

 

Table E-16 reports estimated ATEs for users with or without active smart home automation 

devices, which are obtained by aggregating the relevant estimated ITEs from Figure E-58. We 

notice larger responses as well as a larger percentage of estimated reducers among 

automated users. 

Table E-16: ATEs Conditional on Automation Status for Users with at least 10 DR 
Events 

 Number of 
Users 

Percentage of 
Reducers 

ATE 

(kWh) 

ATE 

(%) 

Automated 

Users 

451 79.2 -0.279 -36.7 

Non-Automated 4491 63.6 -0.087 -9.62 

All Users 4942 65.0 -0.105 -11.5 
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Next, Table E-17 reports the percentage of significant reducers for different confidence levels, 

obtained with the permutation test under the null hypothesis of no treatment effect. The 

results are obtained by using a permutation test. From Tables E-16 and E-17, it becomes clear 

that automated users show larger reductions than non-automated ones, which agrees with 

expectations. 

Table E-17: Fraction of Significant Reducers among Sample of Size 4942 

 𝟏 − 𝜶 = 𝟎. 

𝟗𝟎 

𝟏 − 𝜶 = 𝟎. 

𝟗𝟓 

𝟏 − 𝜶 = 𝟎. 

𝟗𝟗 

# Automated 225 205 159 

% of Total 49.9 45.5 35.3 

# Non-

Automated 

138

2 

1162 829 

% of Total 30.8 25.9 18.5 

# All 160

7 

1367 988 

% of Total 32.5 27.7 20.0 

Larger reductions are estimated in warm summer months. To test the hypothesis whether or 

not there exists such a correlation, Figure E-59 scatter plots estimated ITEs as a function of 

the average ambient air temperature observed during the relevant DR events. This gives rise 

to a noticeable positive correlation of ambient air temperature and the magnitude of 

reductions. Indeed, a subsequent hypothesis test with the null being a zero slope is rejected 

with a p-value of less than 1e-9. 

Figure E-59: Correlation between Average Ambient Air Temperature and ITEs 

 

To support the results of Figure E-59, Figure E-60 color codes the CATT by geographic 

location. Each dot represents the average CATT among users for a particular ZIP code. The 

largest CATTs are found in the inland areas of California, which are considerably warmer than 

the coastal areas (in particular in the summer months). 
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Figure E-60: Conditional Average Treatment Effect by Geographic Location 

 

6.5 Comparison of Estimation Methods 
We now benchmark the results obtained from the best estimator (RF) to those from the fixed 

effects model described earlier. Figure E-61 compares the point CATEs by reward levels and 

their 95% confidence intervals. We notice that the point estimates are close to each other (-

0.101 kWh) aggregated for fixed effects vs. -0.105 kWh for non-experimental estimate with 

RF, a difference smaller than 5%, a finding that suggests that our non- experimental 

estimation technique produces reliable estimates comparable to the experimental gold 

standard. The fact that the confidence intervals are notably tighter for RF corroborates this 

notion. As we have compared the prediction accuracy of various non- experimental estimators 

in Chapter 6.2, we can rule out the possibility of systematic underestimation of the variance in 

the experimental setting. 

Lastly, Figure E-62 breaks out the estimates by month of the year. The point estimates are 

again close to each other, and it is visually striking that the width of the confidence intervals is 

noticeably smaller in the non-experimental setting. 

  



 
E-62  

Figure E-61: Estimated CATEs by Incentive Level with 95% Confidence Intervals 

 

Figure E-62: Estimated CATEs by Month of the Year with 95% Confidence Intervals 

 

Figure E-63: Estimated CATEs by Automation Status 
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CHAPTER 7: 
Survey 

7.1 Survey Design and Questions 
A web-based voluntary survey was offered to participants at the beginning of Phase 3 for 

Standard and Encouraged participants and two weeks after receiving their first #OhmHour for 

the Control Group. The survey was offered through an email with the following language: 

Subject: Tell us what you think and Earn $5 Plus a Change to Win $11 More 

Body: We're conducting a survey and we'd like your feedback. You'll get 500 points ($5) 

guaranteed when you complete this survey and you could earn an additional 1,100 

points ($11) depending on your answers. The survey should take 5-10 minutes of 

your time. 

