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PREFACE 

The California Energy Commission’s Energy Research and Development Division supports 

energy research and development programs to spur innovation in energy efficiency, 

renewable energy and advanced clean generation, energy-related environmental 

protection, energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 

Public Utilities Commission to fund public investments in research to create and advance 

new energy solution, foster regional innovation and bring ideas from the lab to the 

marketplace. The California Energy Commission and the state’s three largest investor-

owned utilities – Pacific Gas and Electric Company, San Diego Gas & Electric Company, 

and Southern California Edison Company – were selected to administer the EPIC funds 

and advance novel technologies, tools, and strategies that provide benefits to their 

electric ratepayers. 

The Energy Commission is committed to ensuring public participation in its research 

and development programs, which promote greater reliability, lower costs and increase 

safety for the California electric ratepayer and include: 

• Providing societal benefits. 

• Reducing greenhouse gas emission in the electricity sector at the lowest possible 

cost. 

• Supporting California’s loading order to meet energy needs first with energy 

efficiency and demand response, next with renewable energy (distributed 

generation and utility scale), and finally with clean conventional electricity 

supply. 

• Supporting low-emission vehicles and transportation. 

• Providing economic development. 

• Using ratepayer funds efficiently. 

Maximizing Solar Forecast-Based Distributed Energy Resources is the final report for the 

project Solar Forecast-Based Optimization of Distributed Energy Resources (EPC-14-005), 

conducted by University of California, San Diego. The information from this project 

contributes to Energy Research and Development Division’s EPIC Program. 

For more information about the Energy Research and Development Division, please visit 

the Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 

Commission at 916-327-1551. 

 

file:///C:/Users/eluk/Desktop/www.energy.ca.gov/research/
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ABSTRACT 

Solar photovoltaic (PV) variability and uncertainty limit solar penetration into the 

electric power system. Solar forecasting helps reduce the uncertainty of solar PV. The 

University of California, San Diego research team developed potential “use cases" for 

distributed energy resource technologies that include solar PV, solar forecasting, and 

controllable loads. The distributed energy resources can provide benefits to the electric 

grid and the distributed energy resource-owning utility customer.  

The research team used nine sky imaging cameras in the Greater Los Angeles area with a 

specific focus on warehouse rooftop areas. More accurate forecasts due to real-time 

updates from these cameras enabled smarter charging of a fleet of electric vehicles at 

the workplace. Electric vehicle fleets range in number and vehicle sizes, up to a school 

bus. PV forecasts are leveraged to shape a combined electric vehicle load profile that 

consumes excess PV generation. The smart charging algorithm was successful in 

flattening the net load. This study also considered the economics of selected use cases. 

Forecasting-aware scheduling benefits the customer the most by reducing demand 

charges. Conversely, wholesale market sales of PV energy directly to the California 

Independent System Operator (California ISO) day-ahead market are economically 

unattractive. The ratepayer benefit of reducing loads during high grid stress are small 

due to high reliability of the California ISO system. Recommendations are provided to 

increase the availability of daytime electric vehicle charging to support the concepts 

developed in this contract.  
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EXECUTIVE SUMMARY 

Introduction  

Solar photovoltaic (PV) power sources and electric vehicles pose unique challenges to 

the electric grid. PV production is inherently variable because of weather, resulting in 

uncertain power output and potentially underserving or overserving load demand. 

Electric vehicles, on the other hand, increase demand. The increase in electric vehicle 

demand can be especially harmful if it occurs during peak time in the evening after 

commuters return home. Solar forecasting helps reduce the uncertainty of solar PV, and 

optimized scheduling of electric vehicle charging at the workplace can better absorb 

excess PV generation.  

Project Purpose  

The University of California, San Diego (UCSD) research team explored how warehouse 

rooftops in the Greater Los Angeles area can host substantial zero-emission solar 

generation and how “smart charging” of electric vehicles using solar forecasts can 

reduce the variability in solar power production. The project also demonstrated how 

electric vehicles can work in harmony with solar PV to accelerate adopting clean energy 

in California. 

Project Process  

The UCSD team developed the potential “use cases" for a suite of distributed energy 

resource technologies that include solar PV, solar forecasting, and controllable loads. 

The distributed energy resources can provide benefits systemwide to the electric grid, as 

well as the distributed energy resource-owning utility customer.  

Nine sky imaging cameras used in the Greater Los Angeles area generated solar forecasts. 

This unique network of cameras provided real-time wide-area coverage with a specific 

focus on warehouse rooftops improving forecast accuracy. More accurate forecasts 

allowed smarter charging of workplace electric vehicles. These electric vehicles had long 

layover periods when they were connected to the grid. Electric vehicles ranged from 

regular cars up to medium-duty vehicles, such as school buses. Solar PV forecasts 

shaped a combined, electric vehicle load profile that consumes excess PV generation. 

Real-time control updates acted upon the present and forecast net load, as well as the 

connected electric vehicles and the associated departure times. 

The project team demonstrated solutions to reduce solar unevenness by considering the 

operation of a “virtual power plant” with a large PV system and 49 daily electric vehicle 

arrivals. The charging schedule of each electric vehicle was optimized each day by 

considering five business cases:  

• Noncoincidental demand charges specifically demand charges applied to 

demand at any time of day. 

• Peak demand charges specifically demand charges applied only to demand 

during peak times. 
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• Volumetric retail energy costs with a real-time price tariff.  

• Sale of PV generation to the wholesale market.  

• Reduce ratepayer costs by avoiding charging during periods of high grid stress. 

These first four business cases reduce customer utility bills. The project investigated 

the cost of maximizing PV for each business case individually, considering all business 

cases together and operating without any optimization. Virtual power plant operation 

with and without the optimized schedule was simulated for a full year from April 1, 

2016-April 1, 2017. 

Project Results  

Figure ES-1 shows annual operating costs for each optimization scheme with costs 

separated by type. The noncoincident demand charge was the largest cost for the 

majority of scenarios, and optimization reduces this cost the most. The energy 

purchases were the second largest cost but actually tended to increase as a result of the 

optimization (a side effect of reducing demand charges). The wholesale market sales 

generated little profit in any scenario. This is from a combination of generally low spot 

prices (case 𝐶4) and the tradeoff against reducing demand charges. 

This study revealed that using aggregated electric vehicle load large enough to absorb 

the solar output on the studied circuit is many years away. For the studied circuit, roughly 

9,000 electric vehicles must be connected during the solar output period to create an 

adequately sized energy sink to absorb the full amount of this oversupply. This is 

beyond the reach of today’s electric vehicle adoption rates and those for years to come. 

Medium- and heavy-duty commercial vehicles can play an important role in solar 

integration, but not all will be available for “long-dwell” layovers during solar energy 

output hours necessary for smart charging. School buses are uniquely suited to take 

advantage of excess solar energy during daytime, while most other commercial vehicles, 

such as forklifts, are typically in use during the day and must be charged as soon as 

possible.  

