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PREFACE 
The California Energy Commission’s Energy Research and Development Division supports 

energy research and development programs to spur innovation in energy efficiency, renewable 

energy and advanced clean generation, energy-related environmental protection, energy 

transmission, and distribution and transportation.  

In 2012, the California Public Utilities Commission established the Electric Program Investment 

Charge (EPIC) to fund public investments in research to create and advance new energy 

solution, foster regional innovation, and bring ideas from the lab to the marketplace. The 

California Energy Commission and the state’s three largest investor-owned utilities – Pacific Gas 

and Electric Company, San Diego Gas & Electric Company, and Southern California Edison 

Company – were selected to administer the EPIC funds and advance novel technologies, tools, 

and strategies that provide benefits to their electric ratepayers. 

The Energy Commission is committed to ensuring public participation in its research and 

development programs that promote greater reliability, lower costs, and increase safety for the 

California electric ratepayer and include: 

• Providing societal benefits. 

• Reducing greenhouse gas emission in the electricity sector at the lowest possible 

cost. 

• Supporting California’s loading order to meet energy needs first with energy 

efficiency and demand response, next with renewable energy (distributed generation 

and utility scale), and finally with clean conventional electricity supply. 

• Supporting low-emission vehicles and transportation. 

• Providing economic development. 

• Using ratepayer funds efficiently. 

Understanding and Reducing Barriers to Wind Energy Expansion in California is the final report 

for the Understanding and Mitigating Barriers to Wind Energy Expansion in California project 

(Grant Number EPC-15-068) conducted by Lawrence Berkeley National Laboratory. The 

information from this project contributes to the Energy Research and Development Division’s 

EPIC Program. 

For more information about the Energy Research and Development Division, please visit the 

Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 

Commission at 916-327-1551. 

 

file:///C:/Users/eluk/Desktop/www.energy.ca.gov/research/
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ABSTRACT 
Accurately characterizing site-level wind energy variability is essential during wind project 

development. Understanding the features and probability of low-wind years is of interest to 

developers and financers. Numerous and varied wind observations makes these 

characterizations challenging, thus techniques to improve these characterizations are valuable. 

To improve resource characterization, this research links site-level, hub-height, wind resource 

variability to regional wind variability of meteorological patterns (for either the central or 

southern California region) to a-scale greater than 600 miles. The approach involves statistical 

clustering of high-resolution modeled wind data for California from 1980 to 2015. Application 

of these methods reveal unique meteorological patterns driving low and high wind years at five 

wind project sites. Correlations between climate modes (recurring large-scale climate patterns 

such as El Niño/La Niña) and the frequency of different regional wind patterns, a linkage 

valuable for wind resource characterization and forecasting, are identified. This approach can 

be applied across locations and may benefit many aspects of wind energy resource evaluation 

and forecasting. Researchers also focused on climate change impacts on California wind 

resources. First, the research team examined the 36-year historical high-resolution modeling for 

temporal trends, illuminating already-occurring wind regime changes that are consistent with 

global warming: anomalously hot summer days increased at half a day per year, and stagnant 

conditions increased at one-third of a day per year. Second, the Variable-Resolution Community 

Earth System Model was used to investigate climate change impacts on wind resources between 

a 1980-2000 period and a midcentury 2030-2050 period. These projections suggest that wind 

power generation capacity throughout California is expected to increase during the summer 

and decrease during fall and winter, based on significant changes at several wind farm sites. 

Large-scale seasonal patterns from these model simulations were investigated to understand 

the synoptic-scale impact on localized wind speed change.  
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EXECUTIVE SUMMARY  

Introduction  

Wind power is an affordable and sustainable electricity generation source that helps reduce 

electric sector emissions of greenhouse gases and criteria air pollutants. To help realize these 

goals, this project aims to reduce barriers to wind energy expansion, namely by improving the 

description, or characterization, of how much the wind resource varies across time. “Wind 

resource” in this case is defined as the amount of wind energy that could be generated over a 

specific period. For example, a project might generate 20 percent more energy in one year 

compared to the previous year, and if this difference were due solely to differences in wind 

speeds, rather than maintenance or other operational issues, this difference would represent 

the change in wind resource.  

The variability in wind resource is directly linked to project revenue streams and, thus, to 

project viability. However, it is challenging to predict the average level of the wind resource and 

the annual and seasonal variability of that resource at a particular project site. This challenge is 

partly due to a lack of long-term measurements of winds (particularly of measurements at 

heights above ground that are relevant for wind energy planning). The uncertainty regarding 

available wind resources translates into revenue risk, which translates into higher costs. 

However, the challenges created by wind resource variability affect more than just estimates of 

long-term project revenue. Operational decisions for the electricity system must be made based 

on the predicted wind resource available across multiple locations over the course of the next 

several minutes, hours, and days. Errors in the forecasts and characterization of available wind 

resources on these time scales can increase the system-wide costs of providing electricity. Thus, 

the ability to understand and forecast wind resources at multiple time scales can not only help 

reduce project development costs, but also help smooth the integration of wind generation into 

the power grid.  

Yet, there is still another reason to pursue research into wind resource variability: climate 

change may alter the wind patterns. Climate change could potentially increase or decrease the 

wind resources available at sites across California, and could do so over the next decades, 

which is within the expected lifetimes of new wind energy facilities. Moreover, improved 

turbine and tower technology may allow wind project developers to explore new locations and 

design projects for even longer lifetimes, potentially exposing new projects to additional 

resource variability, associated with climate change, that has been previously ignored or 

unexplored.  

This project, therefore, aims to provide new insight into what meteorological phenomena are 

associated with periods of strong and weak wind resources, as well as how California wind 

resources might change over time.  
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Project Purpose  

This project served two purposes, looking retrospectively at the recent past and prospectively 

at the near future. The first was to develop new methods to characterize variation in wind 

resources and use those methods to characterize historical wind resource variation at five 

major wind development sites in California, providing a new, publicly available record of 

resource variability at these locations. The research also determined the influence of climate 

modes (that is, recurring large-scale climate patterns such as El Niño/La Niña) on wind 

resources at five sites: Central California, which includes the Shiloh and Altamont Pass sites, 

and Southern California, which includes the Alta, San Gorgonio, and Ocotillo sites, and whether 

climate change is already influencing California wind resources.  

With these new methods and data, scientists and wind project developers can refine the 

processes of site-level resource assessment and reduce risk and cost of wind development. 

Furthermore, the new methods could seed further research, leading to improved short-term 

wind resource forecasting. 

The second purpose was to produce a new, state-of-the-art, high-resolution simulation of future 

wind resources across California, specifically at the five major wind development sites. New 

climate simulations, such as those described in this report, are necessary because typical 

climate models do not adequately account for the complexity of California’s terrain, and other 

efforts to produce higher-resolution forecasts of wind power resources across California are 

not publicly available and are limited by expensive computational demands. The analyses were 

designed to provide new results about the sensitivity of California wind resources to climate 

change, and produce an understanding of larger-scale climate changes (that is, synoptic scale, 

which means greater than 1,000 kilometers, or 600 miles) in the climate system that drive local 

changes to wind resources. When combined with other independent wind resource simulations, 

these results will build confidence in the forecasts of future wind speeds and reduce risks to 

project development, thus reducing costs to ratepayers. 

Project Approach  

The Research Team 

The project team was led by a research scientist at Lawrence Berkeley National Laboratory. The 

University of California Davis and Lawrence Berkeley National Laboratory led the climate 

modeling, and an industry partner, DNV GL, was the private source of “Virtual met” data and 

enhanced public and industry outreach. Dr. Ryan Wiser (Lawrence Berkeley National Laboratory) 

was a strategic advisor on the project.  

Process to Analyze Historical Variability in California Wind Resources 

The research team analyzed the historical variability in California wind resources during 1980 – 

2015. This analysis was based on the Virtual met product, a proprietary meteorological model, 

which provided hourly hub-height wind fields, resolved to a 4-km resolution, for California. The 

Virtual met product was carefully evaluated against independent observations and compared to 
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multiple reanalysis products, which are historical meteorological simulations based on a large 

set of archived observations. Reanalysis data are coarse (~50 kilometer grid cells) but have 

complete geographic coverage across many decades. 

To develop new insight into historical variability patterns, the research team grouped and 

categorized days with similar wind regimes in the Virtual met product. This daily categorization 

allows for the identification of wind resources patterns that could not be seen by analyzing 

seasonal and annual trends.  

For this analysis, California was split into two domains – one focused on Central California 

containing the northern, coastal wind resource areas (Shiloh and Altamont Pass) and one 

focused on Southern California with the major desert wind resource areas (Alta, San Gorgonio, 

and Ocotillo). The research team defined 10 typical daily wind regimes (a regional pattern of 

wind speeds and directions during a day) for each domain. The team analyzed synoptic-scale 

conditions as a function of each of the wind regimes. Moreover, at each of the five sites, the 

team analyzed the wind resource found under each of the wind regimes. The researchers used 

differences in wind resource under each wind regime to characterize what types of weather 

patterns drive wind energy generation at each site. Differences in the wind regime frequency 

(types of weather) and intensity (the speed of the winds given a specific wind regime), and in 

total wind resource (the electricity one could generate given the wind speeds at specific wind 

plant sites), were used to identify meteorological patterns associated with high and low wind 

resource years at each site. Finally, the team correlated the frequency of wind regimes with 

climate mode and analyzed it over time for signs of climate change. 

Process to Analyze Climate Change and California Wind Resources 

In this project, the research team used a state-of-the-art global climate model (Variable 

Resolution Community Earth System Model) to simulate midcentury changes to future wind 

resources in California. This model allows for a high-resolution representation of California 

(about 14 km) with a seamless connection to a coarser representation of the rest of the globe. 

This research is the first time such a model was used explicitly to examine the effects of 

climate change on California wind resources. The team carefully validated the historical output 

from this model against available observations, as well as reanalysis products and the Virtual 

met product. 

Future changes to wind resources were analyzed at all five sites by comparing the simulation of 

1980 – 2000 to the simulation of 2030 – 2050. The research team analyzed changes to resource 

variability across multiple time scales. Furthermore, the team identified synoptic-scale and 

localized drivers behind seasonal wind energy change. 

Technical Advisory Committee 

The research team formed a technical advisory committee to give advice and constructive 

criticism on the research approach and on making the study as useful as possible to energy 

investors, wind developers, and energy planners and regulators. The committee was composed 

of representatives from an energy investment firm, climate scientists, and the three state 
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energy agencies—California Public Utility Commission, California Independent System 

Operator, and the California Energy Commission. The guidance from the committee led to 

changes in the set of wind energy sites studied as well as adding an analysis of how the supply 

would match demand throughout the day to show how consistent the wind resource is and will 

be in the future. 

Project Results 

Historical Variability in California Wind Resources 

The researchers identified the types of meteorological patterns that drove wind energy 

production at each focus site. The wind resource was different under each wind regime and at 

each of the five wind sites. For example, only a few wind regimes generated most of the energy 

at some of the sites, while a diverse set of weather patterns was needed to produce annual 

energy generation at other sites. Identifying cluster types (wind regimes) permits an intuitive 

link between observable weather phenomena and site-level production patterns of wind energy. 

Each of these wind regimes was associated with a distinct meteorological pattern at the 

synoptic scale. In addition, each wind regime was associated with distinct daily patterns at each 

of the five sites. Thus, the clustering method allowed direct links to be made from the synoptic-

scale meteorological patterns to regional wind patterns to site-level daily wind cycles.  

The research team used the clustering framework to compare the top (windiest) years to the 

bottom (calmest) years. At all sites, dramatic differences in total potential energy generation 

(and thus project level revenue) was found between the top and bottom year (with the least 

difference being found at Alta, where the best year was about 20 percent greater than the worst 

year, while the best year at Ocotillo, the site with the largest difference, was almost 50 percent 

greater than the worst year). At each site, unique changes to the frequency or the wind speed 

intensity or both of certain wind regimes were identified. This allowed the linkage of low and 

high wind years to patterns in regional and synoptic-scale meteorological patterns. This is the 

first step in developing a chain of causality describing why certain years provide low wind 

resources (that is, if one knows what synoptic-scale patterns occur more frequently in low wind 

years, one could investigate what causes those synoptic-scale patterns to occur). Thus, this is 

also the first step in developing the ability to forecast the likelihood of an upcoming strong or 

weak wind resource year for a particular site. 

Finally, the research team analyzed the effect of climate mode on wind energy generation at 

each site. While climate mode indices were not correlated directly with total monthly wind 

generation, they were correlated with the frequency of certain wind regimes and, therefore, 

were correlated with the submonthly patterns of wind generation. Thus, predicting near-term 

wind resources could benefit from including the effects of climate mode on wind regimes. On 

longer time scales, accounting for changes to wind patterns associated with climate mode could 

benefit research on the effects of climate change, as climate change could potentially affect 

wind resources through multiple pathways, including through changing the frequency and 

intensity of climate modes. 
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Climate Change and California Wind Resources 

Based on the historical record, California may already be seeing impacts of climate change on 

wind resources. Specifically, the number of days with hot summer conditions and non-summer 

dead (calm) days in Central California increased at a rate of roughly one-half and one-fourth 

day per year, respectively, from 1980–2015. The changes to the frequency of these regimes did 

not produce a detectable impact in the time series of total seasonal or annual generation. 

However, if the patterns of change continue, total electricity generation potential will likely be 

affected. 

Looking forward with the variable resolution model, the research team found significant 

seasonal changes in the available wind resource at most sites, with an increase in summer and a 

decrease in fall and winter at all five sites, if greenhouse gas emissions continue at current 

rates. Synoptic-scale and localized drivers (such as changes to the surface pressure gradient 

between the Central Valley and the Mojave Desert) behind seasonal wind energy change were 

also identified, and suggested climate change may tend toward synoptic patterns that lead to 

higher wind speed during summer and lower wind speed during fall and winter.  

This finding was particularly interesting in that all five sites indicated change in the same 

direction during certain seasons. This finding, combined with the explicit analysis of synoptic-

scale patterns, suggested that the model simulations indicate climate change may alter the 

statewide patterns of ventilation (usually onshore flow) and impact wind generation across the 

state. A limitation here is that this simulation may not agree with forecasts produced by other 

models, although some initial comparisons to past work were included. By identifying the 

specific changes to future synoptic conditions, this work provides a useful starting point for 

comparisons across models that can provide more useful information than simply comparing 

the average changes to modeled future wind resources at individual locations.  

Overall, this study improves the characterization of uncertainty around the magnitude and 

variability in space and time of California’s wind resources in the near future, and enhances the 

understanding of the mechanisms related to the trends in wind resource variability. Most 

importantly, the simulation forecasts non-negligible changes to future wind resources, and thus 

highlights the need for future research on this topic, including comparison with other climate 

models. Some specific research directions include: 

• Refining the method of correlating short-run site-level wind measurements to a nearby, 

longer-run record of wind speeds, as is often performed during the site evaluation stage 

of project development. 

• Improving wind power forecasts of site-level resources from easily observed and 

predicted synoptic-scale meteorological patterns and climate modes. 

• Testing whether the techniques in this study can help identify conditions that give rise 

to extreme wind events. This could also have applications in research related to air 

quality or wildfire forecasting. 

• Improving projections of wind resources under climate change. 
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Project Outreach 

The team presented this work at numerous conferences including the American Geophysical 

Union Fall Meeting, December 2017 and the annual Community Earth System Model meeting in 

2017. Several journal articles have been published based on this study: Renewable Energy 

Journal (2018) https://www.sciencedirect.com/science/article/pii/S0960148118304397, Data in 

Brief (2018) https://www.sciencedirect.com/science/article/pii/S2352340918305341 and 

Climate Dynamics (2018) https://link.springer.com/article/10.1007%2Fs00382-018-4421-y. 

Benefits to California  

This project offers specific benefits to California, as well as more general advances in scientific 

methodology. The ability to readily, and intuitively, link site-level wind patterns to larger-scale 

wind and meteorological fields could be useful in many applications. 

• This report provides a new and publicly available assessment of the historical wind 

resource variability at five important wind power development sites in California. 

• This report provides new predictions of future changes to wind resource at the same 

five sites and assesses changes to larger-scale synoptic conditions, all based on a state-

of-the-art, high-resolution climate model. Furthermore, the changes predicted here can 

provide necessary context for additional research on climate change impacts on wind 

resources. 

• These clustering methods have great potential to help improve and contribute to the 

development of new applications that could be used to understand and forecast wind 

variability across a variety of temporal scales. For instance, this study could improve 

electricity supply forecasting for grid management or inform long-term energy planning 

by refining wind projections. 

• This project developed new methods for assessing wind variability and for classifying 

wind patterns across California. These methods can be applied in all wind project 

locations. By reducing the uncertainty in wind energy projections, this approach can 

reduce risk to investors and lead to greater investment in this low-carbon energy source. 

• The methods developed in this project may seed further research.  