<Button with text “Get Started"> 

Figure E-64 shows a sample of how the web-based interface appeared. It was designed to look 

consistent with the OhmConnect product at the time of the experiment so that there would be 

less attrition. Each page shows a set of questions with conditional follow-ups. 

Figure E-64: Example of web-based survey appearance 

 

The complete list of Survey questions is provided in the following pages. Each “Page” refers to 

a separate web page. [IF YES] denotes a conditional follow-up question. Boxes indicate 

clickable answers and each page has a completion condition stated. 

In total 672 households responded to the Survey. 
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7.2 Survey Sample Summary Statistics 
Table E-18 shows summary statistics for the sample that completed the Survey and the full 

sample used in the Phase 1 analysis. In general, the demographic variables of the ZIP codes 

for the survey participants are not significantly different. However, it is apparent from the key 

outcome variables and temperature controls, that the respondents tended to consume less 

during the 90 days prior to enrollment and came from cooler areas with significantly more 

heating degree hours and significantly fewer cooling degree hours. Thus, it is likely that the 

responses are not representative of the sample more broadly. 
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Table E-18: Survey Respondent vs. No Response Summary Statistics 

 

7.3 Survey Results 
Pages 1-4 of the Survey ask about ownership of automatable technologies and whether the 

household has connected their technologies to OC’s service. Figure E-65, Figure E-66, and 

Figure E-67 show the results for Smart Thermostats, Plugs, and Electric Vehicles, respectively. 

They break out take-up by the Encouraged and Non-Encouraged (Standard) Groups to show 

how ownership changed as a result of the rebate offer. In general, the Ownership rate was 
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double to three times the rate of automation, indicating 10-15 percent of households who could 

be connected without purchasing. As a benchmark we include Electric Vehicles which also 

show an ownership gap, but do not show the effect of the Encouragement rebate as one 

would expect. Page 4 asked about home systems, but no Survey respondents answered yes to 

this question. 

Figure E-65: Smart Thermostat Ownership and Automation 

 

Figure E-66: Smart Plug Ownership and Automation 

 

Figure E-67: Electric Vehicle Ownership and Automation 
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Page 3 also asked what individuals plugged into their smart plugs. Figure E-68 plots the results 

for households that owned Smart plugs. 

Figure E-68: Devices Linked to Smart Plugs 

 

Page 5 asked about the fraction of respondents with various load sources. Figure E-69 reports 

the results of the question, showing the fraction of respondents answering yes to each load 

source. 

Figure E-69: Types of Load Sources 
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Page 6 asks respondents to rank the top way they reduce during DR events. The fraction is 

displayed as a pie chart in Figure E-70. The majority respond with heating and cooling which 

further validates the interpretation of the effect heterogeneity documented in Chapter 3.4 with 

temperature. 

Figure E-70: Top Ranked Load Source for Reducing 

 

Pages 7 asked respondents to score on a scale of 1 (Never) to 5 (Always) how often in the last 

7 days they recall reducing in non-automated ways. Figure E-71 plots the results by answer. 

The average was 3.6 with a standard error of 0.037, indicating the average consumer reduced 

in non-automated ways more than half the time. This is again consistent with the rates of 

automation take-up. 
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Figure E-71: Score How Often You Reduce in Non-Automated Ways 

 

Pages 8 asked respondents to score on a scale of 1 (Never) to 5 (Always) how often in the last 

7 days they recall DR events serving as reminders to turn off appliances they accidentally left 

on. Figure E-72 plots the results by answer. The average was 3.3 with a standard error of 

0.045, indicating the average consumer was reminded to turn things off more than half the 

time. This suggests that much of the survey respondents are not being perfectly attentive in 

their electricity consumption. 