The UCSD team made presentations at technical conferences, such as DistribuTech, 

Institute of electrical and electronic Engineers (IEEE) PV Specialists Conference and the 

Joint Center for Energy Storage Research Symposium. UCSD also conducts at least one 

tour each week of the microgrid to build an effective information base of the technology 

to stimulate market growth for microgrids and PV. 
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Figure ES-1: Distribution of Annual Costs When Optimizing for Different Business Cases 

 

 𝑪𝟏- Non coincident demand charge only; 𝑪𝟐- Peak demand charge only; 𝑪𝟑- Energy arbitrage only; 𝑪𝟒- Wholesale 

market sales only; 𝑪𝟓- Capacity deferment only; 𝑪𝟔 – All objectives;  𝑪𝟕 – non-optimized charging. The costs for 

each business case are split by category (x-axis) into Non coincidental demand charge (NCDC); Peak demand 
charge (PDC); Energy arbitrage; Wholesale market sales; Capacity deferment (CD).  

Source: Center for Energy Research, University of California San Diego, 2018  

The solar forecasting and electric vehicle smart charging tool developed will be 

commercially used and tested in a new project with the Nuuve Corporation. Nuueve 

Corporation will test a vehicle-grid integration technology with one direction and two 

directional power flow using light fleet vehicles. 

Moreover, controllable loads available during peak solar energy output periods could be 

accelerated through the following new policies and incentives:  

• Encourage some electric vehicle owners to plug in at work whether they need to 

or not, for example, by providing lower electricity rates than for evening home 

charging or remunerate electric vehicle owners for allowing flexible charging or 

both. 

• Encourage employers to add more electric vehicle charging stations than they 

might otherwise. 

• Emphasize the load-augmentation advantages of smart fast Level 2 charging 

stations as they double the charging capacity compared to Level 1 and are able 

to communicate with the user, site host, and utility grid. 

• Offer incentives for using more medium and heavy-duty commercial vehicles 

with “long dwell” charging patterns during the day, such as school buses. 
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Benefits to California 

The project showed that utility customers who use solar forecasting and smart electric 

vehicle charging could achieve a 67 percent reduction in energy costs over the year. 

Monthly peak demand was reduced by 63 percent on average. 

Ratepayer savings for the capacity deferment business case were orders of magnitudes 

smaller than other costs for all cases. However, optimizing for real-time prices also 

increased the ratepayer savings. This reduction was due to the overlap between peak 

pricing period and the times when the loss of load expected was greatest (likely by 

design). 
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CHAPTER 1: 
Introduction 

Solar photovoltaic (PV) is an increasingly significant energy resource in California, 

providing near-zero emissions power to the electric grid. In 2015, solar surpassed wind 

to become the leading source of renewable energy for California utilities.1 However, in 

contrast to other traditional resources, solar PV resources are limited by output which is 

variable and uncertain and depends on the amount of solar irradiance in each location. 

Solar forecasting helps reduce the uncertainty of solar PV by estimating the amount of 

solar generation that can be expected in the near future. Distributed energy resources 

(DERs) can further reduce the uncertainty of solar PV energy production, e.g. by storing 

energy generated from solar PV and dispatching it later.  

In this project, the research team considers the potential business cases or “use cases" 

for a suite of DER technologies that include solar PV, solar forecasting, and controllable 

loads (including energy storage and electric vehicles). In principle, the DERs can provide 

benefits to both the electric grid as well as the DER-owning utility customer. The 

research team focuses on the role that solar forecasting can play in enhancing these 

benefits.  

The term “use case” is defined as the intended purpose or business case for deploying 

and operating the suite of DER technologies. This project seeks to identify use cases for 

DERs that will potentially yield benefits to utility customers or the utility system as a 

whole, using solar forecasting techniques paired with rooftop PV and controllable load 

technologies. Here electric vehicles (EV) are controllable loads.   

In Chapter 2, the authors provide an overview of the main controllable loads use cases 

that have been identified through team and stakeholder discussions. Chapter 3 

describes the deployment of solar forecasting instrumentation in the Greater Los 

Angeles Area and forecast accuracy results. Results for using workplace EV charging to 

smooth net load fluctuations introduced by solar PV are presented in Chapter 4. The 

value proposition of doing so is presented in Chapter 5. Chapters 6 and 7 provide 

conclusions and recommendations, respectively. 

 

 

1 http://ww2.kqed.org/news/2016/01/11/solar-power-california-top-source-of-renewable-energy.  

http://ww2.kqed.org/news/2016/01/11/solar-power-california-top-source-of-renewable-energy
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CHAPTER 2: 
Use Cases 

2.1 Use Case Overview 
This chapter describes the four use cases for DER systems with forecasting technology 

that were examined as part of the overall project. The project team initially identified 10 

potential use cases (Table 1) in two basic categories: those that benefit primarily the 

end-use electricity customer, and those that benefit all utility customers through 

avoided utility system costs. 

Table 1: Summary of All Use Cases 

Source: Center for Energy Research, University of California San Diego, 2018  

Use Case Brief Description 

Use Cases for Participating Customers 

Demand Charge Management Controllable load is dispatched to minimize demand charges 

TOU Arbitrage Energy storage is used to arbitrage between peak and off-peak 

TOU rates. 

Wholesale Market Sales After optimizing for retail value, excess DER capacity 

participates in California ISO markets for energy and ancillary 

services.  

Enhanced Power Quality DER helps reduce unwanted fluctuations in voltage that could 

damage equipment 

Enhanced Reliability DER helps provide backup power in the event of an outage 

Green EV Charging Charging electric vehicles using the power directly from the sun 

Use Cases for Utility System (All Ratepayers) 

Generation Capacity Savings  DER contributes to deferred or avoided investment in new 

generation capacity.  

Generation Energy Savings DER reduces overall generation costs by reducing cost of fuel 

consumption and ancillary services (e.g. operating reserves 

needed for ramping). 

Transmission and Distribution 

Fixed Cost Savings  

DER avoids or defers investment in additional transmission and 

distribution equipment due to high demand or over-generation. 

Distribution O&M Cost Savings  DER reduces cost of operation and maintenance due to 

operation of voltage control equipment. 
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2.2 Demand Charge Management 
In this use case, the DER system minimizes demand charges for the participating utility 

customer, taking into account the customer’s load profile and demand charge rate 

structure. End-use customers would purchase or lease the DER technologies (here solar 

power and electric vehicles) for their own benefit. Solar forecasting could help anticipate 

when solar PV production helps offset high levels of demand, and when and how much 

controllable load and energy storage would need to be dispatched to optimize savings.  

Operation of the DER system would reduce the demand charge portion of the 

customer’s monthly bill relative to business as usual (BAU). This benefit would accrue 

over the life of the DER asset and depends upon current and future utility rate 

structures. 

2.3 Time-of-Use Energy Arbitrage 
In this use case, the DER system minimizes volumetric energy charges for a 

participating utility customer by using the DER system to arbitrage between different 

time-of-use (TOU) rates. DER systems that include energy storage allow customers to 

charge during periods with lower TOU rates and dispatch the storage to offset 

consumption during periods with higher TOU rates. End-use customers would purchase 

or lease the integrated DER technologies for their own benefit. Solar forecasting helps 

anticipate how much energy will be available in a storage device to be discharged as on-

peak energy during the following period.  

Operation of the DER system would reduce the energy portion of a customer’s monthly 

bill relative to BAU. This benefit would accrue over the life of the DER asset and 

depends upon current and future utility rate structures. 