Overall, this work advances the scientific understanding of wind resource variability over many 

time scales. As the understanding of these topics is improved, the precision with which wind 

resources can be forecast will improve, which will lower the risk, and associated costs, of 

developing wind power. This cost reduction will benefit electricity consumers and developers 

and enable wind power to serve a greater portion of power generation needs within the state 

and elsewhere. Moreover, all of California will benefit from reduced emissions of local 

pollutants and greenhouse gases associated with this clean energy resource. 

https://na01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS0960148118304397&data=01%7C01%7C%7Cf02cd1f5b4fa4f9d8d5008d65bd65b88%7Cac3a124413f44ef68d1bbaa27148194e%7C0&sdata=0MQhskx9sWERsmkmqPdwITly4E4f8W7%2BQvqxfA%2BNcSw%3D&reserved=0
https://www.sciencedirect.com/science/article/pii/S2352340918305341
https://link.springer.com/article/10.1007%2Fs00382-018-4421-y
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CHAPTER 1: 
Introduction 

1.1 Background and Overview 
The Fourth California Climate Change Assessment indicates that, in California, temperatures 

will rise significantly during this century, wildfire risks will increase, extremely hot days will 

likely become more prevalent, and other changes will likely occur that, together, will stress 

California’s water and electricity systems and natural ecosystems, as well as potentially have 

major impacts on public health (Bedsworth et al. 2018). However, that report also indicates 

“warming will be significantly greater with higher emissions than with lower emissions.” To 

help minimize emissions from the electricity sector, California, through Senate Bill 100 (De 

León, Chapter 312, Statutes of 2018), requires utilities to procure 60 percent of their electricity 

from renewable sources by December 31, 2030 and 100 percent from eligible renewable energy 

resources and zero-carbon resources by December 31, 2045.  

Over the past decade or so, dramatic cost reductions have been seen in both solar and wind 

power generation (Barbose et al. 2017, Bolinger et al. 2017, Wiser et al. 2017). Recent U.S. wind 

power generation prices, in particular, compare very favorably to forecast prices of gas-fired 

generation (Wiser et al. 2017). Furthermore, wind and solar power generation are already 

contributing to air quality and climate goals nationally and within the state and have, for 

example, reduced air pollution-related mortalities by 3,000 to 12,700 across the United States 

during the nine-year period 2007 through 2015 (Millstein et al. 2017), where the wide range is 

based on varying epidemiological studies and varying estimates of pollutant transport.  

Thus, wind energy is an affordable electricity generation technology that can help reduce 

electric sector emissions of greenhouse gases and criteria air pollutants. (Criteria air pollutants, 

such as sulfur dioxide, nitrogen oxides, and fine particulate matter, are linked to local and 

regional public health damages.) Although not the focus of this report, other renewable 

generation or energy efficiency strategies can also provide similar benefits. 

To help support the above goals, this project aims to reduce barriers to wind energy expansion. 

Though the wind energy sector has rapidly expanded during recent years domestically and 

globally, many challenges remain that delay or prevent development in many situations. The 

U.S. Department of Energy’s Wind Vision (DOE 2015) describes challenges and potential 

mitigating actions. Some of the most prominent challenges described within that document 

include reducing wind costs through improving technology, wind resource characterization, 

supply chain, and related logistics. While there are many potential avenues to reduce barriers to 

wind energy expansion, this project focuses on developing new techniques to assess wind 

energy resources across regions and at particular sites. This focus also fits well within the 

national Wind Vision, as improving wind resource characterization is listed as Action 1.1 in the 

roadmap of suggested actions within that document. The research has both a prospective and 

retrospective focus, aiming to help develop techniques to evaluate resource variability based on 
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the historical record, as well as to assess the potential change to resources due to future 

climate change.  

Estimating lifetime, site-level power generation for a project is a key input into many aspects of 

the decision-making process of a project. Accurate, site-level quantification of resource 

variability, especially characterization of low wind years, is essential information for project 

developers and financers (Tindal 2011, Bailey et al. 2015, Bolinger 2017). However, site-level 

resource assessment is challenging due to a lack of local long-term hub-height wind 

measurements, and many approaches attempt to overcome this limitation. For example, Carta 

et al. (2013) describes “measure-correlate-predict” approaches, which use short-run, site-level 

measurements combined with long-run reanalysis data, or nearest available long-run 

observations, to estimate long-run resource variability at a particular site. Also, during 

operations, understanding and forecasting short-term variability at the project level can help 

reduce grid-level challenges that arise with high levels of wind penetration (Albadi et al. 2010, 

Xie et al. 2011, Archer et al. 2017). Thus, improving the general understanding of wind resource 

variability can help support many aspects of wind power development and operations. 

Looking forward improved turbine and tower technology may allow wind project developers to 

explore new locations and design projects for longer lifetimes, potentially exposing new 

projects to resource variability, associated with climate change, that has been previously 

ignored or unexplored. Like many other renewable energy technologies, wind energy is 

influenced by climate change through changes in global energy balance and the resulting 

atmospheric circulation (Hubbert 1971). Research efforts have examined climate impacts on 

wind resources at various regions around the globe (Pryor et al. 2011, Pryor et al. 2013, 

Goddard et al. 2015, Gross et al. 2016, Haupt et al. 2016, Ma et al. 2016, Karnauskas et al. 2017, 

McElroy et al. 2017). The few studies that have examined the impact of climate change on wind 

resources over California using global or regional climate models or both (Rasmussen et al. 

2011, Duffy et al. 2014) have been inconclusive. These studies have shown sensitivity to model 

setup, including choice of physics scheme, downscaling method, and number of models used 

(Segal et al. 2001, Archer et al. 2003, Pryor et al. 2005, Sailor et al. 2008, Yu et al. 2015). 

Furthermore, the spatial variability of wind energy resources and related sensitivity to model 

settings emphasizes the benefit of higher-resolution models and the use of multiple models 

(Rasmussen et al. 2011).  

1.2 Project Objectives  
The goals in this research are to help reduce, over a 10- to 30-year horizon, wind energy 

development risks resulting from uncertainty in wind regimes by improving characterization of 

wind resource magnitude, variability, and operating conditions and to help convey this risk to 

stakeholders to help optimal planning and growth for the wind industry. 

The objectives of this research are to define what drives annual variability in wind resources in 

California. Specifically, the aim of this project is to focus on major wind sites in California and 

to describe and characterize the historical variability in wind resources at these sites. This 

project will determine what specific meteorological patterns are seen during “good years” and 
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during “bad years” and investigate the larger-scale patterns associated with the variability in 

annual wind resources. Of particular note, this report will assess how wind resources have 

varied with changes to the intensity in climate modes (such as El Niño/La Niña). 

Looking forward, the report will investigate how climate change may affect wind energy 

resources out to midcentury. The report will investigate links to climate change impacts in the 

historical wind power record as well as use a variable-resolution global climate model to 

explore high-resolution predictions of wind resources in California 

1.3 Report Organization 
The investigation depends on the use of two main tools: The first is a retrospective high-

resolution modeling product, “Virtual met,” produced by DNV GL. This product covers 

California at 4 km resolution from 1980 – 2015. The second is variable resolution global climate 

model, the Variable-Resolution Community Earth System Model (VR-CESM). VR-CESM was used 

to simulate two periods, 1980 – 2000 and 2030 – 2050. The research team set the VR-CESM to 

have a highly resolved regional representation of California (14 km) with a coarse 

representation of the rest of the globe. The team used the VR-CESM model to produce the 

forward-looking analysis of the sensitivity of wind resources to climate change.  

The investigation of historical variability in wind resources is based on a statistical technique 

that can provide a deeper and intuitive understanding of the variability in wind resources. This 

approach is to group together days with similar meteorological, or other properties, using 

statistical clustering and related techniques. This approach can help link variation in wind seen 

at individual sites to meteorological patterns at larger geographic and multiple temporal scales, 

providing insight into the mechanisms for, and potentially predictability of, such variation. This 

approach is described within the Methods Section 2.1.4, and historical variability results are 

described in Chapter 3. 

This investigation focuses specifically on five major California wind power sites – Shiloh, 

Altamont Pass, San Gorgonio, Alta, and Ocotillo. These sites were selected to show a variety of 

major wind power locations in the state, including locations with growth potential or upcoming 

repowering requirements. 

The remaining sections are organized as follows: Within the Methods section, the models, 

observational and reanalysis data sets, and the statistical clustering technique are detailed. 

Moreover, a detailed model validation section is included within the Methods section. Chapter 3 

describes results of the retrospective analysis of historical wind variability (3.1) and climate 

mode impacts on wind resource variability (3.2). Chapter 4 presents the prospective analysis of 

climate change impacts on wind resources. The analysis of climate change impacts includes a 

discussion of impacts that have already been observed, as well as a section on the modeled 

future impacts. The content of this report has also been published in the peer-reviewed 

literature, please see Millstein et. al. (2018) and Wang et al. (2018a). 
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CHAPTER 2: 
Methods and Model Validation 

2.1 Methods Overview 

2.1.1 Selection of Five Sites of Interest 

Within this study, California was divided into two primary subdomains: Central California (C) 

subdomain, which includes the Shiloh and Altamont Pass sites, and Southern California (S) 

subdomain, which includes the Alta, San Gorgonio, and Ocotillo sites. These five wind resource 

areas constitute a selection of wind farm sites currently at service and wind project sites slated 

for new or expanded development or repowering. Furthermore, these five wind represent the 

five largest wind resource areas of the state. (For additional description of California wind 

resource areas, see http://www.energy.ca.gov/maps/renewable/wind.html.) Figure 1 depicts 

this region, along with the five wind farms. 

Figure 1: California Subdomains and Project Sites of Focus 

 

Source: Lawrence Berkeley National Laboratory 

Central California

Southern California
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2.1.2 Fine-Scale Modeling of Wind Speeds and Wind Power 

2.1.2.1 Virtual Meteorology Product from DNV GL (Virtual met) 

DNV GL, or full name Det Norske Veritas Germanischer Lloyd, is a large energy consultancy 

firm that supports wind power development throughout the world. For this research, DNV GL 

provided its Virtual met product covering 1980 – 2015 focused on California. The Virtual met 

product is a dynamically downscaled regional model product based on Modern-Era 

Retrospective analysis for Research and Applications, Version 2 (MERRA-2) input data and is 

designed specifically to provide wind farm developers with accurate characterizations of wind 

power resources at existing and prospective project sites.  

The downscaling is accomplished in two steps: First, the Weather Research and Forecasting 

(WRF) model is used to dynamically downscale MERRA to 20 km resolution across California; 

second, an analog-based ensemble downscaling method is used to refine the resolution to 4 km. 

To provide training data for the statistical model, a nested version of the same model is run at 

high resolution. The period over which the coarse and high-resolution runs overlap is called the 

training period, while the remaining portion is termed the downscaling period. To downscale 

the predictor data outside the training period, the best matching coarse estimates (termed 

“analogs”) over the training period are found. The downscaled solution is then constructed 

from the set of high-resolution values that correspond to the best matching coarse analogs. 

This method is broadly based on work led by Delle Monache (Delle Monache et al. 2011, Delle 

Monache et al. 2013). The Virtual Met product provides wind speeds and directions at multiple 

heights, including 10 m and 100 m. In this work, the 100 m height was used to represent hub 

height and the 10 m height to represent surface winds. Separately, the 80 m height was used 

for general validation and comparisons to the VR-CESM, as well as other reanalysis products. 

2.1.2.2 Variable Resolution Community Earth System Model (VR-CESM) 

CESM Version 1.5.5, a fully coupled atmospheric, land, ocean, and sea ice model, was used for 

this study. All simulations used the F-component set (FAMPIC5), which prescribes sea surface 

temperatures and sea ice but dynamically evolves the atmosphere and land surface component 

models. The atmospheric component mode is the Community Atmosphere Model, Version 5.3 

(CAM5) (Neale et al. 2010) with the spectral-element dynamical core (Dennis et al. 2012) in the 

variable-resolution (VR) configuration (Zarzycki et al. 2014). The VR model grid used for this 

study, depicted in Figure 2, was generated for use in CAM5 and the Community Land Model 

(CLM) with the open-source software package SQuadGen (Guba et al. 2014, Ullrich 2014). On 

this grid, the finest horizontal resolution is 0.125° (∼14km), with a quasi-uniform 1° mesh over 

the remainder of the globe. Two simulations were conducted using this grid structure: First, the 

historical run covers the period from October 1, 1979, to December 31, 2000, with the first 

three months discarded as the spin-up period, for a total of 21 years outputted every three 

hours. This historical period was chosen to provide an adequate sampling of the interannual 

variability and to coincide with the period from the rest of the modeling and reanalysis 

datasets. For projections of future wind energy change, the midcentury simulation ran with the 

“business-as-usual” Representative Concentration Pathway 8.5 (RCP8.5) (Taylor et al. 2012) from 

October 1, 2029, to December 31, 2050, again discarding the first three months for a total of 
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21 years. The research team chose the future period to emphasize the midcentury focus of this 

study and avoid divergence in the predicted impacts among different RCPs. Greenhouse gas 

(GHG) and aerosol radiative forcings are prescribed based on historical or RCP8.5 

concentrations for each simulation. More details on VR-CESM can be found in (Rhoades et al. 

2016). 

Previous studies (Huang et al. 2016a, Rhoades et al. 2016) using VR-CESM have demonstrated 

the competitiveness of the model in studying high-resolution regional climatology when 

compared to other regional climate models, especially when nonlocal processes have significant 

influence on the local climatology. VR-CESM has demonstrated a better representation of 

climatology within regions of complex topography, due to the relatively fine regional resolution 

compared with conventional GCM simulations (Zarzycki et al. 2015, Huang et al. 2016b, 

Rhoades et al. 2018). 

Figure 2: The VR-CESM Grid  

 

Constructed by Successively Refining a Cubed-Sphere Grid with a 1° (111km) Quasi-Uniform 

Resolution to a Resolution of 0.125° (∼14km) Over the Western USA  

Source: Lawrence Berkeley National Laboratory 
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2.1.2.3 Representation of Topography 

Figure 3: Topographical Representation of California and Surrounding Regions  

 

From model (top row) and reanalysis (bottom row) datasets. Note: The “WRF” data present in the top row represent the 

coarse DNV GL product before downscaling into the Virtual met product. 

Source: Lawrence Berkeley National Laboratory 

Local topography is important in representing the wind field, particularly in regions of 

significant topographic variability that tend to be well suited for wind power generation. 

Consequently, the importance of model resolution cannot be overstated. Topographic profiles 

from each of the models and reanalysis datasets are plotted in Figure 3. As can be seen here, 

DNV GL WRF model ran at 20 km resolution (b), which captures the dynamical wind field at this 

resolution, and then statistically downscaled to 4 km resolution (c). VR-CESM uses a relatively 

smooth topography by comparison, due to the slightly lower spatial resolution of 14 km (a). 

MERRA2, CFSR, and NARR (d-f) all have much more poorly refined topography, with a poor 

representation of the coastal ranges that are important for shaping the wind field. These 

differences also imply that each model has a different altitude for the wind farms and sounding 

stations used in this study. 

2.1.3 Reanalysis Products and Associated Method 

VR-CESM and the Virtual met products were compared to each other, and several reanalysis 

products (MERRA-2, CFSR, and NARR). The reanalysis products are described here. 
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MERRA-2 (Reanalysis product). MERRA-2 is a reanalysis product for the satellite era using the 

Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-50) produced by 

Global Modeling and Assimilation Office (GMAO) at NASA (Gelaro et al. 2017). MERRA-2 

integrates several improvements over the first version MERRA product, as described in 

(Rienecker et al. 2011). For the fields used in this study, the spatial resolution is ∼55 km with 3-

hour output frequency from 1980 to present. Vertical interpolation of MERRA-2 data, described 

below, was performed to calculate hub height wind speed at 80 m. Variables used in vertical 

interpolation were extracted from two subsets: 3-hour instantaneous pressure level assimilation 

(GES 2017b) and hourly instantaneous single-level assimilation (GES 2017a) (extracted every 3 

hours). 

CFSR (Reanalysis product). The Climate Forecast System Reanalysis (CFSR) from the National 

Centers for Environmental Prediction (NCEP) is a global, coupled reanalysis that spans from 

1979 to the present with ∼55 km spatial resolution and 6-hour temporal resolution of relevant 

wind fields (Saha et al. 2010). Notably, this temporal resolution is relatively low compared to 

the other datasets. The analysis subset was used in this study, and vertical interpolation was 

performed every 6 hours. 

NARR (Reanalysis product). The North American Regional Reanalysis (NARR), another NCEP 

reanalysis product, features a slightly higher spatial resolution of ∼32 km. It is a dynamically 

downscaled data product with spatial coverage over North America, with 3-hour temporal 

resolution from 1979 through present (Mesinger et al. 2006). Hub-height wind speeds from 

NARR were also calculated at this frequency.  