Figure E-72: Score How Often DR Events Serve as Reminders to Turn Off Accidental 
Consumption 
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Pages 9-11 quizzed respondents on various aspects of the general and their personal 

experience with the product. Page 9 asked how much a point was worth. 69.2% answered 

correctly and 19.7% said they did not know. Figure E-73 plots the results. 

Figure E-73: Correct Valuation of Point to Dollar Conversion 

 

Page 10 asked what incentive level the household had last received. Only 18.9% got this 

answer correctly and 81.3% answered incorrectly. 

Page 11 asked how many days ago they had received their last #OhmHour. 31.5% of 

respondents answered correctly and 68.5% did not. 

Page 12 asked households how many points they made in the last month. Actual points were 

strongly correlated with respondent’s answers (r = 0.56), but generally did a poor job 

explaining the true variation (R-squared = 0.335). 

Page 13 asked households how many points they expected to make in the next month. Actual 

points were very uncorrelated with respondent’s answers (r = 0.05), and did an extremely 

poor job explaining the true variation (R-squared = 0.010). 

Page 14 asked the top reason for respondents joining among a set of pre-specified choices. 

Figure E-74 plots the results. Financial Gain is the dominant choice with over 61% of 

respondents choosing it as the top reason. The second highest is environmental motivations, 

coming in at 22.36%. 
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Figure E-74: Top Reason for Joining OhmConnect 
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CHAPTER 8: 
Economic Valuation 

This section attempts to put an economic value on the DR events studied in this project. We 

look at the effect of different incentive levels sent during Phase 1 and quantify the kWh 

reduced by points paid for the sample and for groups of automated and non- automated 

users. We also examine what the energy return is to the automation technologies deployed by 

the rebates. 

These valuations reflect assumptions made based on the best information available to the 

authors of this report. The manner in which DR events were called for the grant may differ from 

how they would be called by OC in the future or when not required by the grant to call 

messages in a specific fashion. Further, we evaluate the wholesale market value from the 

energy markets and do not include any value provided by capacity contracts. We also do not 

have solid information on the cost to OC of calling DR events. Thus, the numbers here are 

incomplete and should be interpreted as such. 

8.1 Value of Events to Household 
First we calculate the private value of Phase 1 events to the participant. The value to the 

household can be broken down into the points paid for reductions and the avoided retail 

electricity costs. Since we find little evidence of spillover reductions or increases in non- event 

periods, we only consider the value during event periods. We assume an average price of 

electricity of $0.16/kWh because we could not identify participant’s billing data. For high users, 

this may be an underestimate and for low users this may be an underestimate due to the 

tiered rate structures many customers are likely to be on. Still this provides a rough 

approximation of the dollar value the customer saved. 

Table E-18 reports the dollar savings for different segments of the experimental sample and 

different scenarios. Column 1 reports the average dollar savings for a household over the 90 

days of Phase 1 DR events which randomized the price levels, giving an average incentive level 

of $0.96/kWh. Thus, the first number is the average kWh reduction of 0.120 as reported in 

Table 3.4.1 multiplied by $0.96/kWh plus $0.16kWh and then multiplied by 25 because that 

was the average number of messages sent during the period. 

Columns 2 and 3 of Table E-18 calculate the average savings for a household who experienced 

two hypothetical experiments where they were exposed to incentives that reflected wholesale 

market price variation 100 times within a year. In column 2 we consider incentives reflective of 

average prices and in column 3 we consider incentives reflective of the highest prices as an 

upper bound to the savings if events were called during these periods. The California 

Independent System Operator (CAISO) that operates the wholesale market makes clearing 

prices in the Day-Ahead Market (DAM) and Real- Time Market (RTM) available to the public. 

We scraped information on DAM and RTM prices from CAISO’s website for the three major 

Demand Load Aggregation Point nodes for the hour of DR events, the mean price per month, 

as well as the top 10 highest priced hours for each month. We average across these values as 

they are generally fairly consistent. We use the DAM prices in column 2 of Table 8.1.1 which 

gives an average of $0.03/kWh, but the numbers are similar for the RTM prices. We use RTM 
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prices for the upper bound because they have higher peaks and the annual average is 

$0.34/kWh. 