2.4 Wholesale Market Sales 
In this use case, DERs would generate revenue for the participating customer through 

participation in California’s wholesale energy markets, which are operated by the 

California Independent System Operator (California ISO). In principle, a system with 

controllable load equipment or an energy storage device can participate by providing 

market products, including energy and ancillary services. California ISO has specific 

rules governing how nongenerator resources (such as storage) and controllable loads 

can participate in these markets.2 For this investigation, the primary focus will be the 

ancillary services markets, where participating customers can be remunerated for the 

provision and consumption of power on short notice. To participate in ancillary services 

markets, information from the DER system (e.g. capacity, bid price, etc.) would need to 

be provided to California ISO. California ISO would then provide instructions to dispatch 

(or not dispatch) the DER resource. Wholesale market participants whose bids 

 

2 See https://www.caiso.com/participate/Pages/Storage/Default.aspx or https://www.caiso.com/participate/
Pages/Load/Default.aspx#PL.  

https://www.caiso.com/participate/Pages/Storage/Default.aspx
https://www.caiso.com/participate/Pages/Load/Default.aspx#PL
https://www.caiso.com/participate/Pages/Load/Default.aspx#PL
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successfully clear are awarded a payment based on the market clearing price, including 

any participating DER resources. Thus, DER owners stand to benefit financially if they 

are able to successfully deliver wholesale market products that clear the market. 

Figure 1: Energy Storage Component  Use for Retail Bill Benefits and Wholesale Revenues 

 

How the energy storage component of a DER system could be used to provide retail bill benefits and wholesale 
revenues 
Source: Center for Energy Research, University of California San Diego, 2018 
 

2.5 Generation Capacity Savings 
The electric system must be planned to maintain resource adequacy (RA), ensuring 

sufficient generation is installed to meet system peak demand. The traditional planning 

approach was to install new supply-side generation resources as demand grows over 

time. New plant costs would ultimately be borne by all utility customers through 

increased rates. Today, demand-side resources, such as DERs, leverage customer 

investments to help reduce demand and, therefore, avoid or delay installation of costly 

new power plants that would otherwise be needed for system peak.  

Increasingly, system planners are also seeking resources to meet constraints beyond 

peak capacity. In particular, flexible resources are necessary to address increased 

ramping needs due to higher penetrations of solar PV. Ramping capability has 

traditionally been provided by conventional resources like gas-fired combustion 

turbines. However, DERs that can quickly charge and discharge to follow rapidly 
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changing load conditions offer another potential solution. Flexible DER resources will 

become increasingly valuable as ramping needs increase over time. 

This use case considers the benefits to all utility customers that can be realized by 

avoiding investment in new supply-side generation capacity by installing DERs. Energy 

generated by solar PV or a reduction in load through a load-controlling device can all 

contribute to a reduction in overall customer demand and, therefore, provide capacity 

value to the grid Figure 2. Solar forecasting does not inherently increase or decrease 

energy demand on its own, so the contribution of solar forecasting to avoid capacity is 

less direct. However, in some circumstances, greater certainty about solar output may 

reduce the need for system operators to carry operating reserves for unexpected solar 

ramping events. To the extent that utilities would invest in additional new supply-side 

generation to provide these operating reserves, solar forecasting may also provide 

capacity value through DER. In all cases, the capacity benefit from DER is likely to be 

more pronounced in transmission-constrained areas with local capacity needs (such as 

the Greater Los Angeles Area). In this use case, the DER system could be either directly 

owned by the utility or subsidized by the utility on behalf of its customers to capture 

the value of the avoided generation capacity costs. 

Figure 2: DER With Solar Forecasting Could Help  
Target Energy Output to Hours of the Day  

 

When resource adequacy value is highest. This condition can help increase effective load-carrying capacity and 
in turn the capacity-deferral value of the resource. 
Source: Center for Energy Research, University of California San Diego, 2018 
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CHAPTER 3: 
Sky Camera Deployments 

3.1 Hardware 
The UC San Diego team has developed a high-quality sky camera system (UCSD Sky 

Imager or USI) to provide observational data for solar forecasting. The USI captures 

images using an upward-facing, charge-coupled device (CCD) image sensor that senses 

red-green-blue (RGB) channels at 12 bit precision and 1,748 x 1,748 pixel resolution. 

Using composite high dynamic range (HDR) imaging, the USI outputs fish-eye images at 

16 bit with a dynamic range of 84 decibels (dB). When used with UCSD’s advanced 

computer vision and image processing methods, the USI can identify, geolocate, and 

track clouds accurately with high spatial, temporal, and radiometric resolution. At a cost 

of $30,000, the USI is not always economical for solar forecasting. Therefore, the 

majority of the Greater Los Angeles Area camera network was equipped with lower-cost 

sky cameras. The Vivotek FE8171V is a fisheye fixed dome network camera featuring a 

3.1 MP-resolution sensor. 

3.2 Deployment Sites 
The South Coast Air Quality Management District (SCAQMD) agreed to host sky imaging 

systems at air pollution monitoring sites. Figure 3 show the sites where sky imagers 

were used. Figure 4 shows photographs of each sky imaging system as used and a 

sample sky image. 
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Figure 3: Map of Sky Imager Site Locations  

 

Source: Center for Energy Research, University of California San Diego, 2018 

Figure 4: Photographs of Each Sky Imaging System as Installed and a Sample Sky Image 
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Source: Center for Energy Research, University of California San Diego, 2018 

3.3 Solar Forecast Method 
The solar forecasting model in this work is developed based on Artificial Neural Network 

(ANN), a popular stochastic learning tool for pattern recognition, data classification and 

regression, and is useful for non-linear input/output mapping. Therefore, ANN is 

commonly employed in solar forecast applications. The ANN model generates predictions 

using inputs of endogenous lagged Global Horizontal Irradiance (GHI) values and three 

exogenous numerical image features extracted from sky images based on the Normalized 

Red Blue Ratio (NRBR). The weights and bias of ANN are estimated using the training 

dataset by a supervised learning process. The calculations of error metrics are limited to 

instances during daytime. The persistence model is the baseline model to benchmark 

the ANN forecasting models. 
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3.4 Solar Forecast Accuracy 

3.4.1 By Site 

The ANN forecast model and the reference persistence model are evaluated on the 

testing dataset. Sample time series of 10 minutes ahead GHI forecasts and absolute 

errors against measures GHI are plotted in Figure 5. The forecasts show excellent 

performance during clear periods. The forecasts are capable of predicting the presence 

of solar ramps under different weather conditions. The ability to predict solar ramps is 

considered a success of solar forecasts for most solar energy applications. In addition, 

some of the improvements achieved by the smart forecast are annotated in the figure: 

more accurate predictions of ramp rates during cloudy period, and the forecast bias is 

minimized during clear period. Therefore, the proposed model achieved the highest 

overall forecast skills.  

Figure 5: Sample Time Series of 10-Minutes-Ahead GHI Forecasts  

 

Includes Absolute Errors Against GHI at Banning Airport 
Source: Center for Energy Research, University of California San Diego, 2018 

Table 2 quantifies for all models and all locations how the relative root mean square 

error (rRMSE) increases with the forecast horizon, because cloud conditions constantly 

change and these changes are more difficult to detect farther in the future. For example, 

the persistence rRMSE at the Azusa increases from 0.175 to 0.226 when the forecast 

horizon increases from 5 minutes to 15 minutes.  