The research team determined the wind speed at each wind farm location using nearest grid 

point values to each wind farm site. To obtain 80 m wind vectors for this study, vertical 

interpolation was performed on 3-hour VR-CESM, 3-hour MERRA-2, 6-hour CFSR, and 3-hour 

NARR products from 1980 to 2000. Eighty-meter wind output is available directly from the DNV 

GL Virtual met data product used in this study, so values are extracted directly from the output 

from 1980 to 2000. Vertical interpolation of VR-CESM data uses the 3D wind field on hybrid 

surfaces and 10 m altitude wind speed, which is computed from similarity theory. For VR-CESM 

data, the interpolation procedure is as follows:  

(1) the CAM5 hybrid coordinates are first converted to pressure coordinates within the 

column being analyzed;  

(2) the height of each pressure surface above ground level (AGL) is computed by 

subtracting the surface geopotential height from the geopotential height of the model 

level;  

(3) two model levels that bound the desired interpolation altitude are selected or, if the 

interpolation altitude is below the lowest model level, the lowest model level and 10 m 

wind speed field are used;  

(4) logarithmic interpolation is applied to obtain the wind speed at the desired 

interpolation altitude.  
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Specifically, the team performed the interpolation by fitting a log equation with the two levels 

bounding the altitude to be calculated, then interpolating the wind at desired altitude (Justus et 

al. 1976). Vertically interpolated wind speeds from MERRA-2, CFSR, NARR, and sounding 

observations were all obtained by a similar procedure and were calculated at three hub heights 

(50 m, 80 m, and 140 m). Further, wind speed at 80 m was logarithmically interpolated for all 

three sounding instrument locations and compared with the interpolated 80 m wind speed at 

each sounding location and model/reanalysis dataset. 

The wind field enters into the maximum potential wind power P (W) via the expression P = 

½𝜌AU3, where 𝜌 is air density (kilogram per cubic meter [kg/m3]), A is the cross-section area of 

the turbine rotor (m2), and U is wind speed at hub height (m/s). Given the cubic relationship 

between wind speed and wind energy potential, even a small change in wind speeds can change 

wind energy production substantially. The energy contribution of wind turbines to the electric 

power system is then computed as the total amount of usable energy supplied by the turbine 

per year (Fripp et al. 2008). The capacity factor (CF) is thus often defined as actual power 

output divided by the maximum wind power output that can be generated through the system. 

This wind speed and CF relationship is not continuous, since there are discontinuous minimum 

and maximum wind speeds required to begin and cease wind power production (the latter to 

avoid damage to the wind turbine under extreme wind conditions), and this relationship is 

represented with different power curves associated with each of the wind farm sites. For this 

study, the calculated CF at each wind farm site is based on different characteristic power curves 

specific to each site (Appendix A) and do not include electrical losses during power generation. 

2.1.4 Clustering Approach 

One approach to analyzing variability in wind speed and direction has been to group together 

days or hours with similar meteorological, or other properties, using statistical clustering or 

related techniques. This approach can help link variation in wind seen at individual sites to 

meteorological patterns at larger geographic and multiple temporal scales, providing insight 

into the mechanisms for, and potentially predictability of, such variation. For example, Berg et 

al. (2013) find a shift in the Southern California winter surface wind regimes during El Niño, 

and other works have aimed to improve regional descriptions of surface wind climatology 

(Zaremba et al. 1999, Ludwig et al. 2004, Conil et al. 2006, Seefeldt et al. 2007, Jiménez et al. 

2009, Chadee et al. 2015). Clustering techniques are used to identify wind patterns associated 

with certain air pollution profiles (Darby 2005, Beaver et al. 2009, Jin et al. 2011). Although to 

date, clustering approaches have mainly been applied to surface-level wind fields, Clifton and 

Lundquist (Clifton et al. 2012) cluster speed and direction measurements observed at a tall 

tower in Colorado, finding links in wind resource characteristics to El Niño, and suggest the 

clustering technique might aid in site-level wind resource estimation. Also, Gibson and Cullen 

(Gibson et al. 2015) link wind measurements at a tower in southern New Zealand to typical 

synoptic-scale patterns. 

This study extends and adapts clustering techniques to the analysis of hub-height wind 

resources to (1) directly link site-level wind regimes to synoptic-scale meteorological conditions, 

(2) illuminate the unique reasons for variation in annual generation potential at specific wind 
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project sites, and (3) provide insight into the impacts of climate-mode intensity and the impacts 

of climate change on wind resources. The clustering technique is performed on the 100-meter 

wind fields from the DNV GL Virtual met product. While this demonstration focuses on 

California, the generalized approach can be applied in any location and shows potential to help 

improve wind resource assessment and benefit other aspects of wind energy operations and in 

other fields. 

The approach taken here broadly builds on and extends previous clustering efforts (Ludwig et 

al. 2004, Darby 2005, Conil et al. 2006, Beaver et al. 2009, Jin et al. 2011, Berg et al. 2013). 

California was first split into two domains – one centered on Central California, including the 

Shiloh and Altamont Pass wind farms, and one centered on Southern California, including the 

Alta, San Gorgonio, and Ocotillo wind farms (Figure 1). The research team developed a separate, 

independent set of clusters for each domain. Clusters developed in the Central California 

domain are labeled “C,” followed by an identifying number 1 – 10. Clusters developed in the 

Southern California domain are labeled “S” and followed by an independent identifying number 

1 – 10. The identifying numbers are not used in this work for anything other than identification 

and are effectively arbitrary in order. Each 24-hour period (from January 1, 1980, through 

December 31, 2015) was classified as a cluster type. Thus, every day in the period was classified 

as one of 10 clusters in the Central California domain and one of 10 clusters in the Southern 

California domain.  

The research team accomplished the clustering through a two-step process. First, the 

dimensionality of the problem was reduced using principal components analysis (PCA), and 

second, an agglomerative clustering algorithm was applied to the principal component 

multipliers (the “scores” or “weights” of the PCA). PCA allows spatial data, at any particular 

time, to be represented by a mean spatial pattern plus the sum of a limited number of weighted 

principal spatial patterns. Previous studies (Ludwig et al. 2004) and (Jin et al. 2011) provide 

useful explanations related to the application of PCA to wind fields. From PCA, the first 10 

weights of the principal spatial patterns were saved, as these first 10 principal components 

accounted for greater than 80% of the total variance in wind regimes within each domain, and 

additional weights would have added less than 1% to the explanation of the variance. Thus, the 

dimensionality of each hour was reduced from 2-component (u and v) modeled wind outputs at 

hub height across all grid cells (~8,500 in each domain) to 10 PCA weights. The PCA weights 

were then grouped together by 24-hour periods to form the input for the agglomerative 

clustering. Thus, each day, for each domain, is categorized as a particular cluster based on a set 

of (24 × 10) 240 PCA scores that describe the regime of wind speed and direction throughout 

the day and across the domain.  

The research team performed the cluster analysis using a hierarchical clustering technique, 

specifically agglomerative clustering using Ward’s method (Ward Jr 1963). Agglomerative 

clustering begins with each “observation,” in this case, each day, classified as a cluster, and 

observations are then merged together into larger groups based on minimizing a criterion 

(Ward’s method minimizes the variance of the clusters being merged) until the predetermined 

number of total clusters is reached. The “right” total number of clusters varies by application 
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and, in this case, was determined by inspecting the regional wind regimes (similar to Figure 11) 

after repeatedly running the clustering algorithm while varying the targeted number of clusters. 

For example, in this case, the use of 5 clusters did not portray the full range of patterns found 

with 10 clusters, and the set of 15 clusters contained clusters with wind regimes similar to each 

other. In other words, using 15 clusters identified differences among clusters that were subtler 

than needed for this application. While this approach was sufficient for this analysis, it may be 

desirable to optimize iteratively the number of total clusters for specific applications, such as 

short-term forecasting.  

The PCA included developing and processing an extremely large matrix, including columns 

representing 315,552 hours and rows representing ~8,500 grid cells. (The total cells differed 

slightly between the Central and Southern California domains.) Therefore, the large memory 

nodes on the Haswell computer within the U.S. Department of Energy National Energy Research 

Scientific Computing Center (NERSC) were used. The research team implemented the PCA and 

agglomerative clustering methods using the publicly available Scikit-learn algorithms 

(Pedregosa et al. 2011). 

2.2 Model Comparisons and Validation 

2.2.1 Comparison to Reanalysis Products 

Figure 4 depicts the 80 m wind speed fields (vertically interpolated values except for Virtual 

met) from each of the datasets in the Central California domain. Wind fields shown are seasonal 

mean values for all March-April-May (MAM), June-July-August (JJA), September-October-

November (SON), December-January-February (DJF) seasons in the historical period 1980-2000. 

To better match the wind speeds predicted in the virtual met product, the research team 

applied a multiplier of 1.30 to the VR-CESM results to produce a bias-corrected VR-CESM (BC 

VR-CESM) prediction. The value of this multiplier is determined by the mean wind speed 

difference between VR-CESM and the Virtual met. As can be seen in Figure 4 and Figure 5, the 

wind magnitudes are more comparable to Virtual met; the latter still produces more spatial 

variation as compared to BC VR-CESM. Because of the high spatial resolution of Virtual met (4 

km), more topographic features are apparent in the wind field, whereas the MERRA-2, CFSR, and 

NARR wind fields show almost no topographic features due to the relatively coarse resolution. 

Comparing VR-CESM to Virtual met, the overall pattern is similar, although VR-CESM exhibits 

lower mean wind speeds overall. This difference will be further assessed as part of the wind 

farm site comparisons in Section 3.2. Figure 5 depicts mean winds for the Southern California 

domain. Again, the patterns remain similar between VR-CESM and Virtual met but with a 

reduced wind magnitude. 



18 

Figure 4: Seasonal Average of Interpolated 80 m Wind Speed from Each Dataset for the Historical 
Period 1980-2000 in the Central California Domain 

 

Symbols represent the Shiloh (circle) and Altamont (square) wind energy sites. X represents the Oakland observation site. 

Source: Lawrence Berkeley National Laboratory 
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Figure 5: Seasonal Average of Interpolated 80 m Wind Speed from Each Dataset for the Historical 
Period 1980-2000 in the Southern California Domain 

 

Symbols represent the Alta (inverted triangle), San Gorgonio (triangle), and Ocotillo (diamond) wind energy sites. X 

represents the Vandenberg and Miramar observational sounding sites. 

Source: Lawrence Berkeley National Laboratory 

Quantitatively, the VR-CESM and Virtual met product outputs are highly correlated (∼ 0.69), 

which suggests that the underlying physical mechanisms responsible for determining wind 

speed are similar between these two products. The slow wind speeds in VR-CESM are likely a 

consequence of excessive diffusion in the lowest model levels and further hypothesized to be 
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connected to a boundary layer parameterization in CESM that is not tuned for the high 

resolutions employed in this study.  

Monthly climatological mean wind speeds at each wind farm site are depicted in Figure 7. As 

observed in Figures 4 and 5, Virtual met tends to produce the highest overall wind speeds. 

Whereas VR-CESM exhibits a lower wind speed magnitude than Virtual met, both datasets 

produce similar spatial patterns that are different from the other three reanalysis datasets. In 

particular, the coarser resolution reanalysis data tend to exhibit a weak seasonal cycle. 

Computing the correlation across monthly mean wind speeds between each dataset with Virtual 

met, VR-CESM has the highest correlation (on average ∼0.87 over all five wind farm sites), 

followed by MERRA-2 (∼0.55), and CFSR (∼0.37). NARR (∼0.17) exhibiting the weakest correlation. 

To further quantify the spatial correlations between datasets, the research team calculated the 

centered Pearson pattern correlation (Figure 6) for seasonal mean 80 m wind speeds from all 

the datasets, with the domains masked to include only California, matching the domain from 

Virtual met. As observed in Figure 6, VR-CESM produces the highest pattern correlation (∼0.69) 

with Virtual met, followed by MERRA-2 (∼0.58). Therefore, the temporal and spatial correlation 

comparisons suggest VR-CESM produces the most similar wind speed climatology (both 

temporally and spatially) to Virtual met, followed by MERRA-2. NARR produces the lowest 

correlation in space and time – in fact, discrepancies in the spatial structure of the NARR wind 

climatology likely indicate potentially significant errors in representation of wind speeds (David 

Pierce, personal communication). 

The frequencies of instantaneous 80 m wind speeds from each dataset are shown in Figure 8. 

Wind speeds in almost all locations appear to follow a Rayleigh distribution, as is typical for 

wind speeds where the velocity in each coordinate direction is normally distributed. However, 

the Virtual met data diverge from the Rayleigh distribution at several locations, which may 

indicate physical processes that are uniquely captured by this product at high spatial 

resolution. Specifically, Virtual met produces higher wind speeds at a higher frequency than 

other datasets in many cases, leading to a greater spread among the wind speed bins. 

Frequencies from BC VR-CESM are closer to Virtual met compared to VR-CESM due to increased 

wind speed, although there remains a mismatch in the shape of the distribution. Unfortunately, 

the authors are unaware of any publicly available hub-height wind speed datasets that would 

allow direct validation of these results against observations. As can be seen in Figure 9, the 

histograms of wind speed from BC VR-CESM are closer to WRF 20 km, although the further 

downscaled Virtual met results exhibit much higher frequencies over the highest wind speed 

bins at all locations except San Gorgonio. For wind speed fields at the other two analyzed hub 

heights (50 m and 140 m), see Appendix A. In general, higher hub heights tend to produce 

larger wind speeds, although the patterns remain similar. 
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Figure 6: Averaged Pearson Pattern Correlations Between Each Pair of Datasets as Obtained from 
the Seasonal Mean 80 m Wind Speed from 1980 to 2000 

 

Source: Lawrence Berkeley National Laboratory 

Figure 7: Monthly Mean 80 m Wind Speed (Color-Coded Lines on Left) and Mean CF (Blue Lines 
on Right) at Each Wind Farm Site from All Datasets During Historical Period 1980-2000 
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Source: Lawrence Berkeley National Laboratory 

Figure 8: Frequencies for Instantaneous 80 m Wind Speeds from All Datasets at Each Wind Farm 
Location for the Historical Period 1980-2000 by Season  

 

The bin width is 1m/s and covers the range from 0m/s to 21m/s. 

Source: Lawrence Berkeley National Laboratory 
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Figure 9: Frequencies for Instantaneous 80 m Wind Speed from Bias-Corrected VR-CESM (BC VR-
CESM) and 20 km WRF Compared to VR-CESM and Virtual Met at Each Wind Farm Location for 

the Historical Period 1980-2000  

 

The bin width is 1m/s and covers the range from 0m/s to 21m/s. 

Source: Lawrence Berkeley National Laboratory 
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2.2.2 Comparison to Point Observations 

The performance of VR-CESM and Virtual met was then assessed against the 10 m hourly 

Integrated Surface Database (ISD). Although ISD incorporates hundreds of observation stations 

across California, many of these stations do not provide consistent observations over the 

relevant historical period (1980-2000). To maximize the number of available stations each year 

and ensure sure each year has complete data coverage, the research team calculated validation 

metrics (Table 1) separately for each year between 1980 and 2000. Also, to avoid issues with 

near-surface coastal flow, only inland observation stations were selected for comparison. After 

imposing these restrictions, the team used an average of 100 inland stations from each year. 

Table 1 provides the averaged seasonal bias and root-mean-square error (RMSE) at 10 m altitude 

from the five datasets against ISD observations from 1980 to 2000. Here, a negative (positive) 

bias indicates that the wind speed is lower (higher) than observations. As observed, VR-CESM 

tends to produce lower wind speeds than observation, whereas the Virtual met produces overall 

higher wind speeds. MERRA-2 and Virtual met exhibit similar differences, as MERRA-2 provides 

the boundary conditions for the WRF model; nonetheless, Virtual met does produce higher 

mean wind speeds than MERRA-2, likely due to a positive wind bias that appears consistently in 

the WRF model (Shimada et al. 2011, Carvalho et al. 2014). CFSR exhibits lower wind speeds for 

most of the year except the DJF season, whereas NARR produces higher wind speeds in all 

seasons. For MAM and JJA seasons, Virtual met is very close to observations – namely, it shows 

a relatively small bias, whereas VR-CESM has strong negative biases in both seasons. In the SON 

and DJF seasons, VR-CESM is closer to observations compared to Virtual met, particularly 

during the DJF season (and closer to observations than all other datasets). As VR-CESM also 

obtains 10 m wind using the lowest model level wind plus similarity theory, the biases in 10 m 

wind have the potential to be conveyed to higher elevations during the calculation. So, this 10 

m wind speed comparison with observation also provides some insight into the possible biases 

for wind speed at 80 m. 

Table 1: Bias and RMSE for 10 m Wind Speed from All Five Datasets to Inland ISD Observational 
Stations from 1980 to 2000  

Model Name Stats MAM JJA SON DJF Annual Average Bias 

VR-CESM Bias 0.80 -0.52 0.32 -0.16 -0.45 

 RMSE 1.23 1.06 0.88 0.85  

BC VR-CESM Bias -0.04 0.21 0.28 0.52 0.24 

 RMSE 1.10 1.10 1.00 1.17  

Virtual Met Bias 0.02 -0.03 0.4 0.56 0.24 

 RMSE 0.97 1.02 0.94 1.02  

MERRA-2 Bias -0.14 -0.13 0.23 0.52 0.12 

 RMSE 0.87 0.92 0.78 0.91  
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CFSR Bias -0.48 -0.50 -0.14 0.23 -0.22 

 RMSE 1.11 1.11 0.83 0.88  

NARR Bias 0.11 0.16 0.52 0.67 0.37 

 RMSE 1.34 1.17 1.25 1.49  

Bias and RMSE both have units of m/s. MAM = spring; JJA = summer; SON = fall; DJF = winter. 