Lastly, recall that OC shared 80% of its revenue from its wholesale market operations with the 

customer and retained 20% for its business operations. Thus, we multiply these prices by 0.8 to 

get the savings for the customer and assume the responsiveness of customers is generally the 

same regardless of the incentive level shown. 

Column 4 reports the number of households in the sample to provide a sense of the scale of 

savings for the experimental sample. For example, the aggregate savings for Phase 1 totaled 

$14,945 for the 4,448 households enrolled in the program and the maximum value of an 

experiment that targeted the hours with the highest wholesale market prices would have saved 

$21,350. 

Table E-19 Savings for Phase 1 and Hypothetical Programs 

 Experimental 
Events 

(90 days) 

Average 

Wholesale 

(Annual) 

Maximum 

Wholesale 

(Annual) 

Number 
of 

Households 

Full Sample $3.36 $1.82 $4.80 4,448 

Non-Automated $1.96 $1.06 $2.80 4,108 

Automated $7.28 $3.95 $10.40 340 

Auto Adopters $17.84 $9.68 $25.48 96 

1st Quartile (lowest) (0kWh 
– 0.34kWh) 

$2.66 $1.44 $3.80 1,132 

2nd Quartile 

(0.34kWh – 0.56kWh) 

$2.94 $1.60 $4.20 1,119 

3rd Quartile 

(0.56kWh – 0.90kWh) 

$3.36 $1.82 $4.80 1,103 

4th Quartile (highest) 

(0.90kWh – 5.96kWh) 

$6.13 $3.33 $8.76 1,094 

Row 1 of Table E-19 reports the average savings across all households in the sample who were 

not assigned to the control group. Rows 2-8 report breakouts by various subsamples using the 

treatment effect estimates for each respective segment. Rows 2-3 report the averages for non-

automated and automated households using the non-causal decomposition of Phase 1 event 

responses. Row 4 reports the averages based on the causal effect of adopting automation as 

estimated by the encouragement design. Rows 5- 8 report the estimates by consumption 

quartile. 

Generally, the calculations show that savings are reasonable for Phase 1 of the experiment, but 

these incentive levels represent higher than average prices. The two hypothetical programs 

show more modest annual savings for the frequency of events called. Automated households 

do save more, and adopting automation provides substantial savings, even with the lower 

assumed wholesale prices. Also the largest savings accrue to the largest consumers with the 
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top quartile representing a significant portion of the savings due to the right skewed nature of 

the electricity consumption. 

8.2 Value of Events to Wholesale Energy Market 
To calculate the complete social value of the events, we require more information than was 

available at the time of this report. We provide the formula here to underscore the distinction 

between what we calculate and the complete social value measure. The complete social value 

measure would be: 

𝑆𝑜𝑐𝑖𝑎𝑙 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑘𝑊ℎ = 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟 𝑉𝑎𝑙𝑢𝑒 − 𝐶𝑜𝑠𝑡 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 

where 

𝐶𝑜𝑠𝑡 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 + 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑉𝑎𝑙𝑢𝑒 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑖𝑡𝑦 − 𝐷𝑅𝑃 𝐶𝑜𝑠𝑡 

The externality component is the marginal cost of the electricity generation. This component is 

the unpriced costs of generating electricity that comes from burning fossil fuels which cause 

air pollution. We use an estimate of the marginal externality cost of electricity from Holland, 

Mansur, Muller, and Yates (2016), a peer-reviewed academic article. Holland et al (2016) report 

the damages caused by electric vehicles on the emission of five air pollutants for the California 

Independent System Operator (CAISO), taking into account a variety of detailed factors driving 

electricity generation. We convert the numbers in Table 1 to kWh using 0.32kWh/mi, the 

electricity to mile conversion for the car described. The numbers vary for hours 9AM-12PM 

from $20/MWh to $26/MWh with an average of $24/MWh. We use the latter number which 

represents an avoided externality cost of $0.024/kWh. While this does not count for hour to 

hour variation within the year, it provides an approximation of these additional benefits. 