For all locations, the ANN forecast models achieve error metrics that are lower than the 

reference persistence model, particularly for longer horizon forecasts. The ANN model 
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outperforms the persistence model every time step, achieving averaged forecast skills 

between 6-14 percent. 

Table 2: GHI Forecasting Results for 5-, 10-, and 15-Minute Horizons  

  

Persistence 
Forecast ANN Forecast Spatial Forecast 

5 min 15 min 5 min 15 min 5 min 15 min 

Azusa rRMSE [-] 0.175 0.226 0.158 0.195 0.264 0.273 

s [-]   0.095 0.138   

Banning rRMSE [-] 0.146 0.193 0.134 0.172 0.249 0.254 

s [-]   0.080 0.110   

Fontana rRMSE [-] 0.224 0.285 0.212 0.259 0.260 0.262 

s [-]   0.054 0.091   

Glendora rRMSE [-] 0.191 0.243 0.175 0.216 0.323 0.328 

s [-]   0.080 0.109   

Pico Rivera rRMSE [-] 0.175 0.232 0.162 0.205 0.225 0.232 

s [-]   0.077 0.117   

Rubidoux rRMSE [-] 0.202 0.252 0.185 0.226 0.270 0.284 

s [-]   0.086 0.102   

Santa Clarita rRMSE [-] 0.179 0.229 0.163 0.199 0.255 0.258 

s [-]   0.090 0.131   

Acronyms: Mean absolute percentage error (MAPE), relative root mean square error (RMSE), forecast skill(s).  
Source: Center for Energy Research, University of California San Diego, 2018 

3.4.2 Spatial Forecasts 

The sky imager network can also be leveraged to provide continuous spatial forecasts. 

Sample 10-minute irradiance forecast fields are presented in Error! Reference source 

not found. for two time instances on a mostly clear day and a mostly cloudy day, 

respectively. Overall statistics are presented in Table 2. The interpolated forecasts for all 

locations have larger errors than single locations forecasts discussed in the previous 

section. These results suggest that the distribution density of monitoring stations is 

overly sparse for the vast Greater Los Angeles Area. A distance of less than 10 

kilometers (km) between two sensors would be recommended to optimize the forecast 

accuracy when deploying a sensor network. The existing station distances range from 5 

km (Azusa to Glendora) to 158 km (Banning to Santa Clarita). The L.A. metropolitan area 

with an area of 12,561 square kilometers (km2) would require at least 126 sites. 
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Figure 6: Sample GHI Field of 10-Minute-Ahead Spatial Forecasts  

 

For (a) a Mostly Clear Day and (b) a Mostly Cloudy Day The color scale is in W/m2. The blue drop markers 
represent the locations of SkyCam stations.  
Source: Center for Energy Research, University of California San Diego, 2018 
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CHAPTER 4: 
Scheduling EV Charging to Reduce PV 
Variability Impacts 

4.1 Scheduling Overview  
Distribution feeder circuits are designed to tolerate considerable variability. However, 

sharp variations in energy inputs at different locations on a given circuit can undermine 

power quality for utility customers and create economic challenges for the distribution 

and transmission system operators. Providing a technical pathway to address these 

variations in real time and smooth them with controllable loads holds tremendous 

value. Such a construct of jointly operated PV and controllable (here EV) loads is called a 

virtual power plant (VPP) and illustrated in Figure 7. For example, the EV loads on high 

PV penetration circuits can be leveraged to: 

• Maintain the net load on a given distribution circuit within a “tolerance band.” 

• Achieve better voltage control at different locations on the circuit. 

• Avoid energy flowing from customers towards the substation during peak PV 

output periods. 

Figure 7: Notation and Topology of the Virtual Power Plant (VPP) Configuration 

 

Source: Center for Energy Research, University of California San Diego, 2018 
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Real-time solar PV forecasting technology can help distribution systems reduce solar 

energy variability and associated power quality and economic challenges. In particular, 

the authors demonstrate how a controllable load consisting of workplace plug-in electric 

vehicle (PEV) loads (with long layover periods during which they are connected to the 

grid) can be controlled in a way that: 

• Leverages real-time solar energy output forecasts for PV arrays. 

• Respects the energy needs and planned departure time of the PEV owner. 

• Is seamless and simple for the consumer.  

• Aligns with the location-specific control signals. 

• Addresses power quality challenges using controllable PEV loads. 

4.2 Load Curve, PV Output, EV Fleet, and 
Communications 

The project team modeled (Figure 8): 

• A load curve on a Southern California Edison distribution feeder circuit in San 

Bernardino.  

• The output forecast of large warehouse-scale solar PV arrays on commercial 

buildings connected to the San Bernardino feeder. 

Figure 8: Rooftop PV Systems and USI in Substation Service Territory 

 

Rooftop PV systems in black, USI in yellow, and Substation Service Territory in red  
Source: Center for Energy Research, University of California San Diego, 2018 
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Load and solar generation were then combined to create a net-load curve for the circuit.  

Subsequently, the project team simulated how an intelligent load control system 

connected to local clusters of PEV charging stations can use PEV loads to reduce 

variability challenges on the distribution circuit. Light- and medium-to-heavy-duty PEVs 

with varying battery sizes, onboard charger capacities, arrival and planned departure 

times were simulated. 

The technology to implement such smart charging already exists for example in the 

standard for bidirectional communications between PEVs and charging stations known 

as ISO/IEC 15118: vehicle-to-grid communication interface. This global interoperability 

standard provides electric system operators with a scalable control system that 

translates real-time grid conditions into a common, unique language that PEVs can 

understand and react to in real time.  

A sample demand clearing house logic sequence (DCHLS) to govern PEV charging is 

illustrated in Figure 9. The PEV energy management success metric is a PEV load profile 

that flattens a load curve that experiences a deep valley during midday due to PV 

generation. At the beginning of each day (midnight), the DCHLS reads an input 24-hour-

ahead solar and (non-EV) load forecast to produce a net load profile. A valley in the net 

load profile is expected during midday hours as result of high PV penetration. 

Throughout the day, the DCHLS conducts evaluation on the grid side and the fleet side 

in 15-minute intervals. On the grid side evaluation, the total available energy for PEV 

charging is computed at each time step. The minimum in net load (valley) is increased 

(filled) until the resulting charging energy equals the energy required by the PEVs. As a 

result, the daily net load profile including PEV charging will exhibit less variability, 

which reduces grid impacts such as tap operations and voltage variations, and promotes 

grid wide energy balancing. 

From a PEV user perspective, energy management is successful if all vehicles are 

charged at departure time. From a grid perspective, the energy management is optimal if 

the DCT is constant throughout the daytime charging period. Then the PEV charging 

energy is distributed across the daytime to flatten the net load.  