Source: Lawrence Berkeley National Laboratory 

A note on comparisons of wind speeds at hub-height: Hub-height wind data in California are 

often produced through private investment and, hence, a closely guarded trade secret 

confidential to project owners. Consequently, for validation of the modeled hub-height wind 

speed data against observation, the assessment is limited to a select number of vertical 

sounding sites across California (shown in Figures 4 and 5) for comparison of higher-level wind 

speeds, and all of the three soundings are at airports near the coast with complex local 

topographies. The coarse resolution of these models requires them to average inland and 

offshore wind speeds, leading to skewed results. Also, the sounding observations are only 

measured twice daily. These factors have to be taken into account when interpolating to 

calculate 80 m wind from sounding observations and from model and reanalysis dataset at 

these sounding locations. In comparison, the three lower resolutions reanalysis datasets all 

project higher-than-observation wind speeds. At the Oakland site (airport code OAK), wind 

speed projected from VR-CESM is the closest (bias = 0.95m/s) to observations in terms of wind 

magnitude, though Virtual met captures monthly variation better (correlation = 0.62). However, 

at Vandenberg (airport code VBG) and Miramar (airport code NKX), none of the model datasets 

could be said to capture the values and seasonal variation particularly well, even though VR-

CESM and Virtual met are the closest among all. 

2.2.3 Comparison Between VR-CESM and Virtual Met 

To investigate further the difference in wind field between VR-CESM and Virtual met, the Virtual 

met product was regridded to the VR-CESM grid and the difference taken. Figure 10 shows 

1980-2000 seasonal mean wind speed difference from Virtual met minus VR-CESM, with 

positive values indicating Virtual met has higher wind speeds than VR-CESM. The difference is 

not spatially uniform – in particular, when comparing Figure 10 alongside Figure 3, Virtual met 

projected higher wind speed over higher altitudes and lower wind speed at lower altitudes. The 

five wind farm sites all sit at relatively high topography regions, and consequently, Virtual met 

projects higher values at all five locations from Figure 10, consistent with Figure 7. 
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Figure 10: Comparison Between DNV GL Virtual Met 4 km and VR-CESM (Virtual Met Minus VR-
CESM) of Interpolated 80 m Wind Speed Between 1980-2000 for Central, Southern, and California 

Domains 

 

Symbols represent the Shiloh (circle), Altamont (square), Alta (inverted triangle), San Gorgonio (triangle), and Ocotillo 

(diamond) wind energy sites. X represents the sounding sites at Oakland, Vandenberg, and Miramar. 

Source: Lawrence Berkeley National Laboratory 

2.3 Methods for Climate Modes 

The research team tested the correlation between the frequency of the clusters and the 

occurrence of major climate modes. Because the clusters are based solely on the DNV GL 

Virtual met product, this test is of the correlation between the observed historical intensity of 

climate modes and the wind regimes modeled within the DNV GL Virtual met product. This test 

is not related to the VR-CESM model and does not include any test of future conditions.  

For each season, each cluster was correlated with the seasonal indices of five climate modes, 

the El Niño Southern Oscillation (ENSO), the Pacific North American (PNA) pattern, the North 

Atlantic Oscillation (NAO), the Arctic Oscillation (AO), and the Pacific Decadal Oscillation (PDO), 

(NOAA 2017a, NOAA 2017b, NOAA 2017c, NOAA 2017d, NOAA 2017e). Climate mode indices 

are available on a monthly basis and were averaged over each season to create a seasonal index 

time series of for each climate mode. For each climate mode, the index values are centered on 

0.0 and range, mostly, between -1.0 and 1.0, although some months have values of larger 

magnitude than 1.0. A value of zero means the climate mode is in a neutral state. A value of 1.0 

or larger represents a strong climate mode event, and a value of -1.0 represents a strong event 

of the opposite form. For example, during the winter of 2015 – 2016, the ENSO index ranged 

from 2.0 – 2.3, representing strong El Niño conditions. During the following winter, 2016 – 

2017, the ENSO index ranged from -0.8 – -0.4, representing weak La Niña conditions.  
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CHAPTER 3: 
Historical Variability in California Wind 
Resources 

A key concept describing wind resources is capacity factor (hereafter, CF). For a particular 

period, CF is the ratio (expressed here in percentage) of energy generated by a turbine to the 

energy that same turbine could have generated had it been running at this rated capacity 

continuously. In this chapter, CFs are calculated over various periods (i.e., monthly, seasonal, or 

annual) and for each of the specific clusters (i.e., for the set of days classified as a particular 

cluster). A second metric, not to be confused with CF, but also in percentage terms, is the 

percentage of total potential annual generation during a season or within a single cluster. 

The CF is calculated without adjusting for any potential losses, such as electrical resistance 

losses or wake losses, based on using a power curve to estimate hourly generation as a function 

of wind speed. The research team converted wind speeds output from the Virtual met product 

to wind energy generation potential using idealized power curves. This generation potential 

represents a lossless potential and does not account for wake or electrical loses. Wind speeds 

were transformed at each location and at each hour using the normalized power curves 

presented in the Wind Integration National Dataset (WIND) Toolkit (Draxl et al. 2015) developed 

at the National Renewable Energy Laboratory. Specifically, International Electrotechnical 

Commission (IEC) Classes 3, 2, 3, 2, and 1 turbine curves were applied to Shiloh, Altamont Pass, 

Alta, San Gorgonio, and Ocotillo, respectively. Please see Section 2.1.4 for a review of the 

motivations, methods, and prior literature related to the following discussion. 

3.1 What Is the Historical Pattern of Wind Resource 
Variability? 
Across the five focus sites, there is large variation in resource potential. At each site, there is 

also important variation across the years. Average CFs range from 57% at Alta to 31% at San 

Gorgonio, with the other sites falling within that range. CFs varied by season and were higher in 

summer overall. This seasonality gives rise to 33% to 37% of annual generation occurring during 

July and August, across all the sites. An exception is at Alta, where only 28% of the total annual 

generation occurred during summer. 

Variation in annual wind resource at each site is noteworthy. The ratio of the top year CF to the 

bottom year CF ranged from 1.19 at Alta to 1.47 at Ocotillo. Thus, in the most extreme case, the 

best year at Ocotillo would have produced almost 50% more energy than the worst year. More 

generally, the average annual resource variability ranged from 3.9% at Shiloh to 7.8% at San 

Gorgonio (and 4.2% at Alta and 7.4% at Ocotillo), where this is quantified as the ratio of the 

standard deviation of the annual CF to the average annual CF and multiplied by 100%.  

The research team correlated wind resources among sites. For example, the coefficient of 

determination comparing the annual CFs of the three Southern California sites ranged from 
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0.48 to 0.66. The Central California sites – Shiloh and Altamont – had lower correlation, with 

the corresponding coefficient of determination equaling 0.28. The Southern California sites 

showed little correlation with the Central California sites. Finally, there was no evidence of 

temporal trends in annual or seasonal CFs at any of the sites from 1980 – 2015. Additional 

details related to site-specific resource variability are included in Appendix B. 

3.1.1 Characterization of Historical Daily Wind Regimes 

To better understand what drives the important level of temporal variation described above, 

the clustering technique is used to classify wind regimes and connect wind regimes and 

temporal patterns to synoptic-scale patterns and climate modes. This section provides an 

overview of the different wind regimes found in Central and Southern California. 

Ten clusters were identified for each domain. (See Figure 1 for a map of the domains.) Each 

cluster describes a unique wind regime (a regional pattern of wind speeds and directions over a 

day). To identify each cluster, the labels “C” and “S” are used for Central and Southern 

California, respectively, followed by an arbitrarily ordered cluster number 1 – 10. See the 

Methods for details about the clustering algorithm. Clusters are not linked between domains, 

e.g. C1 is not related to S1. The uniqueness of each cluster can be seen in the sample of four 

Central California clusters shown in Figure 11. One can see a striking difference, for example, in 

both the wind resources available and the general regional wind regime when comparing the 

two summer clusters (C1 and C7) showing typical marine air penetration (Wang et al. 2018b) 

conditions to the nonsummer clusters showing flow from the north and east (C4) and showing 

typical conditions of a stagnant day (C9). 

Although the clusters were developed based only on hub-height wind speed and direction, 

additional meteorological properties emerge that further distinguish and characterize each 

cluster. In Figure 11, for example, C1 and C7 represent different flow conditions typical during 

the summer but are differentiated by a temperature anomaly, as C7 corresponds to days with 

relatively higher temperatures than C1. Across the Central and Southern California domains 

there were distinct clusters associated with rainy storms, with stagnant days, and with cool or 

warm dry days. Of particular interest in Southern California, there were two clusters (S5 and S6) 

that showed the distinct offshore flow associated with Santa Ana wind conditions. The Venn 

diagrams in Figure 12 summarize these differences across the 10 clusters in each domain. 

Further details are provided in Appendix C. 

Each cluster is associated with distinct synoptic-scale patterns. Synoptic-scale in meteorology is 

defined as a horizontal scale on the order of 1,000 km or more. The seasonal mean anomaly 

fields associated with each cluster were analyzed. The analyzed fields include 700 hectopascal 

(hPa) geopotential height, which is defined as the height of 700hPa isobar surfaces above mean 

sea level, as well as the surface pressure, and temperature at 2 meters above the surface. The 

geopotential height field was chosen at 700hPa since it reflects the general circulation pattern: 

wind flow at this pressure level is largely geostrophic and, hence, follows constant geopotential 

contours. The surface pressure field also affects local wind speeds due to pressure gradient, 

which is closely associated with surface temperature changes. Three steps were used to find the 

seasonal anomaly for each cluster. First, the monthly mean geopotential height, surface 
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pressure, and 2-meter temperature were calculated across the full period. Second, the anomaly 

fields on days categorized as the particular cluster of interest were calculated by subtracting 

the long-term monthly mean fields from the daily mean values. Finally, the research team 

calculated the average over all the anomaly values within the cluster and season of interest 

across the full period to find the seasonal averaged anomaly fields. 

Figure 13 shows the anomaly from each monthly mean field in geopotential height at 700hPa, 

surface pressure, and surface temperature for the same group of clusters shown in Figure 11. 

The synoptic-scale patterns represent the average anomaly across all days associated with each 

cluster and are calculated separately by season. Each of the four clusters in Figure 13 shows 

distinct synoptic-scale patterns. The two summer clusters, C1 and C7, which have relatively 

similar regional wind regimes, show almost opposite synoptic trends: the anomalies of 

geopotential height, surface pressure, and surface temperature show the same spatial 

distribution but with opposites signs. C1 is associated with a negative anomaly in geopotential 

height centered off the Oregon coast, which enhances the flow of marine air into Central 

California, cooling inland temperatures. By contrast, the positive geopotential height anomaly 

field in C7 slightly suppresses onshore flow, leading to overall weaker marine air penetration, 

as shown in Figure 11. This example demonstrates how the clustering technique can illuminate 

meaningful differences between wind regimes even if those regimes share some similarities, 

such as the inflow patterns in C1 and C7.  

It was demonstrated above that wind speed regimes at specific wind project locations (the 

diurnal regime inlays in Figure 11) can be linked to regional wind patterns (Figure 11), as well as 

to synoptic-scale conditions (Figure 13). This linkage provides a useful framework with which to 

investigate variability in wind power resource – the focus of the next sections. 
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Figure 11: Average Wind Vectors for a Sample of the Central California Clusters  

 

The upper right corner inlay the average number of days per month the cluster is found. The lower left corner inlay shows the average diurnal pattern of wind speed (m s-
1) at the grid cells centered on the Altamont Pass and Shiloh wind farms. The information across the top of each panel includes the cluster number, the percentage of the 
year each cluster is found, the average temperature anomaly at the Altamont Pass and Shiloh wind farms (with the anomaly taken separately for each month and then 
averaged over the full-time span), and finally, the average daily precipitation. 

Source: Lawrence Berkeley National Laboratory 
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Figure 12: Qualitative Description of Central (a) and Southern (b) California Wind Regimes  

 

Cluster numbers have no relationship between regions, e.g. C1 has no relationship to S1. The color of each box indicates 

relative energy potential of each regime based on the average energy potential of Shiloh and Altamont Pass for Central 

California and Alta, San Gorgonio, and Ocotillo for Southern California. Seasonal designations were chosen to indicate the 

time of year each cluster occurred most frequently, although most clusters were observed to occur (although less 

frequently) outside the designated seasons. 

Source: Lawrence Berkeley National Laboratory 
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Figure 13: Seasonal Average Synoptic-Scale Anomalies for 700 hPa Geopotential Height, Surface 
Pressure, and 2-Meter Temperature by Central California Cluster 

 

a, Cluster 1 averaged over June, July, and August. b, Cluster 7 averaged over June, July, and August. c, Cluster 4 

averaged over September, October, and November. d, Cluster 9 averaged over September, October, and November. 

Source: Lawrence Berkeley National Laboratory 
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3.1.2 Historical Wind Resource Variability, Top vs. Bottom Years 

This section describes why some years produce more power generation and some years 

produce less. To provide context, the average CFs of each cluster and the percentage of total 

annual generation potential from each cluster are found (Figure 14). Most noticeable, the 

Central California sites (Shiloh and Altamont Pass) depend on only two clusters (C1 + C7, see 

the top row of Figure 11) for about half of the associated potential energy resource. These 

clusters represent two typical types of summertime marine air penetration wind patterns. The 

rest of the energy potential at the Central California sites is split among storms (C5 + C8), warm 

fall and spring days (C2), and dead days (C3 + C9), each accounting for ~10%, with cool and dry 

winter and spring like days (C4 + C6) accounting for ~15%. While generation potential at the two 

Central California sites is similarly divided between the weather regimes, correlation between 

the annual CFs at the sites is not particularly strong (r2 = 0.28), thus the factors that drive 

interannual variability differ across these sites. 

At the Southern California sites, specifically, San Gorgonio and Ocotillo, windy spring weather 

(S8 + S9) accounts for ~35% of total generation. Storms (S1 + S7) account for ~25% of total 

generation, and typical summer weather (S3) accounts for ~20% of annual generation. Santa 

Ana-type weather (S5 + S6) and dead days (S4) combined account for only ~10% of total 

generation but 35% of total days. At Alta, also in the Southern California domain, the 

distribution of generation across the clusters is similar to San Gorgonio and Ocotillo, although 

one sees some differences for certain clusters (e.g., S2, S5, S8). 

Most of the clusters spanned more than a single season, and in Southern and Central California, 

each season was made up of multiple clusters. Thus, analyzing resource variability by cluster 

allows one to investigate changes in weather patterns that might be obscured when looking at 

resource variability on a seasonal basis. 

To understand what drives variation between the top wind years and the bottom wind years, 

the cluster frequency and cluster CFs found during the highest wind years are compared to 

those found during the lowest wind years. This comparison is made at each site and across the 

top five to the bottom five wind resource years. Through this comparison, the clusters most 

responsible for differences in wind resource are identified, and the influence caused by changes 

to the frequency of the cluster and the influence caused by changes to the within-cluster wind 

intensity (indicated by the cluster CF) are isolated. The source of resource variability differs 

strongly at each site. 

At Altamont Pass, 38% more energy is produced on C1 days during top years versus bottom 

years. Some of this increased energy production during C1 was due to an increase to within-

cluster wind speeds (at Altamont Pass: CFC1-top/CFC1-bottom = 1.08). Also, there were 19 

additional C1 days, on average, per top year. Correspondingly, there were 17 fewer C7 days per 

top year. This switch is notable as both C1 and C7 represent typical summer conditions but are 

associated with different regional and synoptic-scale characteristics (Figure 3). In particular, C7 

represents hotter conditions compared to the cooler C1. There are other differences as well – 

33% more energy was generated during stormy weather (C5 + C8), much of which is due to an 

additional 12 days of storms during top years. To a lesser degree, other clusters changed in 
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frequency as well (e.g., C9, “dead days” occurred six fewer times during top years than bottom 

years, a 16% reduction in frequency). Moreover, the average wind intensity within 8 of the 10 

clusters was stronger during top years. Differences between top and bottom years are 

summarized in Tables 2 and 3, with additional details provided in Appendix B. 

A step toward isolating the effect of top-bottom variation from within-cluster wind intensity, or 

from cluster frequency, is to calculate hypothetical site-level annual capacity factors. The actual 

average top year CF (CF-top) is equal to the sum across clusters of CFi-top * AFi-top (where AF is 

the annual fraction, daysi/days per year, of each cluster, the subscript i referring to cluster 

number). Instead, to isolate the effect of changing within-cluster wind intensity (hereafter CF-

wind), one would sum CFi-bottom * AFi-top. Likewise, summing CFi-top * AFi-bottom isolates the 

effect of changing cluster frequency (hereafter CF-freq). These calculations are simplistic as 

they ignore interaction between cluster frequency and CF change, but they do give a general 

idea of the relative importance of frequency versus intensity. At Altamont Pass, both CF-wind 

and CF-freq fall roughly in the middle between CF-top and CF-bottom (Table 3), indicating that 

both frequency changes and within-cluster wind intensity changes play important roles in 

driving the difference between top and bottom years. To summarize, at Altamont Pass, the 

primary difference between top years and bottom years is an increased frequency of cooler 

typical summer conditions at the expense of hotter summer conditions. Furthermore, top years 

had a greater frequency of stormy days and a reduced frequency of dead days. Of roughly equal 

importance, there is an increase in within-cluster wind speed across most of the clusters. 