The DRP Cost of a kWh is also not observed by the researcher, but was communicated in 

conversation to be about $3 per customer per quarter for OC, coming out to a cost of 

approximately $0.10 per household event. Thus, it does not scale with the kWh so there is a 

slight abuse of notation in the Cost Reduction metric above. We reconcile this in our actual 

calculations below. It was noted by OC that this cost was for the experimental DR events and 

may not be reflective of the company’s costs more broadly. 

The cost to the utility is comprised of the energy cost and the marginal cost of transmission 

and distribution. The latter is likely to be small for the kWh quantity of the DR studied here, 

but for larger customer populations and during critical grid events it may be more substantial. 

Quantifying these costs is beyond the scope of this evaluation so we leave them open to 

assumption by the reader. 

This leaves the cost of energy which can be roughly categorized as procurement and capacity 

costs. Despite there being a market for backstop capacity in CAISO, capacity costs are difficult 

to quantify due to the degree to which much of it is also functionally procured via bilateral 

energy contracts. Instead, we focus on the procurement costs which can be more readily 

quantified with same data from CAISO’s wholesale energy market that was used in Chapter 

8.1. Importantly, these prices do not represent the capacity value of the overall electricity 

procurement cost and these prices may be lower than they would otherwise be without the 

separate procurement of capacity. Another point worth noting is that the DR events called 

were timed to be biddable into the RTM, but it is unclear the degree to which OC participated 

in this market. 
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We quantify the value of procurement costs avoided as follows: 

𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 = 𝑊ℎ𝑜𝑙𝑒𝑠𝑎𝑙𝑒 𝑃𝑟𝑖𝑐𝑒 − 𝑃𝑜𝑖𝑛𝑡 𝑃𝑎𝑦𝑜𝑢𝑡 

Note that this is not the wholesale price OC received and the point dollar value does not 

capture the fact that some participants may not cash out their points. It also does not capture 

any additional rewards OC gives the user. Lastly, for the top 10 price hours we must assume 

the event responses are the same, which may not be the case. With these caveats, it does 

represent the approximate dollar value and an upper bound for the marginal unit of electricity 

avoided by calling these DR events. To summarize, the value we report here is the dollars 

provided in terms of procurement value and externality cost avoided: 

𝑅𝑒𝑝𝑜𝑟𝑡 𝑉𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝐸𝑣𝑒𝑛𝑡 = 𝑘𝑊ℎ 𝑅𝑒𝑑𝑢𝑐𝑒𝑑 ∗ (𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 + 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝑖𝑡𝑦) 

We multiply this by the number of events within the time period considered. The reader should 

note that this value omits many of the other costs mentioned above and does not consider the 

long-run impacts of reducing demand which would cause the need for less generation. 

Table E-20 summarizes the short-run dollar value per household of a set of 5 point per kWh 

DR events. We assume a frequency of 100 per year because this was the approximate 

frequency with which events were called during the experiment and we use our estimates in 

Chapter 3 for the kWh reduction per household. We average over geographic areas which may 

misrepresent the specific nodal pricing, but provides an approximate value based on the 

broader market picture. We use DAM and RTM during events and then use the top 10 RTM 

prices to provide the upper bound. 

Columns 1-3 show the price variation we consider. Generally, prices during events were fairly 

close to the mean price in the market over the entire sample. These number as considerably 

smaller than the highest prices from the RTM which can reach $300- 500/MWh or $0.30-