Charging power is controlled through the use of a demand control threshold (DCT). If 

grid net load is above the DCT, EV charging is interrupted. If grid net load falls below 

the DCT, charging resume. In a real-time environment where EVs connect at different 

times or disconnect prematurely, the DCT level is adjusted at every time step, 

depending on updates to the net load forecast, current number of vehicles connected, 

and total fleet energy demand. As vehicles plug in, the DCT level will rise (filling the 

valley from the bottom up) until total available energy equals the total energy demand 

for the remainder of the day. 
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Figure 9: Demand Clearing House Logic Sequence Flow Diagram 

 

Source: Center for Energy Research, University of California San Diego, 2018 

 

4.3 One-Day Case Study 
The optimization is illustrated on a single day to produce an EV charging schedule given 

perfectly forecasted load and solar generation. A day with broken cumulus clouds was 

chosen, producing high PV output variability. Figure 10 shows the valley-

filling/optimization results for two EVs. The actual grid net load profile (blue) is 

computed by subtracting PV power from the feeder load. The area between blue and red 

indicates the share of the energy valley that is absorbed by EV charging. EVs with initial 

state of charge (SOC) of 10% and 55% are fully charged (100%) by the scheduled 

departure time (middle plot). 
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Figure 10: Sample Optimized Electric Vehicle (EV) Charging  
Schedule for Valley Filling with Two EVs 

 

Top: Original grid net load profile (load demand minus PV power, blue) showing an energy valley during midday 
interrupted by episodes of cloud cover. Optimized net load (red, including EVs) is obtained by filling the valley 
towards a reference power (f, black). Middle: EV state of charge (SOC) in %. Colors distinguish EV with their 
arrival time (dashed) and departure time (dotted). Bottom: EV charge power divided by its maximum charge 
capacity.  
Source: Center for Energy Research, University of California San Diego, 2018 

The algorithm dynamically shifts the charge schedule to periods with an energy valley 

while obeying all constraints. For example, EV 1 has a large energy demand of 76.5 kWh, 

but the layover period of 9 hours, 40 minutes is comparably short, because EV 1 

requires 7 hours, 39 minutes of charging at the highest charging rate to reach full 

charge. Thus, the algorithm has limited flexibility (two hours) to shift the battery charge 

schedule or reduce the charging rate or both. EV 1 connects to charge at 08:00 PST, and 

charging occurs from 08:15 PST when PV generation starts to depress the net load 

profile. The two-hour flexibility is used to charge at a rate that is below the maximum 

capacity from 08:15 to 13:30 PST. By lowering the charge rate, the algorithm shifts EV 

charging from times of relatively large net load to times with a larger energy valley later 

in the day. The algorithm increases charge power of EV 1 to maximum capacity after 
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13:30 PST so that the EV can be fully charged exactly at its departure time. because the 

algorithm is not able to completely shift the EV charging to periods with larger energy 

valleys due to limited EV flexibility, it schedules charging during off-peak solar 

generation (08:00 – 10:45 PST). 

On the other hand, EV 3 has more charging flexibility with a smaller energy demand (7.7 

kWh or 2 hours, 20 minutes of charging at maximum capacity), which is spread over 

about the same layover period (nine hours). Thus, the algorithm can schedule charging 

to occur only during the four major energy valleys (clear periods during midday) while 

limiting charging in cloudy conditions and at the beginning and end of the day. EV 3 is 

also fully charged at its departure time.  

4.4 Pilot Testing and Simulation Results 

4.4.1 Solar Forecasts 

To evaluate how the VPP performs with actual solar forecasts compares to benchmark 

solar forecasts, a suite of solar forecasts is input. 

1. Base Forecast: A 24-hour persistence forecast (denoted as “p”) is defined as solar 

power data at the same time of the previous day. The method is also 

conventionally adopted in modeling load forecast in power system.  

2. Perfect Forecast: Perfect solar forecast (real PV generation data, denoted as 

“perfect”) brackets the net load flattening that is achievable.  

3. Operational Forecasts (denoted as “p+SkyCam”): Since SkyCam forecasts are 

limited to a 15-minute horizon, only the first time step of the persistence (base) 

forecast is corrected by replacing the 24-hour persistence forecast output, while 

the output in the remaining 24-hour time horizon is left unchanged.  

4. Benchmark forecast (denoted as “p+perfect”) is similar to the operational 

forecast, but now the first 15 minutes of the 24-hour persistence forecast are 

replaced with real PV generation data. This forecast elucidates whether 

improvements in the short-term solar forecast accuracy would result in better 

flattening of the net load.  

4.4.2 Light-Duty EV Charging 

A full month of optimized net load (𝑁𝐿𝑝+𝑆𝑘𝑦𝐶𝑎𝑚) with 31 light-duty EVs is analyzed in 

detail and illustrated in Figure 11 along with reference f (preferred grid net load profile 

determined from the expected net load and the cumulative EV energy demand) and net 

load based on perfect and operational forecast without EV. On most days, valleys are 

completely filled, and 𝑁𝐿𝑝+𝑆𝑘𝑦𝐶𝑎𝑚 is closely aligned with the reference f, indicating that 

the method works as designed. On clear days, for example December 3–4, 2016, the 

energy valley is large and smooth, which provides a sufficient amount of energy to 

charge all EVs. On cloudy days (for example December 10 and December 13, 2016), solar 

variability is large and less energy is available in the valley, resulting in increased 

𝑁𝐿𝑝+𝑆𝑘𝑦𝐶𝑎𝑚 level and variability. 
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Figure 11: Results for 30 Days of EV Scheduling Using 31 EVs 

 

On each day, the grid net load (blue) is created based on a perfect load forecast and operational solar forecast. 
Smart EV charging reduces net load variability (red) in reference to a preferred net load profile (black). The 
analyzed days were from 2016.  
Source: Center for Energy Research, University of California San Diego, 2018 

Exceptions are observed on December 6, 11, 15, 17, 21 and 30, with a large peak in the 

𝑁𝐿𝑝+𝑆𝑘𝑦𝐶𝑎𝑚. For example, on December 21, an overcast day was preceded by a clear day. 

Figure 12 shows that the persistence solar forecasts source of 𝑁𝐿𝑝 (black) predicts a 

large valley (dotted blue) indicating a clear day while the day is actually overcast (solid 

blue). In this scenario, the algorithm introduces one major peak on the optimized net 

load (10:00 – 14:00 PST).  

While short-term forecast improvements modify the charging pattern, 𝑁𝐿𝑝+𝑆𝑘𝑦𝐶𝑎𝑚 (dotted 

green) and 𝑁𝐿𝑝+𝑝𝑒𝑟𝑓𝑒𝑐𝑡 (dotted black) actually do not noticeably improve net load 

variability and peak demand. This is because the algorithm optimizes EV charging for 

the entire day, while the short-term forecast corrects only the first 15-minute interval. 

Operating under the assumption of persistence forecast for less than 15-minute 

horizons, the algorithm expects a large energy valley later in the day and delays most of 

the noncritical EV charging. When the persistence forecast is replaced with the SkyCam 

or a perfect forecast for the next 15 minutes, the forecast net load increases. Thus, the 

optimization preferentially schedules EV charging for less than a 15-minute time 

horizon. At the next time step, the situation is similar, and EV charging is again 

rescheduled for later. Noncritical EV charging is therefore delayed until 13:00 PST, when 

early departure EVs start to approach the associated charge time limit. To reach full 

charge by the EV departure time, early departure EVs have to start charging at the 

maximum charge capacity immediately. Since solar energy production is still depressed, 

net load rises steeply between 11:00 to 14:00 PST. Net load remains elevated until 17:00 

PST, when most EVs have departed, causing a steep net load down ramp.  
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Figure 12: Optimized Net Load Comparison Using Different Solar  
Forecasts Sources on Dec. 21, 2016 

 

The 𝑵𝑳𝒑𝒆𝒓𝒇𝒆𝒄𝒕 (load minus actual PV generation, blue) yields the ideal optimized net load (cyan). When PV 

forecasts with errors are used, EV charging profiles yield the black line for 𝑵𝑳𝒑, dotted green for 𝑵𝑳𝒑+𝑺𝒌𝒚𝑪𝒂𝒎, and 

dotted black for 𝑵𝑳𝒑+𝒑𝒆𝒓𝒇𝒆𝒄𝒕. The red line indicates the targeted power f on this day. For reference, the net load of 

the previous day (equaling load minus PV persistence forecast) is provided in dotted blue.  
Source: Center for Energy Research, University of California San Diego, 2018 

This illustrates that optimization results are most deficient when sky conditions change 

dramatically between two consecutive days. Similar peaks are found to occur for similar 

day-to-day changes in sky conditions. If the present day is cloudier than the previous 

day, the persistence forecast will cause the algorithm to push the EV charging peak 

forward (December 15 and December 21). Conversely, if the present day has fewer 

clouds than the previous day, the persistence forecast will push the peak backward 

(December 17 and December 24).  