Shiloh, on the other hand, is almost entirely sensitive to changes to within-cluster wind speed: 

the CF-freq is only 1% smaller than CF-top, whereas CF-wind and CF-bottom are 10% and 11% 

smaller than CF-top, respectively (Table 3). The largest factor in the difference between top and 

bottom wind years derives from an increase to wind speeds within C1 (CFC1-top/CFC1-bottom = 

1.23). Thus, the primary factor driving top years at Shiloh is the intensity of the typical 

summertime marine air penetration conditions (the regional and synoptic-scale structure that is 

represented by C1). Of secondary importance is an increase to wind speeds in the C4, C6, and 

C10 clusters that represent typical springtime conditions but not stormy conditions. Unlike 

Altamont Pass, at Shiloh the ratio of CF-top to CF-bottom is insensitive to frequency of storms 

(C5 and C8) or stagnation ‘dead’ days (C3 and C9). 

There are differences between top and bottom years at the other three sites as well, which, for 

brevity, will be described more qualitatively below. Alta is more sensitive to the frequency of 

clusters than the within-cluster wind speeds. Specifically, top years at Alta have 26 more storm 

days (S1 and S7) and 10 additional hot windy spring days (S9). These come at the expense of 

dead days (S4) and Santa Ana wind days (S5 and S6), which combined account for 43 fewer days 

on top years. The largest change to within cluster wind intensity is to storm cluster S1: CFS1-

top/CFS1-bottom = 1.12. Unlike Altamont Pass and Shiloh, Alta sees little difference in either 

frequency or intensity of the typical summer conditions (S3) between top and bottom years. 

San Gorgonio and Ocotillo have similar differences between top and bottom years. They are 

roughly equally sensitive to cluster frequency and within-cluster wind intensity changes. During 

top years, San Gorgonio and Ocotillo each have ~20 additional storm days (S1 and S7) and ~10 



35 

additional cold windy spring days (S8). These come at the expense of dead days (S4), Santa Ana 

wind days (S5 and S6), and hot, windy spring days (S9). Moreover, the typical summer cluster 

(S3) is more frequent and has more intense wind speeds during top years at these sites.  

Figure 14: Average Capacity Factor and Percentage of Total Wind Resource Potential 

a and c, Capacity Factor by Cluster. b and d, Percentage of Total Generation Potential by Cluster. a and b, Central 
California Sites. c and d, Southern California Sites. Note: Clusters are shown in descending order, left to right, of the 
frequency of occurrence. 

Source: Lawrence Berkeley National Laboratory 
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Table 2: Average Differences, in Total Days and in Capacity Factor, Between the Top Five and 
Bottom Five Wind Years at Each Site  

 Central California 

 Shiloh  Altamont Pass 

 ∆ Days 

 

∆ 

CF (%) 

% of top-
years energy 

 
∆ 

Days 

∆ 

CF (%) 

% of top-years 
energy 

C1 or S1 11.0 3.7 30.0  19.2 5.0 37.9 

C2 or S2 -8.0 2.3 9.2  -11.4 6.0 9.0 

C3 or S3 -7.2 4.7 6.2  -0.4 0.1 5.9 

C4 or S4 6.2 6.4 9.5  -8.8 3.3 4.1 

C5 or S5 -3.8 9.6 5.9  6.2 4.4 9.0 

C6 or S6 4.0 5.7 7.6  8.0 -2.1 7.2 

C7 or S7 -4.0 3.9 18.5  -17.2 2.5 10.7 

C8 or S8 -2.4 5.8 4.1  6.2 3.7 6.8 

C9 or S9 2.8 1.3 4.1  -6.2 6.9 2.6 

C10 or S10 2.0 11.5 4.9  4.2 4.3 6.9 

 Southern California 

 Alta  San Gorgonio  Ocotillo 

 ∆ 

Days 

∆ 

CF (%) 

% of top-
years 

energy 

 ∆ 

Days 

∆ 

CF (%) 

% of top-
years 

energy 

 ∆ 

Days 

∆  

CF (%) 

% of top-
years 

energy 

C1 or S1 15.0 11.7 13.1  13.2 13.3 15.3  9.4 13.5 12.5 

C2 or S2 8.4 -0.3 13.4  0.6 -0.6 5.2  -6.4 -2.3 5.6 

C3 or S3 -0.6 2.3 17.8  6.8 7.5 18.7  5.2 7.2 19.2 

C4 or S4 -20.8 -0.6 7.6  -16.4 2.6 6.4  -13.6 3.0 7.9 

C5 or S5 -10.8 -1.1 4.2  -6.2 -0.5 1.4  -8.8 -0.6 1.2 

C6 or S6 -11.2 -2.8 1.4  -3.6 -0.3 0.2  0.8 -0.7 0.3 

C7 or S7 11.4 1.7 11.5  10.4 6.4 17.5  10.8 1.2 16.7 

C8 or S8 4.0 1.4 11.2  7.8 2.6 17.3  10.2 3.7 17.5 

C9 or S9 10.2 6.6 17.2  -9.8 9.9 15.3  -7.8 10.3 15.8 

C10 or S10 -5.4 2.8 2.5  -3.2 3.0 2.7  -0.4 5.8 3.4 
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Differences are taken as the average top year value minus corresponding bottom year value. The ‘% of top-years energy’ is 

provided for context and is not a differenced quantity but simply the average percentage of total annual potential 

generation at each site corresponding to each cluster. 

Source: Lawrence Berkeley National Laboratory 

Table 3: Average Annual Capacity Factors and the Influence of Changes to Wind Regime 
Frequency and Intensity on Annual Capacity Factor During Top Five and Bottom Five Wind Years 

at Each Site 

 CF-top 

(%) 

CF-wind 

(%) 

CF-freq 

(%) 

CF-bottom 

(%) 

 

Shiloh 47.0 42.4 46.4 41.9  

Altamont Pass 43.2 39.6 40.4 36.7  

Alta 60.6 58.1 54.8 53.0  

San Gorgonio 36.0 31.0 32.2 27.7  

Ocotillo 39.3 34.7 35.1 30.9  

Source: Lawrence Berkeley National Laboratory 

3.1.3 Conclusions Related to Historical Wind Resource Variability 

Using the above methods, the research team isolated the weather patterns that are associated 

with high and low generation years. The direct connection between cluster and synoptic-scale 

conditions provides a ready starting point for future efforts to investigate the causes of, and 

develop the ability to predict, such variability. More generally, several applications within the 

wind industry could use the clustering framework developed here , as well as other fields or 

research, such as atmospheric science and air quality. Atmospheric scientists could use the 

framework to help explain the causes for particularly anomalous wind resource periods. Wind 

developers could include it in the early stages of site-level wind resource assessment, possibly 

as a refinement of the measure-correlate-predict process. Grid operators may find the synoptic-

scale link useful for short-term wind resource forecasting and the links to climate modes useful 

in medium-term wind resource forecasting. (See the next section.) Most generally, the 

framework allows for an accounting of wind resource variability that is not bound artificially to 

seasonal or monthly periods, directly links local wind patterns to regional and synoptic-scale 

patterns, and is intuitive and accessible, yet quantitative and repeatable in any location. 

3.2 Climate Modes and Historical Wind Resources 

3.2.1 Relationships of Wind Resources to Climate Modes 

Climate modes are identifiable, large-scale climate patterns that affect regional weather. Prior 

studies have linked wind resource variation to climate mode at regions around the world (Li et 

al. 2010, Clifton et al. 2012, Berg et al. 2013, Yu et al. 2016, McElroy et al. 2017). 
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In the results presented here, although there was no evidence of correlation between seasonal 

average CF and climate modes, there was evidence that the frequency of a number of clusters in 

both Central and Southern California were linked to climate mode indices. The correlation is 

based on a simple variable, linear regression between season average cluster frequencies, and 

seasonal average climate indices. Additional measures and techniques may bear insight into 

possible links between climate variability and wind resource variability. For example, this study 

does not consider correlations on subseasonal timescales, the possibility of lagged responses, 

interactions between multiple climate modes and cluster frequency, nor the intercorrelation of 

climate modes themselves. However, the results presented here demonstrate at a high level the 

connections between cluster frequency and climate mode, while more complex analysis should 

be considered when developing explicit forecasting approaches. 

Reported here is the percentage increase to seasonal frequency of clusters in response to a shift 

from -1.0 to +1.0 in the associated climate mode index. All values reported are statistically 

significant at the 95% level unless otherwise stated. For each season, the correlations between 

each cluster and the monthly indices of five climate modes – the El Niño Southern Oscillation 

(ENSO), the Pacific/North American (PNA) pattern, the North Atlantic Oscillation (NAO), the 

Arctic Oscillation (AO), and the Pacific Decadal Oscillation (PDO) – were tested. As expected, 

storm clusters C8 and S1 increased in frequency by 45% and 30% during winter with ENSO 

(although the S1 trend was not statistically significant with a p-value of 0.052). C8 also 

increased by 74% during winter with PNA. Interestingly, storm clusters C5 and S7 were not 

correlated with ENSO, indicating that perhaps the clusters are picking out storms with different 

origins. S1 represents the storm type most common in Southern California. S7 occurs less 

frequently and is distinctly colder than S1, having a temperature anomaly of -3.5° versus 0.2 °C. 

S7 is correlated with NAO decreasing by 45% in the spring. The distinction between C5 and C8 

is not immediately obvious. 

Additional teleconnections were found in both Central and Southern California domains, 

however, unlike the correlations between storms and ENSO and PNA, there is no a priori 

reasons to expect these additional teleconnections. Therefore, due to issues of multiplicity, one 

cannot assume these correlations are statistically significant despite test p-values below 0.05. 

Still, these correlations may provide useful context for further research and are thus reported 

here. In Central California, additional teleconnections include dead days (C3 and C9) and hot 

summer days (C7). During the fall, C3 increased by 40% with PNA and C9 increased by 35% with 

NAO. During the spring, C7 increased by ~70% with both AO and NAO. In Southern California, 

typical warm summer days, S3, increased by 50% with ENSO during the spring. There was no 

evidence of teleconnections between climate modes and the Central or Southern California 

clusters during the summer.  

3.2.2 Conclusions Related to Climate Modes and Wind Resources 

These results show that while climate mode indices were not correlated directly with total 

monthly wind generation, climate modes are correlated with the frequency of certain weather 

patterns (clusters) and, therefore, were correlated with the submonthly patterns of wind 

generation. Thus, near-term predictions of wind resources by grid operators could benefit from 
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including the impacts of climate mode on weather patterns. On a longer timescale, climate 

change impacts research could also benefit by accounting for changes to wind patterns 

associated with climate mode, as climate change could potentially impact wind resources 

through multiple pathways, including through changing the frequency and intensity of climate 

modes. 
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CHAPTER 4: 
Climate Change and California Wind 
Resources 

4.1 Climate Change May Already Be Impacting Wind 
Resources 
This section begins by analyzing climate change impacts from the historical perspective (36-

year record from DNV GL). Although total annual wind resources have not been changing with 

climate, there are strong correlations with climate change, cluster frequency, and wind intensity 

within clusters. While there was no evidence of temporal trends in energy resources at the 

seasonal or annual level, there was evidence of trends in cluster frequency. Specifically, the 

frequencies of C7, hot summer conditions, and C9, nonsummer dead days increased at a rate of 

roughly one-half and one-fourth day per year (Figure 15), respectively. The trend for C7 and C9 

was found to be significant at the 95% level. The increased frequency of C7 and C9 came at the 

expense of all other clusters, which declined in frequency over time except C3, but these results 

were not statistically significant. Despite the result of statistical significance for C7 and C9, this 

time-series analysis is based only on 36 data points (1 per year) and thus potentially influenced 

by decadal or multidecadal climate modes; so conclusions should be treated cautiously. There 

was not strong evidence of temporal trends in cluster frequency in Southern California.  

If this pattern is maintained, it represents an important change to weather patterns in Central 

California. Increasing at half a day per year, C7 occurs ~18 days more per year at the end of the 

period than the beginning, and this change is focused on a narrow portion of the year, as C7 

occurs mostly during summer months. The roughly nine-day increase in C9 during this period 

is also important and focused on nonsummer months. The increase in C9 dead days may have 

important implications for air quality (Mickley et al. 2004, Leung et al. 2005, Dawson et al. 

2014, Sun et al. 2017). The changes to C7 and C9 are generally consistent with a signal of global 

warming: Stagnant conditions (i.e. C9) are forecast to increase across the western United States 

throughout the 21st century (Jacob et al. 2009, Horton et al. 2014), and C7 and C9 are associated 

with warmer-than-average temperatures having positive temperature anomalies of 0.79 °C and 

0.58 °C, respectively. However, since temperature was not involved in generating the clusters, 

this suggests that shifts in wind patterns may be an additional impact due to climate change 

beyond temperature increases. 
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Figure 15: Frequency of C7 and C9 Over Time 

 

Source: Lawrence Berkeley National Laboratory 

What are the implications of these changes for wind energy? C7 has the highest wind 

generation potential of any cluster at Shiloh and is ranked 5 out of 10 at Altamont Pass. Thus, 

one might expect some positive change in resource potential at Shiloh and little change at 

Altamont. However, there was not a significant signal in average summer CF at Shiloh. Perhaps 

this is because C7 and C1 have similar CFs at Shiloh, and some of the increased C7 comes at the 

expense of C1. Furthermore, while one might expect the increase in C9 days to lead to a 

decreased nonsummer energy potential, there was not a significant signal in the average 

nonsummer seasonal CFs. As the additional C9 days are spread across three seasons, the 

change within a single season is small compared to the variability of the season. Of course, if 

these trends continue, a change to seasonal power generation may be seen in the future. For 

example, some climate models show increasing spring or summer wind resources in California, 

with decreasing wind resources during other times of year (Duffy et al. 2014). Karnauskas et al. 

(2017) show decreasing future resources during the winter. 

One note about statistical significance, autocorrelation of the errors in an ordinary least 

squares estimation can lead to an underestimation of the standard errors. A significant trend in 

clusters C7 and C9 was described above. The partial autocorrelation function (shown in 

Appendix D) was examined for C7 and C9, and C7 exhibited significant autocorrelation at lag 1. 

To account for the autocorrelation, the research team used the Cochrane-Orcutt procedure 

(Cochrane et al. 1949) to calculate a new p-value for the slope of C7. The Cochrane-Orcutt 

procedure removes the influence of lag 1 correlation and produces correct standard errors. The 
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original p-value of the C7 slope was 0.003, and the p-value for the slope after applying the 

Cochrane-Orcutt procedure was 0.012. Thus, after correcting for autocorrelation, the slope of 

C7 was still found to be significant. The slope of C9 was also found to be significant at the 95% 

confidence level, having a p-value of 0.039. Given that no lag was found to have significant 

autocorrelation for C9, the p-value was not adjusted with the Cochrane-Orcutt procedure. 

4.2 Modeled Future Changes to Wind Resources 
This section focuses on future projections of wind energy from VR-CESM midcentury 

simulation under the RCP8.5 “business-as-usual” scenario. In this section, seasonal wind power 

changes are first quantified from the midcentury projection, then understood in terms of the 

synoptic-scale meteorological shifts associated with these changes at each wind farm site.  

4.2.1 Projected Changes 

Figure 16 compares the seasonal 80m wind speed change between midcentury and historical 

periods (2030-2050 minus 1980-2000). These results indicate the SON, DJF, and MAM seasons 

exhibit decreases in wind speed for all seasons across most areas except for parts of the 

Central Valley. However, JJA winds were projected to increase in magnitude throughout most of 

California, particularly through the Southern California domain.  

Figure 16: Comparison of VR-CESM Seasonal Averaged 80 m Wind Speed Between Historical 
1980-2000 and Midcentury 2030-2050 (Mid-Century Minus Historical) for Central California, 

Southern California, and California Domains 

 

Symbols represent the Shiloh (circle), Altamont (square), Alta (inverted triangle), San Gorgonio (triangle), and Ocotillo 

(diamond) wind energy sites. 

Source: Lawrence Berkeley National Laboratory 

Cen.
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Comparing historical and future simulations, the seasonal pattern of CF and wind speed at each 

site was similar, with overall higher wind speeds during summer months and lower wind 

speeds during winter months (Figure 17). All wind farm sites exhibit a net increase in wind 

speed and CF during the summer months (JJA) and decrease during the winter months (DJF). 

Annual wind energy production decreases at all sites except Altamont Pass (Table 4). Consistent 

with Figure 17, JJA at all wind farm sites is associated with an increase in CF, while SON and 

DJF seasons lead to a decrease in CF. The SON CF decrease is consistent with results from 

(Duffy et al. 2014), which analyzed possible future trends at the Tehachapi wind farm site (at a 

similar location to Alta) and projected a significant decrease in wind speed throughout 

midcentury fall months, and little change in spring and summer.  

Figure 17: Comparison of 80m Wind Speed and Capacity Factor Between Historical and 
Midcentury at Each Wind Farm Site 

 

The left column shows the absolute values by month; the right column shows the change in values from the historical 

period by month. 

Source: Lawrence Berkeley National Laboratory 
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An increase in the frequency of lower wind speeds during SON and DJF seasons indicates the 

decreasing trend in wind speed through these two seasons. A decrease in the frequency of 

lower wind speeds during JJA and an increase in the frequency of higher wind speeds indicate 

the increasing trend in wind speed during this season. Figure 18 depicts the differences in 

frequency between seasonal 80 m wind speeds over the historical and midcentury periods from 

VR-CESM. The bold lines in Figure 18 correspond to the seasons with significant CF changes 

from Table 4. 