$0.50/kWh. The first number in row 1 of column 4 indicates the DAM value of energy 

procurement and externality reduction of about 33 summer events comes out to $0.12 per 

household. This was calculated as 33*(0.18997)*(0.04418+0.024-0.05) = 0.12. The numbers 

in column 5 perform a similar calculation with the actual RTM price. The numbers in column 6 

show the value if the highest prices are used. The treatment effect for kWh reductions is 

smaller for non-summer events so the dollar value for these 67 events is lower despite sending 

more events. The final row sums these two numbers, giving an average value of 100 DR 

events per household to be $0.13-$0.17 with a hypothetical upper bound of $3.96. This 

highlights the importance of targeting the highest value hours to achieving the greatest 

impact. Lastly, the value calculated scales proportionately with responsiveness so for the 

largest consumers who respond nearly twice as much as the average, the value approximately 

doubles. Thus, targeting larger consumers and responders will likely increase the average 

value of the program. 
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Table E-20: Short-Run Value of 5 point per kWh Messages per Household 

 Avg. Wholesale 
Event Price 

Maximum 
Wholesale 

Value 

from 

DAM 

Value 

from 

RTM 

Upper 

Bound on 

Value DAM 

$/MWh 

RTM 

$/MWh 

RTM 

$/MWh 

Summer 

~33 events 
$44.18 $39.06 $405.09 $0.12 $0.08 $2.40 

Non-Summer 

~67 events 
$36.56 $33.17 $345.51 $0.05 $0.05 $1.56 

All Hours 

~100 events 
$39.10 $35.13 $365.37 $0.17 $0.13 $3.96 

We do not calculate the value for 25, 50, 100, or 300 point per kWh messages. All of these 

calculations yield negative values because the procurement cost is generally below these 

reward levels. This highlights the impracticality of sending messages with higher incentive 

levels in the CAISO region, but may be different in other markets with higher wholesale prices. 

8.3 Automation Adoption Payback Periods 
As a final exercise, we calculate the payback periods to the private consumer of adopting and 

the optimal rebate based on our social value calculations in 8.2. This provides information on 

how much savings are garnered to the consumer privately and what rebate would equal the 

social value of households adopting automation. 

Table E-21 reports the numbers for private payback periods assuming the full cost of 2 Smart 

plugs is $80 and the Smart Thermostat is $198. Other more expensive thermostats were also 

available, and the payback periods will be longer for those models. We consider the two 100 

events per year hypothetical experiments with average wholesale prices from the DAM during 

actual events and the highest 10 prices per month from the RTM to calculate savings to the 

household and assume that electricity prices remain constant going forward. Increases to 

electricity prices will reduce the payback periods as savings are more valuable. We assume a 

6% discount rate and use the estimates on the kWh effect of adopting automation from 

Chapter 3. While these pool the effect of thermostats and the effect of plugs, we cannot 

disentangle the two. Thus, these numbers may not be perfectly representative of the 

technology. Lastly, the estimates only consider energy savings and do not count any additional 

comfort or utility the household gets from the new technology. 

Our calculations in Table E-21 indicate that a customer paying a full cost of $80 and facing 

prices consistent with when the DR events in the experiment were called will garner discounted 

savings equal to the upfront cost in 12.3 years. If events are targeted during the highest price 

periods, the payback period is cut down to 3.6 years, a 71% reduction. Thermostats are much 

more expensive and for the actual wholesale prices, there is no positive payback period 

because discounted future savings are less than $198. Conversely, for the highest price 

periods, the payback would be around 11.2 years, which is generally within the lifespan of a 

thermostat. The final row considers a program that calls 50% more events to show how these 

additional savings would decrease payback periods assuming the responses were the same. 
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Table E-21 Payback Periods for Adopting Automation at Full Cost 

 2 Smart 
Plugs 
Actual 
Prices 

2 Smart 
Plugs 
Upper 
Bound 

Smart 
Thermostat 

Actual 
Prices 

Smart 

Thermostat 

Upper 

Bound 

Up-Front Cost $80 $80 $198 $198 

Wholesale Prices Actual DAM Highest RTM Actual DAM Highest RTM 

Payback Period 
for 100 events 

12.3 years 3.6 years None 11.2 years 

Payback Period 
for 150 events 7.1 years 2.3 years 33.9 years 6.5 years 

Lastly, we consider the discounted social value of the plugs using the same hypothetical 

experiments and assuming a lifespan for the devices. This provides some idea of the 

magnitude of rebate that would equal the social value as calculated in Chapter 8.2 