4.4.3 Medium- to Heavy-Duty EV Charging 

A full month of optimized net load with electric school bus charging is presented in 

Figure 13. The daily energy demand aggregated over all buses is chosen to be identical 

to the light-duty EV fleet in Section 4.4.2. Overall, the performance of valley filling is 

similar to light-duty EVs. However, unlike for light-duty EVs the net load profile before 

8:00 PST and after 16:00 PST exhibits a power ramp. In addition, the power level of the 

flattened net load is noticeably higher than in Figure 12. This is a result of the limited 

school bus layovers; all school buses arrive in the parking lot after 8:00 PST, and by 

16:00 PST all buses are on route for pickup. Thus, the layover duration is shorter than 

the solar day. Since the modeled school bus energy demand is equivalent to that of a 

light-duty EV, a shorter charging window results in a higher charging demand. The 
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shorter charging window also unavoidably causes an up ramp in net load as the first bus 

connects and a down ramp as the last bus departs.  

Figure 13: Same as Figure 12, but Using Electric School Buses 

 

Source: Center for Energy Research, University of California San Diego, 2018 

A better valley filling result would be expected if the school bus fleet was pooled with 

light-duty EV (for example early-riser residential EVs) that return from work at about the 

time when the school buses depart. 
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CHAPTER 5: 
Value Proposition Analysis 

5.1 Motivation and Methods 
This report shifts focus to the economics or value proposition of smart EV charging for 

the VPP shown in Figure 14. Light-duty EV charging is optimized at a large warehouse in 

the Greater Los Angeles Area to create value for all ratepayers. Unlike in the 

optimization in Section 4, the optimum result may not necessarily be a flat net load 

curve. The authors aim to quantify the reduction in operating costs of the commercial 

customer under different charging scenarios and considering several business cases. 

Furthermore, they investigate additional ratepayer benefits through capacity deferment 

savings. 

The charging schedule of each EV is optimized daily considering five business cases:  

• Noncoincidental demand charges specifically demand charges applied to 

demand at any time of day. 

• Peak demand charges specifically demand charges applied only to demand 

during peak times. 

• Volumetric retail energy costs with a real-time price tariff.  

• Sale of PV generation to the wholesale market.  

• Reduce ratepayer costs by avoiding charging during periods of high grid stress 

(loss of load probability, LOLP). 

The first four business cases reduce customer utility bills. The authors investigated the 

cost of optimizing around each business case individually 𝐶1 − 𝐶5, a multiobjective 

optimization composed of all business cases 𝐶6, and the operation without any 

optimization 𝐶7. Microgrid operation with and without the optimized schedule was 

simulated for a full year from April 1, 2016 – April 1, 2017. 
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Figure 14: The Topology of the Microgrid in Terms of Incoming/Outgoing Power Sources 

 

The net load at the substitution (𝑷𝒏𝒆𝒕) is composed of the aggregate building load (𝑷𝑳), aggregate EV load (𝑷𝑬𝑽), 

and less the portion of the PV power which is used to meet load locally (𝑷𝒑𝒗,𝒄𝒐𝒏𝒔𝒖𝒎𝒆), and purchases from the 

utility at the retail price (𝝀𝑹). The microgrid is also connected to the market, so that it has the option to sell a 

portion of its PV power that is not consumed locally (𝑷𝒑𝒗,𝒔𝒆𝒍𝒍) at market price (𝝀𝑴). 

Source: Center for Energy Research, University of California San Diego, 2018 

5.2 Case Study  
To show the effects of optimized charging on the microgrid, the results for a day 

September 8, 2016 are introduced and discussed in the following section. This day is 

chosen as i) LOLP is nonzero; ii) EVs are present during peak hours; and iii) the 

moderate previous day temperature was 81𝑜 F (specifically not extreme time-of-use 

pricing). The electric rates and generation capacity savings are shown in Figure 15. 

Figure 15: Price Scheme for September 5, 2016 

 

The black and red curves represent the energy cost multipliers for real-time pricing (RTP) and value of lost load 
(VOLL), respectively. The blue shaded area represents the period in which the noncoincidental demand charge 
applies (all day). The green checkered area represents the period in which the peak demand charge applies. 

Source: Center for Energy Research, University of California San Diego, 2018 
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The solar production is plotted with the microgrid aggregate load in Figure 16. Both 

profiles peak around noon. The solar production resembles a clear day and exceeds the 

microgrid aggregate load during peak hours. 

Figure 16: Aggregate Substation Load Demand and Solar Generation for 9/5/2016 

 

Source: Center for Energy Research, University of California San Diego, 2018 

The net load profile (building load + EV load – solar production) for each use case is 

given in Figure 17. Several key characteristics of each optimization objective can be 

observed in the figure. Each case 𝐶𝑥 represents a different set of optimization objectives 

that are discussed: 

𝑪𝟏 − Noncoincidental Demand Charge Only: For the objective of minimizing demand 

charge during the noncoincidental period, the profile is flat nearly across the entire day 

and has the lowest peak demand. 

𝑪𝟐 −  Peak Demand Charge Only: The objective focuses on minimizing the demand 

during the peak hours from 17:00 - 22:00 pm. The demand is the lowest during the peak 

period. Although, other objectives temporarily show lower demand during the peak 

period, the lower demand is countered with higher demand at other times in the period. 

Objective 𝐽2 also possesses the largest demand peak of all cases at 16:45 PST as a result 

of shifting load away from the peak period by precharging EVs. 

𝑪3 – Energy Arbitrage Only: The objective is concerned with shifting energy purchases 

from periods of high price to low price. Indeed, the peak of purchases occurs at a period 
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of very low price. Conversely, no energy purchases occur during 12:30 to 15:00 PST 

when the energy price peaks. Zero-net load during high pricing can be achieved due to 

the availability of solar and the ability to shift the EV load to earlier or later in the day. 

𝑪𝟒 − Wholesale Market Sales Only: The objective maximizes the sales of generated PV 

power. As a result, the charging appears random as it does not influence the objective 

function. Large demand is observed near the peak hours. 

𝑪𝟓 − Capacity Deferment Only: The objective minimizes the demand during periods of 

high LOLP. Similar to C3 the net demand goes to zero during high LOLP, and EV charging 

is scheduled before and after the high LOLP period instead. 𝑪𝟓 incurs the largest 

demand peak of all cases. 