Table 4: Seasonal and Annual Capacity Factor Changes at Each Wind Farm Under Midcentury 
2030-2050 Compared to Historical 1980-2000  

Wind Farm MAM JJA SON DJF Annual 

Shiloh + 0.2% + 0.4% − 7.7% − 5.8% − 3.2% 

Altamont Pass + 4.2% + 7.5% − 4.5% − 0.9% + 1.6% 

Alta − 5.1% + 8.3% − 13.3% − 7.3% − 4.4% 

San Gorgonio − 2.4% + 9.7% − 10.9% − 16.9% − 5.1% 

Ocotillo + 1.6% + 5.6% − 2.0% − 9.0% − 1.0% 

Mid-Century CF Minus Historical CF, divided by Historical CF, and written as a percentage at each wind farm site. Bold 

face indicates a percentage change above the 95% significance level. 

Source: Lawrence Berkeley National Laboratory 

4.2.2 Synoptic-Scale Drivers 

As mentioned earlier, synoptic-scale fields are associated with horizontal scales on the order of 

1,000 km or more. To identify the synoptic-scale drivers that could influence the historical and 

midcentury wind climatology, the research team analyzed the mean meteorological fields from 

the VR-CESM simulations for seasons with significant CF changes (JJA in Figure 19, SON in 

Figure 20, DJF in Figure 21). In particular, the analysis focuses on the 700hPa geopotential 

height field, which is defined as the height of 700hPa isobar surfaces above mean sea level, as 

well as surface pressure, surface temperature, and hub-height wind field at 80m. In particular, 

the 700hPa geopotential height field was analyzed as it reflects the general circulation, with 

wind flow at this level largely following constant geopotential contours. The surface pressure 

field also impacts local wind speeds and is closely associated with surface temperature 

changes. Synoptic-scale fields during the MAM season were not investigated, as there was no 

significant CF change detected over this period (Table 4). 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Figure 18: Differences in Frequencies Between Midcentury 2030-2050 
and Historical 1980-2000 at Each Wind Farm Location  

 

Midcentury Minus Historical for seasonal Averaged 80 m wind speed from VR-CESM at each wind farm location. Bold lines 

correspond to significant changes from Table 4. The x-axis is in units of m s-1. 

Source: Lawrence Berkeley National Laboratory 

Through JJA (Figure 19), the 700hPa geopotential height field features an offshore trough and 

geopotential height contour lines perpendicular to coast. This pattern indicates a typical 
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summertime marine air penetration condition (Fosberg et al. 1966, Beaver et al. 2006, Wang et 

al. 2018b) and is driven by the offshore trough modifying the geopotential height contour lines 

to be perpendicular to the coastline, allowing cool and moist marine air to penetrate inland. The 

location of the offshore trough is directly responsible for driving marine air through the San 

Francisco Bay Delta. Relative to the historical period, the magnitude of the 700hPa geopotential 

height field under the midcentury increases (as a direct consequence of low-level warming). 

However, this increase is less pronounced over the Northern Pacific, which drives a weakening 

of the typically northerly wind pattern that traces the coastline in Northern and Central 

California, and an increase in the onshore flow pattern driven by the general circulation. This in 

turn leads to an increase in wind speeds through the San Francisco Delta region (Shiloh and 

Altamont Pass in the Central California domain). A shift in this synoptic-scale pattern also 

drives increased ventilation in the Southern California domain.  

Surface pressure in JJA is also observed to increase more rapidly at higher altitudes; 

consequently, the surface pressure in the Mojave Desert increases more rapidly than the 

Central Valley and leads to a weaker pressure gradient between the Central Valley and the 

Mojave Desert. A similar observation was made by (Miller et al. 2006) to explain a projected 

decrease in Santa Ana wind events in this region during the fall. Although this is a potential 

driver for wind speed decrease at Alta in Southern California, the impact of a reduced pressure 

gradient is counterbalanced by the changes to the large-scale geopotential height field, which 

enhances westerly winds throughout California.  

Figure 19: JJA Season 

 

Season Seasonal Mean 700hpa Geopotential Height, Surface Pressure, Surface Temperature, and 80 m Wind Fields on 

Historical 1980-2000 (Top Row), and the Corresponding Anomaly Fields on Midcentury 2030-2050 (Bottom Row) During 

JJA Season. Anomaly values (bottom row) were calculated from subtracting mean historical fields (top row) from mean 

midcentury fields. 

Source: Lawrence Berkeley National Laboratory 
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Figure 20: SON Season  

 

Seasonal Mean 700hpa Geopotential Height, Surface Pressure, Surface Temperature, and 80 m Wind Fields on Historical 

1980-2000 (Top Row) and the Corresponding Anomaly Fields on Midcentury 2030-2050 (Bottom Row) During SON Season 

Source: Lawrence Berkeley National Laboratory 

 

Figure 21: DJF Season  

 

Seasonal Mean 700hpa Geopotential Height, Surface Pressure, Surface Temperature, and 80 m Wind Fields on Historical 

1980-2000 (Top Row) and the Corresponding Anomaly Fields on Midcentury 2030-2050 (Bottom Row) During DJF Season 

Source: Lawrence Berkeley National Laboratory 

Across both periods, SON wind speeds are generally reduced compared to JJA, partly due to the 

decrease in land-sea temperature contrast and associated reduction to marine air penetration. 
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Comparing the 700hPa geopotential height field between historical and midcentury during SON 

(Figure 20), the entire California coast is under the influence of the weakening of wind flow 

parallel to the coast, driven by the negative geopotential anomaly south of Alaska and 

accompanied by a positive geopotential height anomaly over the continent. Through the 

Southern California domain, a weakening pressure gradient drives a decrease in the wind speed 

at Alta and San Gorgonio. This observation is in agreement with the observations of (Duffy et al. 

2014), and leads to a projected 10-15% power potential decrease during the fall in midcentury 

near Tehachapi.  

Through DJF (Figure 21), increased geopotential height over the subtropical western Pacific and 

the North American continent leads to a weaker northerly flow parallel to the coast and a 

reduced onshore flow. Further, with surface pressure decreases in the Central Valley, the 

surface-level pressure gradient between the Central Valley and the Mojave Desert decreases, 

which would, in turn be expected to drive lower wind speeds at the Alta wind farm site. The 

surface pressure gradient also decreases between the inland area and the ocean near the San 

Gorgonio wind farm site, which enhances the wind speed decrease.  

The seasonal meteorological patterns under the midcentury RCP8.5 scenario provide further 

evidence that future changes of wind energy in California will be influenced by both the 

synoptic-scale and local changes. Overall, the synoptic analysis suggests that the climate 

through midcentury will be conducive to higher wind speeds across California during JJA (5-

10% at four of the five sites examined) and lower wind speeds during SON (particularly at Alta 

and San Gorgonio, each of which exhibited a > 10% decrease) and DJF (with a 17% decrease at 

San Gorgonio). The changes to the surface pressure gradient between the Central Valley and the 

Mojave Desert appear robust across seasons and are a primary driver of wind speed decreases 

in the Southern California domain. To ensure the synoptic-scale climatology of VR-CESM was 

not an outlier, the research team also examined synoptic-scale geopotential height fields across 

CMIP5 models over the same period, and similar trends were observed.  

4.3 Conclusions Related to Climate Change Impact on Wind 
Resources 
Based on the historical record, California may already be seeing impacts of climate change on 

wind resources. Specifically, the frequencies of certain wind regimes over the period 1980 - 

2015, specifically those associated hot summer conditions and nonsummer dead days, were 

increasing at a rate of roughly one-half and one-fourth day per year (Figure 15), respectively. 

The changes to the frequencies of these regimes did not produce a detectable impact in the 

time series of total seasonal or annual generation. However, if the patterns of change continue, 

total generation potential will likely be affected. 

Looking forward with the VR-CESM model, the research team found significant seasonal 

changes in the available wind resource at most sites, with an increase in summertime (JJA) 

resources and a decrease in fall (SON) and winter (DJF) under RCP8.5 at all five sites (Table 4). 

The team also identified synoptic-scale and localized drivers behind seasonal wind energy 

change, suggesting that climate change may favor synoptic patterns that lead to higher wind 
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speed during JJA and lower wind speed during SON and DJF. Overall, this study improves the 

characterization of uncertainty around the magnitude and variability in space and time of 

California’s wind resources in the near future, and enhances the general understanding of the 

physical mechanisms related to the trends in wind resource variability. 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CHAPTER 5: 
Conclusions and Recommended Future 
Actions and Research 

Wind energy resources vary across all time scales. Understanding how wind resources may vary 

across the life of a particular wind project is critical to supporting wind development and wind 

integration. The research team designed this project to provide new insight into how wind 

resources vary from season to season and year to year. This project examined the longer-term 

drivers of wind variability, such as climate mode impacts at seasonal time scales and climate 

change impacts at decadal periods. Moreover, the project investigated daily variations in wind 

patterns in the historical record and examined what differentiated high wind resource years 

from low wind resource years. 

The project was designed with two broad goals: to provide new information about wind energy 

variation at five specific locations across California and to develop new methods and 

techniques that can enhance the understanding of wind resource variability everywhere.  

5.1 Key Findings and Implications for Wind Energy 
Investment Risk 

5.1.1 Historical Variability in California Wind Resources 

The research team analyzed the historical variability in California wind resources over the 

period 1980 – 2015. This analysis was based on the Virtual met product, which provided hourly 

hub-height wind fields, resolved to a 4-km resolution, across California.  

To develop new insight into historical variability patterns, the research team grouped together 

and categorized days with similar wind regimes. This daily categorization allowed for the 

identification of wind resources patterns that could not be seen by analyzing bulk seasonal and 

annual trends. The team achieved this categorization by extending and adapting statistical 

clustering techniques described in previous literature and discussed in Chapter 2, and applying 

the techniques to the Virtual met product. As will be outlined in Section 5.2, these clustering 

methods have great potential to help improve and contribute to the development of new 

applications that could be used by grid operators, planners, and project developers to 

understand and forecast wind variability across a variety of temporal scales.  

For this analysis, California was split into two domains – one focused on Central California and 

one focused on Southern California. Ten typical daily wind regimes were defined for each 

domain using the clustering technique mentioned above. Each of these wind regimes was found 

to be associated with a distinct meteorological pattern at the synoptic scale (horizontal scale of 

>1,000 km). Also, each wind regime was found to be associated with distinct diurnal patterns at 

each of the five sites of focus. Thus, the clustering method allowed direct links to be made 

from the synoptic-scale meteorological patterns to regional wind patterns and to site-level 
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diurnal wind cycles. The ability to readily, and intuitively, link site-level wind patterns to larger-

scale wind and meteorological fields could be useful in many applications, as will be detailed in 

Section 5.2. 

Although 10 wind regimes were identified at each domain, the amount of potential wind energy 

was different under each regime and at each of the five sites of focus. For example, some of the 

sites depended on only a few wind regimes for most of the energy generation, while other sites 

depended on a larger set for most of the energy generation. The report describes differences 

among sites. The identification of cluster types (wind regimes) allows for this type of 

characterization in general and for the development of an intuitive link between observable 

weather phenomena and site-level wind energy production patterns. 

The clustering framework was used to compare the top wind years to the bottom wind years. At 

multiple sites, dramatic differences in total potential energy generation (and thus project-level 

revenue) were found between top and bottom years (with the least difference being found at 

Alta, where the best year was ~20 percent greater than the worst year, while the best year at 

Ocotillo, the site with the largest difference, was almost 50 percent greater than the worst year). 

The research team investigated the drivers of these differences by examining changes to the 

frequency of the wind regimes during the top and bottom years. The team also analyzed within-

cluster wind speed differences between top and bottom years. At each focus site, the team 

identified unique changes to the frequency and/or the wind speed intensity of certain wind 

regimes. This identification allowed the linkage of low and high wind years to patterns in 

regional and synoptic-scale meteorological patterns. This is the first step in developing a chain 

of causality describing why certain years provide low wind resources (e.g., if one knows what 

synoptic-scale patterns occur more frequently in low wind years, one could investigate what 

causes those synoptic scale patterns to occur). Thus, this is also the first step in developing the 

ability to forecast the likelihood of an upcoming strong or weak wind resource year for a 

particular site. 

Finally, the research team analyzed the impact of climate mode on wind energy generation at 

each site of focus. While climate mode indices were not correlated directly with total monthly 

wind generation, climate modes were correlated with the frequency of certain wind regimes 

and, therefore, were correlated with the submonthly patterns of wind generation. Thus, near-

term prediction of wind resources by grid operators could benefit from including the impacts 

of climate mode on wind regimes. On longer time scales, research of climate change impacts 

could also benefit by accounting for changes to wind patterns associated with climate mode, as 

climate change could potentially affect wind resources through multiple pathways, including 

through changing the frequency and intensity of climate modes. 

5.1.2 Climate Change and California Wind Resources 

The research team analyzed climate change impacts on California wind resources using two 

methods. The first method was to examine long-term trends in the historical wind records 

within Virtual met. The second approach was to develop a high-resolution global climate 

simulation to simulate midcentury changes to future wind resources in California. This 

simulation was achieved using the state-of-the-art VR-CESM model. This model allows for a 
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high-resolution representation of California (~14 km) with a seamless connection to coarser 

representation of the globe (1°). This research is the first time such a model was used explicitly 

to examine climate change impacts to California wind resources. 

Based on the historical record, California may already be seeing impacts of climate change on 

wind resources. Specifically, the frequency of certain wind regimes in Central California, those 

associated with hot summer conditions and nonsummer dead days, were increasing at a rate of 

roughly one-half and one-fourth day per year, respectively. The changes to the frequency of 

these regimes did not produce a detectable impact in the time series of total seasonal or annual 

generation. However, if the patterns of change continue, total generation potential will likely be 

affected. 

Looking forward with the VR-CESM model, significant seasonal changes were found in the 

available wind resource at most sites, with an increase in summertime (JJA) resources and a 

decrease in fall (SON) and winter (DJF) under RCP8.5 at all five sites (Table 4). Synoptic-scale 

and localized drivers behind season wind energy change were also identified, and suggested 

climate change may favor synoptic patterns that lead to higher wind speed during JJA and 

lower wind speed during SON and DJF.  

This finding (directly above) was particularly interesting in that all the focus sites indicated 

change in the same direction during certain seasons. This finding, combined with the explicit 

analysis of synoptic-scale patterns, suggested that the VR-CESM simulations indicate climate 

change may alter the statewide patterns of ventilation (usually onshore flow) and impact wind 

generation across the state. A limitation here is that this simulation may not agree with 

forecasts produced by other models. However, by identifying the specific changes to future 

synoptic conditions, this work provides a useful starting point for comparisons across models 

that can provide more useful information than simply comparing the average changes to 

modeled future wind resources at individual locations. (See Section 5.2 for additional 

discussion.)  

Overall, this study improves the characterization of uncertainty around the magnitude and 

variability in space and time of California’s wind resources in the near future and enhances the 

understanding of the physical mechanisms related to the trends in wind resource variability. 

Most importantly, the simulation forecasts non-negligible changes to future wind resources 

and, thus, highlights the need for future research on this topic. 

5.2 Future Research Directions 
The results and methods presented in this report suggest applications and research directions 

that could be developed or improved.  

First, researchers could refine the general practice of measure-correlate-predict (MCP) with 

clustering methods. Analysts perform MCP during the site evaluation of project development by 

linking short-run site-level wind measurements to an available, hopefully nearby, longer-run 

record of wind speeds. Researchers could refine MCP using information from the clustering 
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methods described here, with the first step being to test whether developing separate 

relationships between the time-series during each cluster can improve the accuracy of MCP. 

Related to MCP is the more general technique of statistical downscaling (estimating local 

meteorological conditions based on large-scaler observations or modeled conditions). 

Researchers could adapt portions of the methods described here and test them for the ability to 

refine downscaling techniques. 

Second, researchers could develop wind power forecasts based on the link between large-scale 

meteorological fields, cluster type, and site-level wind resources. To the extent that synoptic-

scale meteorological patterns can be easily observed and predicted, this approach could allow 

for low-cost wind power forecasts. Additional machine-learning techniques could be applied to 

refine the forecasting approach. Information regarding climate mode could also be integrated 

into these approaches. 

Third, researchers could test whether the clustering techniques described here can help identify 

conditions that give rise to extreme wind events, significant ramp events, or other types of 

operational or system wide stress events. Beyond these wind power-focused events, scientists 

could apply these techniques to efforts that maximize transmission capacity dynamically based 

on line cooling by wind, or to research related to air quality or wildfire forecasting. 

Finally, researchers could improve projections of wind resources under climate change. 

Additional, independent high-resolution modeling could be developed to assess future resource 

change, and specifically, synoptic-scale patterns could be analyzed to determine what type of 

large-scale changes are predicted across modeling platforms. Clustering of climate forecasts 

could also be used to determine what types of changes are expected to regional wind regimes.  

5.3 Benefits to California 
This project offers several specific benefits to California, as well as more general advances in 

scientific methodology.  