Table E-22 reports these estimates. Again these numbers assume the response is the same for 2 

plugs and one thermostat, which is likely not the case, but the research design cannot 

disentangle the effect of each individually. Nonetheless, the discounted social value of 

procurement is nontrivial for the 5 and 12-year lifespans we consider. The differences between 

the actual and the upper bound come from the higher procurement costs avoided if hours are 

called when the RTM prices are the highest. Two caveats are that these calculations assume 

the externality remains $0.024/kWh and if the electricity generation mix gets cleaner over the 

lifespan, these benefits will be overstated. Similarly, if wholesale prices fall in the coming 

years, the savings will be overstated. 

Table E-22: Discounted Social Value Rebate Calculations 

 2 Smart 

Plugs 

Actual 

Prices 

2 Smart 

Plugs 

Upper 

Bound 

Smart 

Thermostat 

Actual 

Prices 

Smart 

Thermostat 

Upper 

Bound 

Device Life Span 5 5 12 12 

Wholesale Prices 
Actual 

DAM 

Highest 

RTM 
Actual DAM Highest RTM 

Rebate (Discounted 

Social Value) 

 

$23.76 

 

$146.73 

 

$46.80 

 

$288.98 
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CHAPTER 9: 
Conclusion and Outlook 

To conclude, this report documented several findings that should be interesting to regulators, 

DRPs, and academic researchers. 

First, households respond to hour-ahead DR events by reducing their consumption on the order 

of 12-14%. This shows the potential for very short notice DR events to generate reduction. 

Second, households appear to be insensitive to the variable pricing as studied here. This 

suggests without innovation to the messaging, there is little ability for varying incentive levels 

to marginally change household consumption. Future work should try to understand if 

conveying relative value or providing information on the dollar value of a kWh could change 

the insensitivity. 

Third, this report shows heating and cooling load are the primary drivers for responses. This 

confirms the previous literature and the general motivation of many residential DR programs 

to get customers to reduce cooling load in the summer. 

Fourth, offering rebates can increase take-up of automation technologies and this automation 

causes significantly larger responses to DR events. Future work should explore whether the 

generally low take-up rates were due to the rebate design studied here or if there are other 

costs to consumers when considering adoption. 

Fifth, targeting events using an initial set of interventions can dramatically lower the cost of the 

program. Future work should understand the persistence of these types of targeting strategies. 

Lastly, the social value of the DR events calculated here was small, but this number could 

change if DR events were targeted more effectively to high price hours. Future work should 

include more elements of the social value calculation and understand if targeting events is 

feasible. 
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GLOSSARY 

Term Definition 

#OhmHours The proprietary term used by the implementer of the experiment, 

OhmConnect, Inc., for a demand response event. 

2SLS Two-staged least squares (2SLS) – A two-step regression analysis technique 

that extends ordinary least squares estimation to deal with correlation 

between the independent variable and the error term. The first stage of the 

analysis fits a model to isolate the “good” variation in the independent 

variable that is not correlated with the error term. The second stage estimates 

the regression model using these fitted values. 

ATE Average Treatment Effect (ATE) – The average effect or impact of an 

experimental treatment or intervention on an outcome for the population of 

interest. For example, the average reduction in hourly electricity consumption 

per household caused by OhmConnect calling a demand response event. 

ATT Average Treatment Effect on the Treated (ATT) – The average effect or 

impact of an experimental treatment or intervention on an outcome for those 

who receive the treatment. For example, the average reduction in hourly 

electricity consumption per household caused by a household receiving 

demand response event. 

BL Baseline (BL) – A forecast for hourly electricity consumption that is 

constructed using a statistical model in order to determine what consumption 

would have been in the absence of a demand response event. 

CAISO California System Independent System Operator – The non-profit independent 

system operator of the wholesale market for electricity that serves California. 

CATE Conditional Average Treatment Effect (CATE) – The average treatment effect 

(see ATE above in glossary) for conditional on treating a subset of the 

population. For example, the average reduction in hourly electricity 

consumption per household caused by OhmConnect calling a demand 

response event for households located in the Pacific Gas and Electric service 

territory. 