𝑪𝟔 − All Objectives Considered: The optimization considers all objectives. A blend of the 

objectives discussed above are observed. The demand charge terms appear to exert the 

greatest influence on 𝑪𝟔 as the net load profile is mostly flat with two levels of net 

demand during peak (higher) and non-peak (lower) periods.  

𝑪𝟕– Non-Optimized Charging: No optimization is considered. The vehicles simply charge 

as soon as they arrive at full charging power until they are completely charged. All solar 

power is consumed until the net demand is zero; excess power is sold back to the 

utility. As a result, the charging profile shows several demand peaks of varying 

magnitude throughout the day. Negative demand is observed in the middle of the day, 

resulting in reverse power flow back to the utility at a time when the energy price is low. 

The most alarming characteristic however is the spike in demand during the peak hours. 

Figure 17: Net Load Demand at the Substation for Each Set  
of Optimization Cases on September 5, 2016 

 

𝑪𝟏- Noncoincidental demand charge only; 𝑪𝟐- Peak demand charge only; 𝑪𝟑- Energy arbitrage only; 𝑪𝟒- Wholesale 
market sales only; 𝑪𝟓- Capacity deferment only; 𝑪𝟔 – All objectives;  𝑪𝟕 – Non-optimized charging 

Source: Center for Energy Research, University of California San Diego, 2018 
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The net load performance statistics for September 5, 2016, are provided in Table 3. The 

total cost is determined as the sum of all business cases. The table agrees with the 

behavior observed in the net load profiles. Case 1 (𝐶1) has the lowest peak demand over 

the day followed by the optimization with all objectives (composite optimization, 𝐶6). 

Considering all objectives results in a higher peak demand as it increases demand 

during off-peak hours to avoid peak demand charges during the peak period. Cases 

𝐶1, 𝐶3,  and 𝐶6 use the available solar energy completely (100% self-consumption) and, 

thus, have the fewest energy purchases. 

With respect to minimizing consumption during periods of high LOLP, both 𝐶5 (capacity 

deferment, by definition) and 𝐶3 (energy arbitrage) have the same effect. This is because 

the highest costs for both objectives occur during the same time, and thus both work to 

minimize EV charging during this period. As expected, considering all objectives (𝐶6) 

results in the lowest cost over the day, while objective 𝐶5 incurs the greatest cost. The 

large cost is because LOLP is very low and thus incurs minimal costs in comparison to 

the demand charges and energy charge, which are increased in an effort to reduce 

consumption during large LOLP. 

Table 3: Energy and Cost Statistics for the Operation on September 5, 2016 

 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 𝑪𝟕 

Peak Power Demand [kW] 37.8 126.7 126.9 113.1 146.7 44.0 125.6 

Energy Purchase [kWh] 805 1019 805 1139 917 805 832 

PV Self Consumption [%] 100 44 100 12.1 70 100 92.7 

Ratepayer Costs [$] 5.68 2.58 0.73 2.53 0.73 4.23 4.88 

Total Cost [$] 879 2169 2300 2304 2632 871 2313 

The most desirable value in each row is highlighted in blue, and the least desirable is highlighted in red. The 
optimization cases are as follows: 𝑪𝟏- Noncoincidental demand charge only; 𝑪𝟐- Peak demand charge only; 𝑪𝟑- 
Energy arbitrage only; 𝑪𝟒- Wholesale market sales only; 𝑪𝟓- Capacity deferment only; 𝑪𝟔 – All objectives;  𝑪𝟕 – 

non-optimized charging 
Source: Center for Energy Research, University of California San Diego, 2018 

5.3 Annual Operation 
The cost for considering each optimization case for the year is displayed in terms of the 

cost associated with each business case in Figure 18As expected, the optimization 

objective that considers all business cases (𝐶6) possesses the least cost (greatest profit) 

in that category.  

The largest overall cost for all cases is due to the noncoincidental demand charges and 

energy purchases, while all other business cases produce costs that are an order of 

magnitude less. Energy sales produce little profit in all cases due to the low wholesale 

market prices. In the cases where the noncoincidental demand charge is considered 

(𝐶1 , 𝐶6), the market sales are non-existent. This result is because to sell power to the 

market, the generation would not be available to offset local demand, requiring more 

energy purchases and increasing the peak demand. The large discrepancy between the 

demand charge and the volumetric price of electricity makes it undesirable to raise the 
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demand to sell electricity. A similar logic can be applied to describe the lack of wholesale 

market sales when considering only energy arbitrage (𝐶3). 

The cost of capacity deferment is also negligible in all cases, relative to the other business 

cases. The discrepancy is because 1) LOLP is negligible for most of the year and small 

when nonnegligible; and 2) VOLL is a relatively small value. Larger VOLL in specific 

microgrid applications that require high reliability would yield a higher importance and 

cost. 

Figure 18: Distribution of Annual Costs Among the Terms of the Objective 
Function/Business Cases for All Seven Cases 

 

𝑪𝟏- Noncoincidental demand charge only; 𝑪𝟐- Peak demand charge only; 𝑪𝟑- Energy arbitrage only; 𝑪𝟒- Wholesale 

market sales only; 𝑪𝟓- Capacity deferment only; 𝑪𝟔 – All objectives;  𝑪𝟕 – non-optimized charging. The costs for 

each business case are split by category (x-axis) into Non coincidental demand charge (NCDC); Peak demand 
charge (PDC); Energy arbitrage; Wholesale market sales; Capacity deferment (CD). 

Source: Center for Energy Research, University of California San Diego, 2018 
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CHAPTER 6: 
Conclusions 

6.1 Value of Solar Forecasting and EV Charging to the 
Microgrid Customer 

In Chapters 2 through 4, the authors demonstrated how a regional solar forecasting 

network can improve solar forecast accuracy. Further, improved solar forecast accuracy 

was shown to improve the ability of EV charging schedules to flatten net load. Chapter 5 

represents the culmination of the work where all techniques were applied to analyze the 

value of solar forecasting and flexible EV charging to microgrid customers and 

ratepayers. 

The microgrid customer costs and behaviors are dominated by demand charges. Simply 

scheduling around the demand charges will have the largest impact on costs for the 

customer, similar in magnitude to optimizing for all costs (𝐶6). In most cases, optimizing 

for any other singular optimization objective (𝐶2-𝐶5) actually increases microgrid costs 

over the non-optimized (𝐶7), as demand charges increase. 

Optimizing around market sales only was shown to generate the highest costs. The high 

costs are due to the fact that PV is not used to meet load. This has the effect of 

requiring higher energy purchases and increasing daily demand charges because 

scheduling occurs sporadically. The market spot prices are typically much lower than 

the utility energy tariffs. 

For similar reasons, considering market sales in the full optimization has little effect. 

Specifically, when balancing energy purchases with market sales, it is economically 

viable to sell power only when the market price exceeds the real-time price, which 

occurs only 6.1% of all time steps. For fixed cost and time-of-use schemes even fewer 

periods of favorable wholesale prices exist. This is expected since it indicates periods 

when the utility sells energy at a loss. 

However, even during periods when the price is favorable for wholesale market sales, all 

power cannot be sold, as shown in Figure 19. The market price exceeds the retail price 

from 01:15 - 08:00 PST and 14:15 - 16:00 PST. In the morning, all available generation is 

sold during the price surplus. However, in the afternoon, no power is sold. As observed 

the power is sold in the afternoon only when the demand charges are not considered in 

the optimization. to sell PV generation (as opposed to using it to offset local demand), 

energy must be purchased from the utility, thus raising the demand level for the day. 