• This report provides a new, and publicly available, assessment of the historical wind 

resource variability at five important wind power development sites in California—

Shiloh and Altamont Pass in the north and Alta, San Gorgonio, and Ocotillo in the south. 

• This report provides new predictions of changes to wind resource at the same five sites 

and provides analysis of changes to larger-scale synoptic conditions, all based on a 

state-of-the-art, high-resolution climate model. Energy planners, wind energy developers, 

and investors can all benefit from this information. Moreover, the changes predicted 

here can provide needed context for additional research on climate change impacts on 

wind resources. 

• These clustering methods have great potential to help improve and contribute to the 

development of new applications that could be used to understand and forecast wind 

variability across a variety of temporal scales. For instance, this study could improve 

electricity supply forecasting for grid management or inform long-term energy planning 

by refining wind projections. 
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• This project developed new methods for assessing wind variability and for classifying 

wind patterns across California. These methods can be applied in all wind project 

locations. By reducing the uncertainty in wind energy projections, this approach can 

reduce risk to investors and lead to greater investment in this low-carbon energy source. 

• The methods developed in this project may seed further research to continue improving 

wind forecasting and longer-term projections as described in section 5.2. 

Overall, this work furthers the scientific understanding of wind resource variability over many 

time scales. As the science and understanding of these topics are improved, the precision with 

which wind resources can be forecast will improve, which will lower the risk, and associated 

costs, of developing wind power. This cost reduction will benefit electricity consumers and 

developers. Furthermore, as these lower costs allow wind power to serve a greater portion of 

power generation needs within the state and elsewhere, all of California would benefit from 

reduced emissions of local pollutants and greenhouse gases. 
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ACRONYMS AND ABBREVIATIONS 

Term Definition 

EPIC Electric Program Investment Charge 

AF Annual fraction, daysi/days-per-year, of cluster i 

AGL Above ground level 

AO Arctic Oscillation  

BC VR-CESM bias-corrected VR-CESM  

C (as in C1 or 

C7) 

Indicates the Central California domain and the associated cluster 

number 

CAM5 Community Atmosphere Model, Version 5.3 

CF Capacity factor 

CF (and –top, -

bottom, -freq, 

and –wind 

Capacity factor 

CF-bottom The average CF at a site during the bottom five windiest years 

CF-freq 

The hypothetical CF based on the wind intensity of the top five years but 

the cluster distribution of the bottom five years 

CF-top The average CF at a site during the top five windiest years 

CF-wind 

The hypothetical CF based on the cluster distribution of the top five 

years but the wind intensity of the bottom five years 

CFSR Climate Forecast System Reanalysis 

CLM Community Land Model 

DNV GL Det Norske Veritas Germanischer Lloyd 

ENSO El Niño Southern Oscillation  

FAMPIC5 

Within the VR-CESM simulations, FAMPIC5 is the F-component set, which 

prescribes sea surface temperatures and sea ice but dynamically evolves 

the atmosphere and land surface component models 

GEOS-50 Goddard Earth Observing System Data Assimilation System Version 5 

GHG Greenhouse gas 

GMAO Global Modeling and Assimilation Office at NASA  
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hPA Hectopascals (hPa) unit, equal to 100 pascals or 1 millibar 

IEC International Electrotechnical Commission  

ISD Integrated Surface Database  

MAM, JJA, SON, 

and DJF 

March-April-May, June-July-August, September-October-November, and 

December-January-February  

MCP Measure-correlate-predict  

MERRA-2 

Modern-Era Retrospective Analysis for Research and Applications, 

Version 2  

NAO North Atlantic Oscillation  

NARR North American Regional Reanalysis 

NASA National Aeronautics and Space Administration 

NCEP National Centers for Environmental Prediction 

NERSC 

U.S. Department of Energy National Energy Research Scientific 

Computing Center  

NKX Miramar (airport code NKX) 

OAK Oakland (airport code OAK) 

PCA Principal components analysis  

PDO Pacific Decadal Oscillation  

PNA Pacific North American pattern 

RCP8.5 

Representative Concentration Pathway 8.5 -- a “business-as-usual” 

scenario 

RMSE Root-mean-squared error 

S (as in S1 or 

S7) 

Indicates the Southern California domain and the associated cluster 

number 

SB 350 California Senate Bill 350: Clean Energy and Pollution Reduction Act 

VBG Vandenberg (airport code VBG) 

VR-CESM Variable-Resolution Community Earth System Model 

WIND Wind Integration National Dataset  

WRF Weather Research and Forecasting model 



57 

REFERENCES 

Albadi, M. and E. El-Saadany (2010). "Overview of Wind Power Intermittency Impacts on Power 

Systems." Electric Power Systems Research 80(6): 627-632. 

Archer, C. L. and M. Z. Jacobson (2003). "Spatial and Temporal Distributions of U.S. Winds and 

Wind Power at 80 m Derived from Measurements." Journal of Geophysical Research: 

Atmospheres 108(D9). 

Archer, C. L., H. P. Simão, W. Kempton, W. B. Powell and M. J. Dvorak (2017). "The Challenge of 

Integrating Offshore Wind Power in the U.S. Electric Grid. Part I: Wind Forecast Error." 

Renewable Energy 103(Supplement C): 346-360. 

Bailey, B. and J. Kunkel (2015). "The Financial Implications of Resource Assessment 

Uncertainty." North American Windpower. 12. 

Barbose, G. L., N. R. Darghouth, D. Millstein, K. LaCommare, N. DiSanti and R. Widiss (2017). 

Tracking the Sun 10: The Installed Price of Residential and Non-Residential Photovoltaic 

Systems in the United States. 

Beaver, S. and A. Palazoglu (2006). "Cluster Analysis of Hourly Wind Measurements to Reveal 

Synoptic Regimes Affecting Air Quality." Journal of Applied Meteorology and Climatology 

45(12): 1710-1726. 

Beaver, S. and A. Palazoglu (2009). "Influence of Synoptic and Mesoscale Meteorology on Ozone 

Pollution Potential for San Joaquin Valley of California." Atmospheric Environment 

43(10): 1779-1788. 

Bedsworth, L., D. Cayan, G. Franco, L. Fisher, and S. Ziaja. (2018). California’s Fourth Climate 

Change Assessment. Statewide Summary Report. California Governor’s Office of Planning 

and Research, Scripps Institution of Oceanography, California Energy Commission, 

California Public Utilities Commission. SUM-CCCA4-2018-013. 

Berg, N., A. Hall, S. B. Capps and M. Hughes (2013). "El Niño-Southern Oscillation Impacts on 

Winter Winds Over Southern California." Climate Dynamics 40(1-2): 109-121. 

Bolinger, M. (2017). Using Probability of Exceedance to Compare the Resource Risk of Renewable 

and Gas-Fired Generation. 

Bolinger, M., J. Seel and K. H. LaCommare (2017). Utility-Scale Solar 2016: An Empirical Analysis 

of Project Cost, Performance, and Pricing Trends in the United States. Lawrence Berkeley 

National Lab.(LBNL), Berkeley, CA (United States). 

Carta, J. A., S. Velázquez and P. Cabrera (2013). "A Review of Measure-Correlate-Predict (MCP) 

Methods Used to Estimate Long-Term Wind Characteristics at a Target Site." Renewable 

and Sustainable Energy Reviews 27: 362-400. 

Carvalho, D., A. Rocha, M. Gómez-Gesteira and C. S. Santos (2014). "WRF Wind Simulation and 

Wind Energy Production Estimates Forced by Different Reanalyses: Comparison With 

Observed Data for Portugal." Applied Energy 117: 116-126. 

Chadee, X. T. and R. M. Clarke (2015). "Daily Near-Surface Large-Scale Atmospheric Circulation 

Patterns Over the Wider Caribbean." Climate Dynamics 44(11-12): 2927-2946. 



58 

Clifton, A. and J. K. Lundquist (2012). "Data Clustering Reveals Climate Impacts on Local Wind 

Phenomena." Journal of Applied Meteorology and Climatology 51(8): 1547-1557. 

Cochrane, D. and G. H. Orcutt (1949). "Application of Least Squares Regression to Relationships 

Containing Auto-Correlated Error Terms." Journal of the American Statistical Association 

44(245): 32-61. 

Conil, S. and A. Hall (2006). "Local Regimes of Atmospheric Variability: A Case Study of 

Southern California." Journal of Climate 19(17): 4308-4325. 

Darby, L. S. (2005). "Cluster Analysis of Surface Winds in Houston, Texas, and the Impact of 

Wind Patterns on Ozone." Journal of Applied Meteorology 44(12): 1788-1806. 

Dawson, J. P., B. J. Bloomer, D. A. Winner and C. P. Weaver (2014). "Understanding the 

Meteorological Drivers of U.S. Particulate Matter Concentrations in a Changing Climate." 

Bulletin of the American Meteorological Society 95(4): 521-532. 

Delle Monache, L., F. A. Eckel, D. L. Rife, B. Nagarajan and K. Searight (2013). "Probabilistic 

Weather Prediction With an Analog Ensemble." Monthly Weather Review 141(10): 3498-

3516. 

Delle Monache, L., T. Nipen, Y. Liu, G. Roux and R. Stull (2011). "Kalman Filter and Analog 

Schemes to Postprocess Numerical Weather Predictions." Monthly Weather Review 

139(11): 3554-3570. 

Dennis, J. M., J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St-Cyr, M. A. Taylor 

and P. H. Worley (2012). "CAM-SE: A Scalable Spectral Element Dynamical Core for the 

Community Atmosphere Model." The International Journal of High Performance 

Computing Applications 26(1): 74-89. 

DOE (2015). Wind Vision: A New Era for Wind Power in the United States. DOE/GO-102015-4557. 

U.S. Department of Energy, Washington, DC. 

Draxl, C., A. Clifton, B.-M. Hodge and J. McCaa (2015). "The Wind Integration National Dataset 

(WIND) Toolkit." Applied Energy 151: 355-366. 

Duffy, P. B., J. Bartlett, J. Dracup, J. Freedman, K. Madani and K. Waight (2014). Climate Change 

Impacts on Generation of Wind, Solar, and Hydropower in California. Publication # CEC-

500-2014-111. California Energy Commission. 

Fosberg, M. A. and M. J. Schroeder (1966). "Marine Air Penetration in Central California." Journal 

of Applied Meteorology 5(5): 573-589. 

Fripp, M. and R. H. Wiser (2008). "Effects of Temporal Wind Patterns on the Value of Wind-

Generated Electricity in California and the Northwest." IEEE Transactions on Power 

Systems 23(2): 477-485. 

Gelaro, R., W. McCarty, M. J. Suárez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, 

M. G. Bosilovich and R. Reichle (2017). "The Modern-Era Retrospective Analysis for 

Research and Applications, Version 2 (MERRA-2)." Journal of Climate 30(14): 5419-5454. 

GES (2017a). Goddard Earth Sciences Data and Information Services Center. MERRA-2 

inst1_2d_asm_Nx: 2d,1-hourly, instantaneous, single-level, assimilation, single-level 

diagnostics v5.12.4. DOI: 10.5067/ 3Z173KIE2TPD. 



59 

GES (2017b). Goddard Earth Sciences Data and Information Services Center. MERRA-2 inst3 3d 

asm Np: 3d,3-Hourly,Instantaneous,Pressure- Level,Assimilation,Assimilated 

Meteorological Fields V5.12.4. DOI: 10.5067/QBZ6MG944HW0. 

Gibson, P. B. and N. J. Cullen (2015). "Synoptic and Sub-Synoptic Circulation Effects on Wind 

Resource Variability–A Case Study from a Coastal Terrain Setting in New Zealand." 

Renewable Energy 78: 253-263. 

Goddard, S. D., M. G. Genton, A. S. Hering and S. R. Sain (2015). "Evaluating the Impacts of 

Climate Change on Diurnal Wind Power Cycles Using Multiple Regional Climate Models." 

Environmetrics 26(3): 192-201. 

Gross, M. and V. Magar (2016). "Offshore Wind Energy Climate Projection Using UPSCALE 

Climate Data Under the RCP8. 5 Emission Scenario." PloS one 11(10): e0165423. 

Guba, O., M. Taylor, P. Ullrich, J. Overfelt and M. Levy (2014). "The Spectral Element Method on 

Variable Resolution Grids: Evaluating Grid Sensitivity and Resolution-Aware Numerical 

Viscosity." Geosci. Model Dev. Discuss 7: 4081-4117. 

Haupt, S. E., J. Copeland, W. Y. Cheng, Y. Zhang, C. Ammann and P. Sullivan (2016). "A Method 

to Assess the Wind and Solar Resource and to Quantify Interannual Variability Over the 

United States Under Current and Projected Future Climate." Journal of Applied 

Meteorology and Climatology 55(2): 345-363. 

Horton, D. E., C. B. Skinner, D. Singh and N. S. Diffenbaugh (2014). "Occurrence and Persistence 

of Future Atmospheric Stagnation Events." Nature Climate Change 4(8): 698-703. 

Huang, X., A. M. Rhoades, P. A. Ullrich and C. M. Zarzycki (2016a). "An Evaluation of the 

Variable‐Resolution CESM for Modeling California's Climate." Journal of Advances in 

Modeling Earth Systems 8(1): 345-369. 

Huang, X. and P. A. Ullrich (2016b). "Irrigation Impacts on California's Climate With the 

Variable‐Resolution CESM." Journal of Advances in Modeling Earth Systems 8(3): 1151-

1163. 

Hubbert, M. K. (1971). "The Energy Resources of the Earth." Scientific American 225(3): 60-73. 

Jacob, D. J. and D. A. Winner (2009). "Effect of Climate Change on Air Quality." Atmospheric 

Environment 43(1): 51-63. 

Jiménez, P. A., J. F. González‐Rouco, J. P. Montávez, E. García‐Bustamante and J. Navarro 

(2009). "Climatology of Wind Patterns in the Northeast of the Iberian Peninsula." 

International Journal of Climatology 29(4): 501-525. 

Jin, L., R. A. Harley and N. J. Brown (2011). "Ozone Pollution Regimes Modeled for a Summer 

Season in California’s San Joaquin Valley: A Cluster Analysis." Atmospheric Environment 

45(27): 4707-4718. 

Justus, C. and A. Mikhail (1976). "Height Variation of Wind Speed and Wind Distributions 

Statistics." Geophysical Research Letters 3(5): 261-264. 

Karnauskas, K. B., J. K. Lundquist and L. Zhang (2017). "Southward Shift of the Global Wind 

Energy Resource Under High Carbon Dioxide Emissions." Nature Geoscience. 



60 

Leung, L. R. and W. I. Gustafson (2005). "Potential Regional Climate Change and Implications to 

U.S. Air Quality." Geophysical Research Letters 32(16). 

Li, X., S. Zhong, X. Bian and W. Heilman (2010). "Climate and Climate Variability of the Wind 

Power Resources in the Great Lakes Region of the United States." Journal of Geophysical 

Research: Atmospheres 115(D18). 

Ludwig, F. L., J. Horel and C. D. Whiteman (2004). "Using EOF Analysis to Identify Important 

Surface Wind Patterns in Mountain Valleys." Journal of Applied Meteorology 43(7): 969-

983. 

Ma, J., G. R. Foltz, B. J. Soden, G. Huang, J. He and C. Dong (2016). "Will Surface Winds Weaken in 

Response to Global Warming?" Environmental Research Letters 11(12): 124012. 

McElroy, M. B., P. Sherman and X. Chen (2017). "Wind-Generated Electricity in China: Decreasing 

Potential, Inter-Annual Variability and Association With Changing Climate." Scientific 

Reports 7(1): 16294. 

Mesinger, F., G. DiMego, E. Kalnay, K. Mitchell, P. C. Shafran, W. Ebisuzaki, D. Jović, J. Woollen, E. 

Rogers and E. H. Berbery (2006). "North American Regional Reanalysis." Bulletin of the 

American Meteorological Society 87(3): 343-360. 

Mickley, L. J., D. J. Jacob, B. Field and D. Rind (2004). "Effects of Future Climate Change on 

Regional Air Pollution Episodes in the United States." Geophysical Research Letters 

31(24). 

Miller, N. L. and N. J. Schlegel (2006). "Climate Change Projected Fire Weather Sensitivity: 

California Santa Ana Wind Occurrence." Geophysical Research Letters 33(15). 

Millstein, D., R. Wiser, M. Bolinger and G. Barbose (2017). "The Climate and Air-Quality Benefits 

of Wind and Solar Power in the United States." Nature Energy 2(9): 17134. 

Millstein, D., Solomon-Culp, J., Wang, M., Ullrich, P. and C. Collier, (2018) "Wind energy 

variability and links to regional and synoptic scale weather." Climate Dynamics. 

https://doi.org/10.1007/s00382-018-4421-y. 

Neale, R. B., C.-C. Chen, A. Gettelman, P. H. Lauritzen, S. Park, D. L. Williamson, A. J. Conley, R. 

Garcia, D. Kinnison and J.-F. Lamarque (2010). "Description of the NCAR Community 

Atmosphere Model (CAM 5.0)." NCAR Tech. Note NCAR/TN-486+ STR 1(1): 1-12. 

NOAA. (2017a, 08/08/2017). "Arctic Oscillation (AO)." from 

https://www.ncdc.noaa.gov/teleconnections/ao/. 

NOAA. (2017b, 08/08/2017). "Historical El Niño/La Niña Episodes (1950-present) ", from 

http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. 