CATT Conditional Average Treatment Effect on the Treated (CATT) – The average 

treatment effect on the treated (see ATT above in glossary) for conditional on 

treating a subset of the population. For example, the average reduction in 

hourly electricity consumption per household caused by a household receiving 

a demand response event for households located in the Pacific Gas and 

Electric service territory. 

DAM Day-Ahead Market (DAM) – The wholesale electricity forward market operated 

by the California Independent System Operator in which market participants 

bid to provide electricity one day ahead of the delivery time when it will be 

produced and consumed. 
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Term Definition 

DR Demand Response (DR) – The term used to represent a host of strategies 

meant to reduce the demand for electricity during periods when it is valuable 

to the grid. 

DRP Demand Response Provider (DRP) – An entity participating in the wholesale 

market or contracting with utilities to provide demand response. For example, 

OhmConnect, Inc. is a demand response provider. 

DT Decision Tree – The method used for predicting Individual Treatment Effects 

by learning a set of decision rules on observable characteristics which 

determine the target value. 

E/NE/C Treatments Encouraged (E) / Non-Encouraged (NE) / Control (C) – The names given to 

the treatment groups for Phase 1 of the experiment. 

HT/LT/NT 

Groups 

High-Targeted (HT) / Low-Targeted (LT) / Non-Targeted (NT) – The names 

given to different treatment groups for Phase 2 of the experiment. The High- 

and Low-Targeted groups were sent exclusively high and low incentive levels 

whereas the Non-targeted group received all incentive levels. 

ITE Individual Treatment Effect (ITE) – The effect of an experimental treatment or 

intervention on an outcome for an individual user or household over time. 

IV Instrumental Variable (IV) – The econometric technique used to isolate “good” 

variation in an independent variable when its raw value is correlated with the 

error term of the outcome variable. The strategy finds an instrumental 

variable (an “instrument”) that is correlated with the independent variable of 

concern, but not the error term of the outcome variable. For example, the 

automation rebate offer was correlated with the decision to adopt automation, 

but not electricity consumption because it was randomly assigned. 

KNN k-Nearest Neighbors Regression (KNN) – A non-parametric analysis technique 

used for regression. 

kWh kilowatt-hour (kWh) – A standard unit of measurement for power used in 

electricity consumption. 

L1 LASSO Penalty (L1) – A penalty term added to non-zero features in a Machine 

Learning method to promote sparsity of the model. 

L2 Ridge Regression (L2) – A penalty term similar to L1 added to non- zero 

features in a Machine Learning method to promote sparsity. 

MAPE Mean Absolute Prediction Error (MAPE) – A metric used for evaluating the 

accuracy of a Machine Learning Method. 

OC OhmConnect, Inc. (OC) – The third-party demand response provider that 

implemented the experiment. 
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Term Definition 

OLS Ordinary Least Squares (OLS) – The standard regression analysis technique 

used to fit the relationship between a dependent variable and a number of 

independent variables. 

PG&E Pacific Gas and Electric (PG&E) – One of California’s three investor- owned 

utilities. 

Points The currency used on the OhmConnect platform that can be cashed out for 

financial rewards at the rate of: 1 point = $0.01. 

RCT Randomized Control Trial (RCT) – The term used for randomized experiment 

where one group of the sample is assigned to a control group that does not 

receive any treatment. 

RF Random Forest (R) – A collection of Decision Trees with the goal of minimizing 

the prediction error by using multiple predictions of the same target value. 

RTM Real-Time Market (RTM) – The wholesale electricity spot market operated by 

the California Independent System Operator in which market participants bid 

to provide electricity five minutes ahead of the delivery time when it will be 

produced and consumed. 

SCE Southern California Edison (SCE) – One of California’s three investor-owned 

utilities. 

SDG&E San Diego Gas & Electric (SDG&E) – One of California’s three investor-owned 

utilities. 
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