The profit from energy sales is not enough to overcome the increase in demand charge. 



34 

Figure 19: PV Generation Use on June 26, 2016 

 

Considering the Optimization of (left) All Objectives (𝑪𝟔) and (right) Objectives With the Demand Charges 

Removed (𝑪𝟒)The left y-axis describes the relative PV power that is sold or consumed. The right y-axis plots the 

price difference between market price and retail price. 
Source: Center for Energy Research, University of California San Diego, 2018 

The authors expect that, since the microgrid costs are governed mostly by demand 

charges, allowing the EVs to discharge will have little effect on the net load curve 

(specifically flat net load profile across the majority of day). Allowing EVs to charge and 

discharge may make the wholesale market sales more viable, as more power can be sold 

when wholesale rates exceed retail rates, thus increasing the overall profit observed 

from this use case. 

6.2 Ratepayer Costs for Capacity Deferment 
Overall, the ratepayer costs for capacity deferment are a small fraction of the total 

costs. This is because the LOLP and the value of unserved load are too small for the 

California ISO system. LOLP is nonnegligible for only 3% of the year. The low-capacity 

deferment costs actually cause the full optimization scheme to increase ratepayer costs 

by 22% compared to the non-optimized operation. 

However, 26% and 20% reductions in ratepayer costs for capacity deferment are 

observed by optimizing for either ratepayer costs (𝐶5) or energy arbitrage (𝐶3), 

respectively. The RTP peak costs typically coincide with high LOLP; thus, RTP serves as 

an effective proxy for reducing ratepayer costs while actually targeting microgrid costs. 

In fact, RTP energy arbitrage is superior at reducing load during periods of peak 

demand as arbitrage opportunities exist every day of the year, as opposed to just 

periods of high LOLP. 
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CHAPTER 7: 
Recommendations 

This study reveals that using aggregated vehicle load large enough to absorb the solar 

output on the studied circuit is years in the future. The studied circuit showed that 

connected PV output created an energy valley of 64.5 MWh. Using a typical commuter 

PEV that requiring an average of 7 kWh means that roughly 9,200 vehicles must be 

connected during the solar output period to create an adequately sized energy sink to 

absorb the full amount of this oversupply. The feeder serves about 220 office, retail, 

and restaurant buildings that could potentially host EV charging stations however, 

charging 9,200/220 = 42 EVs on average per building seems unrealistic. For reference, as 

of January 2018, www.plugshare.com listed 12 locations with 20 stations within the 

feeder territory. Assuming 8 hours of charging at 9,200 stations, the load increase for 

the feeder would be 8 MW over the workday, which would likely trigger costly upgrades 

to lines and secondary transformers. The goal of absorbing all of this energy is beyond 

the reach of today’s PEV adoption rates and indeed those rates for years to come. On the 

other hand, Executive Order B-48-18 calls all state entities work with the private sector 

and all appropriate levels of government to put at least 5 million zero-emission vehicles 

on California roads by 2030 and to spur the construction and installation of 200 

hydrogen fueling stations and 250,000 zero-emission vehicle chargers, including 10,000 

direct current fast chargers, by 2025. The executive order will improve the perspectives 

for EV charging and grid net load balancing in California. But at 929,000 commercial 

buildings in California, Oregon, and Washington (Commercial Building Energy 

Consumption Survey, 2015), even 250,000 chargers will fall short of the amounts 

required in this example. 

Considering the scope and scale of the energy valley, accelerated adoption of EVs is 

required to provide adequate valley filling and further assist the system operator in 

mitigating grid variability during peak solar production. 

● Business Model Weakness in Public Infrastructure: 

Currently, workplace charge hosts find that providing this amenity for 

employees is a break-even proposition at best. Panel upgrades, trenching, and 

other installation costs can be as high as $5,000 per outlet. An average electric 

vehicle charging station will likely deliver 8 kWh/day on average. Assuming a 

markup of $0.10/kWh, the undiscounted payback period for equipment and 

installation can be more than 10 years, longer than the life span of the 

equipment. 

● Commercial Medium and Heavy-Duty Vehicles Help 

Medium- and heavy-duty commercial vehicles can play an important role in solar 

integration, but not all will be available for “long-dwell” layovers during solar 

http://www.plugshare.com/
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energy output hours needed for smart charging. School buses are uniquely 

suited to take advantage of excess solar energy during daytime, while most other 

commercial vehicles (forklifts, etc.) typically are in use during the day and need 

to be charged as soon as possible when plugged in.  

● Mismatch Between Vehicles Necessary and Vehicles That Charge at Work: 

○ EVs with the largest batteries and onboard chargers are capable of 

providing the biggest grid-support benefits. 

○ Conversely, these EVs need workplace charging (or any public AC Level 2 

charging) the least of any EVs on the road. 

○ Plug-in hybrid electric vehicles are more likely to use workplace charging 

than EVs due to the average commuting distance for most people falling 

well within the range of the average EV. 

What Can This Mean for Policy Makers? 

● New thinking on incentives may be necessary: To make these controllable 

loads available during peak solar energy output periods when they can provide 

important reliability benefits, new policies, and incentives must be devised that: 

● Encourage some BEV owners to plug in at work whether they need to or not, 

for example, by providing lower electricity rates than for evening home 

charging or remunerate EV owners for allowing flexible charging or both. 

● Encourage employers to add more EV charging stations than they might 

otherwise 

● Emphasize the workplace load-augmentation advantages of smart Level 2 

over Level 1 EV charging stations.3 Smart EVSE are offered in Levels 1, 2, and 

3 commercial duty qualities and are generally more expensive than basic 

chargers. They offer differing levels of communication with the user, site 

host, utility grid, and the Internet, depending on model and manufacturer. 

● Offer incentives for using more medium and heavy-duty commercial vehicles 

with “long-dwell” charging patterns during the day, such as school buses. 

 

3 Level 2 charging EV is generally twice as fast as Level 1 and provides 10 to 20 miles of range per hour of 
charging. It requires 240 V service, which is readily available in many buildings and homes. 
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ACRONYMS AND ABBREVIATIONS 

Acronym Definition 

AAN  Artificial Neural Network 

AC  

BAU  Business as usual 

BEV  Battery Electric Vehicle 

California ISO California Independent System Operator 

CCD Charge-coupled Device 

DCHLS Demand cleaning house logic sequence 

DCT Demand control threshold 

DER Distributed Energy Resource 

EV Electric Vehicle 

EVSE Electric Vehicle Supply Equipment 

GHI Global Horizontal Irradiance 

HDR High Dynamic Range 

LOLP Loss of Load Probability 

MAPE Mean Absolute Percentage Error 

NL Net Load 

NRBR Normalized Red Blue Ratio 

PEV Plug-in Electric Vehicle 

PV Photovoltaic 

RA Resource adequacy 

RGB Red green blue 

RMSE Root Mean Square Error 

RTP  Real time pricing 

SCAQMD South Coast Air Quality Management District 

SOC State of charge 

TOU Time of use 

USI  UCSD Sky Imager 

VOLL  Value of lost load 

VPP Virtual Power Plant) 
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