NOAA. (2017c, 08/08/2017). "North Atlantic Oscillation (NAO)." from 

https://www.ncdc.noaa.gov/teleconnections/nao/. 

NOAA. (2017d, 08/08/2017). "Pacific Decadal Oscillation (PDO)." from 

https://www.ncdc.noaa.gov/teleconnections/pdo/. 

NOAA. (2017e, 08/08/2017). "Pacific-North American (PNA)." from 

https://www.ncdc.noaa.gov/teleconnections/pna/. 

https://www.ncdc.noaa.gov/teleconnections/ao/
http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://www.ncdc.noaa.gov/teleconnections/nao/
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.ncdc.noaa.gov/teleconnections/pna/


61 

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. 

Prettenhofer, R. Weiss and V. Dubourg (2011). "Scikit-Learn: Machine Learning in 

Python." Journal of Machine Learning Research 12(Oct): 2825-2830. 

Pryor, S. and R. Barthelmie (2011). "Assessing Climate Change Impacts on the Near-Term 

Stability of the Wind Energy Resource Over the United States." Proceedings of the 

National Academy of Sciences 108(20): 8167-8171. 

Pryor, S. and R. Barthelmie (2013). "Assessing the Vulnerability of Wind Energy to Climate 

Change and Extreme Events." Climatic Change 121(1): 79-91. 

Pryor, S., R. Barthelmie and E. Kjellström (2005). "Potential Climate Change Impact on Wind 

Energy Resources in Northern Europe: Analyses Using a Regional Climate Model." 

Climate Dynamics 25(7-8): 815-835. 

Rasmussen, D., T. Holloway and G. Nemet (2011). "Opportunities and Challenges in Assessing 

Climate Change Impacts on Wind Energy—A Critical Comparison of Wind Speed 

Projections in California." Environmental Research Letters 6(2): 024008. 

Rhoades, A. M., X. Huang, P. A. Ullrich and C. M. Zarzycki (2016). "Characterizing Sierra Nevada 

Snowpack Using Variable-Resolution CESM." Journal of Applied Meteorology and 

Climatology 55(1): 173-196. 

Rhoades, A. M., P. A. Ullrich and C. M. Zarzycki (2018). "Projecting 21st Century Snowpack 

Trends in Western USA Mountains Using Variable-Resolution CESM." Climate Dynamics 

50(1-2): 261-288. 

Rienecker, M. M., M. J. Suarez, R. Gelaro, R. Todling, J. Bacmeister, E. Liu, M. G. Bosilovich, S. D. 

Schubert, L. Takacs and G.-K. Kim (2011). "MERRA: NASA’s Modern-Era Retrospective 

Analysis for Research and Applications." Journal of Climate 24(14): 3624-3648. 

Saha, S., S. Moorthi, H. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen and D. 

Behringer (2010). "NCEP Climate Forecast System Reanalysis (CFSR) 6-Hourly Products, 

January 1979 to December 2010." Research Data Archive at the National Center for 

Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO. 

Sailor, D. J., M. Smith and M. Hart (2008). "Climate Change Implications for Wind Power 

Resources in the Northwest United States." Renewable Energy 33(11): 2393-2406. 

Seefeldt, M. W., J. J. Cassano and T. R. Parish (2007). "Dominant Regimes of the Ross Ice Shelf 

Surface Wind Field During Austral Autumn 2005." Journal of Applied Meteorology and 

Climatology 46(11): 1933-1955. 

Segal, M., Z. Pan, R. W. Arritt and E. S. Takle (2001). "On the Potential Change in Wind Power 

Over the U.S. due to Increases of Atmospheric Greenhouse Gases." Renewable Energy 

24(2): 235-243. 

Shimada, S., T. Ohsawa, S. Chikaoka and K. Kozai (2011). "Accuracy of the Wind Speed Profile in 

the Lower PBL as Simulated by the WRF Model." Sola 7: 109-112. 

Sun, W., P. Hess and C. Liu (2017). "The Impact of Meteorological Persistence on the Distribution 

and Extremes of Ozone." Geophysical Research Letters 44(3): 1545-1553. 

Taylor, K. E., R. J. Stouffer and G. A. Meehl (2012). "An Overview of CMIP5 and the Experiment 

Design." Bulletin of the American Meteorological Society 93(4): 485-498. 



62 

Tindal, A. (2011). Financing Wind Farms and the Impacts of P90 and P50 Yields. EWEA Wind 

Resource Assessment Workshop. 

Ullrich, P. (2014). "SQuadGen: Spherical Quadrilateral Grid Generator." from 

http://climate.ucdavis.edu/squadgen.php. 

Wang, M., Ullrich, P. and D. Millstein (2018a) "The future of wind energy in California: Future 

projections with the Variable-Resolution CESM." Renewable Energy 127: 242-257. 

Wang, M. and P. Ullrich (2018b). "Marine Air Penetration in California's Central Valley: 

Meteorological Drivers and the Impact of Climate Change." Journal of Applied 

Meteorology and Climatology 57: 137 - 154. 

Ward Jr, J. H. (1963). "Hierarchical Grouping to Optimize an Objective Function." Journal of the 

American Statistical Association 58(301): 236-244. 

Wiser, R., M. Bolinger, G. Barbose, N. Darghouth, B. Hoen, A. Mills, J. Rand, D. Millstein, K. Porter, 

R. Widiss, N. Disanti, F. Oteri and S. Tegen (2017). 2016 Wind Technologies Market 

Report, U.S. Department of Energy. 

Xie, L., P. M. Carvalho, L. A. Ferreira, J. Liu, B. H. Krogh, N. Popli and M. D. Ilic (2011). "Wind 

Integration in Power Systems: Operational Challenges and Possible Solutions." 

Proceedings of the IEEE 99(1): 214-232. 

Yu, L., S. Zhong, X. Bian and W. E. Heilman (2015). "Temporal and Spatial Variability of Wind 

Resources in the United States as Derived from the Climate Forecast System Reanalysis." 

Journal of Climate 28(3): 1166-1183. 

Yu, L., S. Zhong, X. Bian and W. E. Heilman (2016). "Climatology and Trend of Wind Power 

Resources in China and Its Surrounding Regions: A Revisit Using Climate Forecast 

System Reanalysis Data." International Journal of Climatology 36(5): 2173-2188. 

Zaremba, L. L. and J. J. Carroll (1999). "Summer Wind Flow Regimes Over the Sacramento 

Valley." Journal of Applied Meteorology 38(10): 1463-1473. 

Zarzycki, C. M., C. Jablonowski, D. R. Thatcher and M. A. Taylor (2015). "Effects of Localized 

Grid Refinement on the General Circulation and Climatology in the Community 

Atmosphere Model." Journal of Climate 28(7): 2777-2803. 

Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor and P. A. Ullrich (2014). 

"Aquaplanet Experiments Using CAM’s Variable-Resolution Dynamical Core." Journal of 

Climate 27(14): 5481-5503. 

 

http://climate.ucdavis.edu/squadgen.php


A-1 

APPENDIX A: 
Data in Brief (VR-CESM). 

This appendix includes the description of data information for hub-height wind-speed 

comparisons at multiple major wind farms across California. Datasets from the Variable-

Resolution CESM, DNV GL Virtual met, MERRA-2, CFSR, NARR, ISD surface observations, and 

upper air sounding observations were used for calculating hub-height wind speed. Information 

on hub-height wind speed interpolation and power curves at each wind farm sites is also 

presented.   

Data 
The dataset reported in this article contains hub-height wind fields, with special focus on wind 

farms in California. Two modeling products, three reanalysis datasets, and two observational 

data are described in the article. The interpolation method for calculating hub-height wind 

speed is also presented in the article and can be applied to other studies. Power curves used for 

calculating wind energy capacity factors at each wind farm location are also provided. 

Experimental Design, Materials, and Methods  

VR-CESM (Global Climate Model Product) 

Data provided in this article include two simulations using the Variable-Resolution CESM (VR-

CESM) model. The CESM Version 1.5.5, a fully coupled atmospheric, land, ocean, and sea ice 

model, was utilized. Both simulations used the F-component set, which prescribes sea-surface 

temperatures and sea ice but dynamically evolves the atmosphere and land surface component 

models. The atmospheric component model is the Community Atmosphere Model, Version 5.3 

(CAM5) (Neale et al. 2010) with the spectral-element (SE) dynamical core (Dennis et al. 2012) in 

the variable-resolution (VR) configuration. The VR model grid used for this study was generated 

for use in CAM and CLM with the open-source software package SQuadGen (Guba et al. 2014, 

Ullrich 2014). On this grid, the finest horizontal resolution is 0.125° (~14km), with a quasi-

uniform 1° mesh over the remainder of the globe. Two simulations were conducted using this 

grid structure:  First, the historical run covers the period from October 1, 1979, to December 

31, 2000, with first three months discarded as the spin-up period, for a total of 21 years. This 

historical period was chosen to provide an adequate sampling of interannual variability, to 

coincide with the period from the rest of the modeling and reanalysis datasets, and because 

observed sea surface temperatures (which acted as boundary conditions for the simulation) 

were available only through 2005. For projecting future wind energy change, the research 

team‘s midcentury simulation ran with the “business-as-usual” Representative Concentration 

Pathway 8.5 (RCP8.5) (Taylor et al. 2012) from October 1, 2029, to December 31, 2050, again 

discarding the first three months for a total of 21 years. Greenhouse gas (GHG) and aerosol 

forcings are prescribed based on historical or RCP8.5 concentrations for each simulation. More 
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details on VR-CESM can be found in Huang et al. (2016a) and Rhoades et al. (2016), and the 

model has been applied to previous studies (Rhoades et al. 2018, Wang et al. 2018b). 

DNV GL Virtual Met (Dynamically downscaled Regional Model Product) 

The DNV GL Virtual met product is derived from a hybrid dynamical-statistical downscaling 

system based upon the Weather Research and Forecasting (WRF) model and an analog-based 

ensemble downscaling method. A coarse resolution WRF simulation is run for the entire period 

to be downscaled, while for only a subset of that period, a nested version of the same model is 

run at high resolution. The period over which the coarse and high-resolution runs overlap is 

called the training period, while the remaining portion is termed downscaling period. For each 

time of the latter, the best matching coarse estimates (termed "analogs") over the training 

period are found. The downscaled solution is then constructed from the set of high-resolution 

values that correspond to the best matching coarse analogs. This method is based upon Delle 

Monache et al. (2011, 2013). 

The WRF simulation used telescoping, one-way interacting computational grids. The respective 

horizontal grid increments are 20 km and 4 km, with the 4-km grid centered over California. 

The initial and lateral boundary conditions are specified using MERRA-2. The 20-km grid was 

run for the entire January 1, 1980 - December 31, 2015, period and generated output every 

hourly, while the nested 4 km grid was run only during the last year of the full simulation 

(January 1, 2015 to December 31, 2015). The high-resolution downscaled dataset is constructed 

for the entire 36-year period using the 4 km resolution training data and the 20-km simulation 

(both from the same WRF model configuration). The result is an hourly time series at each 4-km 

grid point for January 1, 1980, to December 31, 2015. Wind speed and direction at hub heights, 

including 50m, 80m, 140m, are output.  DNV GL served solely as a data provider and is not 

responsible for any results from this data. 

MERRA-2 (Reanalysis Product) 

The Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) is a 

reanalysis product for the satellite era using the Goddard Earth Observing System Data 

Assimilation System Version 5 (GEOS-50) produced by Global Modeling and Assimilation Office 

(GMAO) at NASA (Gelaro et al. 2017). MERRA-2 integrates several improvements over the first 

version MERRA product (Rienecker et al. 2011). For the fields used in this study, the spatial 

resolution is ~55 km with 3-hourly output frequency from 1980 to present. Vertical 

interpolation of MERRA-2 data was performed to calculate hub-height wind speed. Variables 

used in vertical interpolation were extracted from two subsets: 3-hourly instantaneous pressure 

level assimilation (GES 2017b) and hourly instantaneous single-level assimilation (GES 2017a) 

(extracted at 3-hourly frequency). 

CFSR (Reanalysis Product) 

The Climate Forecast System Reanalysis (CFSR) from NCEP (National Centers for Environmental 

Prediction) is a global, coupled reanalysis that spans from 1979 to present, with ~55km spatial 

resolution and 6-hourly temporal resolution of relevant wind fields (Saha et al. 2010). Notably, 
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this temporal resolution is the lowest out of the five datasets used. The analysis subset was 

chosen for vertical interpolation at 6-hourly frequency. 

NARR (Reanalysis Product) 

The North American Regional Reanalysis (NARR), another NCEP reanalysis product, features a 

slightly higher spatial resolution of ~32km. It is a dynamically downscaled data product with 

spatial coverage over North America, with 3-hourly temporal resolution from 1979 through 

present (Mesinger et al. 2006). Hub-height wind speeds from NARR were also calculated at this 

frequency. 

ISD (In-Situ Observations) 

The Integrated Surface Database (ISD) from NOAA's National Centers for Environmental 

Information (NCEI) was used for assessing hourly 10m wind speed from model and reanalysis. 

The ISD observational stations are distributed globally, with the highest concentration of 

stations found in North America. Stations across California that provide full-year data were 

selected. Because not all stations had continuous temporal coverage between 1980 and 2000, 

each year was calculated separately to maximize the number of available stations. To compare 

10m wind speeds from model and reanalysis datasets to ISD, the nearest grid point values to 

each of the ISD stations were used. Coastal stations were neglected in the analysis of 10m 

winds due to coastal biases that tend to occur in near-surface coarse-resolution reanalysis. 

These biases tend to emerge because similarity theory is typically employed to extract 10m 

wind speeds, which produces different results over the ocean and land surface. 

Upper Air Soundings (In-Situ Observations) 

Upper air soundings (vertical wind profiles) from all the available locations across California are 

incorporated into the comparison (University of Wyoming, Department of Atmospheric Science 

(http://weather.uwyo.edu/upperair/sounding.html). The three available sounding locations in 

California are OAK at Oakland airport (station number 72493), VBG at Vandenberg Air Force 

Base (72393), and NKX at San Diego (72293). The period from the first two stations spans 1980 

to 2000. NKX only has data available starting from September 1989, so only the full years 1990-

2000 were assessed. Soundings were collected every 12 hours at 00Z and 12Z, and logarithmic 

vertical interpolation was performed to calculate hub-height wind at each sounding location. 

However, this logarithmic interpolation from sparsely sampled profile data could introduce 

uncertainties into the calculation. 

Wind Speed Interpolation Method 

The wind speed at each wind farm location was determined using nearest grid point values to 

each wind farm site. To obtain hub-height wind vectors, vertical interpolation was performed 

on 3-hourly VR-CESM, 3-hourly MERRA-2, 6-hourly CFSR, and 3-hourly NARR products from 

1980 to 2000. As mentioned above, hub-height wind output is available directly from the DNV 

GL Virtual met data product. Vertical interpolation of VR-CESM data uses the 3D wind field on 

hybrid surfaces and 10m altitude wind speed, which is computed from similarity theory. For 

VR-CESM data, the interpolation procedure is as follows: (1) the CAM5 hybrid coordinates are 

first converted to pressure coordinates within the column being analyzed, (2) the height of each 
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pressure surface above ground level (AGL) is computed by subtracting the surface geopotential 

height from the geopotential height of the model level, (3) two model levels that bound the 

desired interpolation altitude are selected or, if the interpolation altitude is below the lowest 

model level, the lowest model level and 10m wind speed field are used, and (4) logarithmic 

interpolation is applied to obtain the wind speed at the desired interpolation altitude. The 

interpolation was done by fitting a log equation with the two levels bounding the altitude to be 

calculated, then with the log profile, interpolating the wind at desired altitude (Justus et al. 

1976). Vertically interpolated wind speed from MERRA-2, CFSR, NARR, and sounding 

observations all followed a similar procedure and were calculated at three hub heights (50m, 

80m, and 140m). Figures A1 to A4 show the interpolated hub-height wind speed at 50m and 

140m at the Central and Southern California domains. 

Wind turbines can contribute to energy via the electric power system. This contribution is the 

total amount of usable energy supplied by the turbine per year (Fripp et al. 2008). The capacity 

factor (CF) is often defined as actual power output divided by the maximum amount of wind 

power that can be generated through the system. This wind speed and CF relationship is not 

continuous since there is a discontinuous minimum and maximum wind speed required to 

begin and cease wind power production (the latter to avoid damage to the wind turbine under 

extreme wind conditions), and this is represented with different power curves associated with 

each of the wind farm sites. The calculated CF at each wind farm site is based on different 

characteristic power curves at that site and do not include electrical losses during power 

generation. The normalized power curves at each wind farm sites, with each value 

corresponding to a 1m/s wind speed bin increment starting from 0m/s, are listed in Table A-1 

and are derived from Draxl et al. (2015). To calculate the CF, wind speed is multiplied with the 

corresponding power curve value from the corresponding wind speed bin, and then times 100 

to convert the percentage values. For details on the CF analysis, please refer to (Saha et al. 

2010). 

Table A-1: Power Curves for Wind Farms Across California. Each Value Corresponds to a 1m/S 
Wind Speed Bin Increment Starting from 0m/S 

Wind farm Power curve 

San Gorgonio IECclass1 = (0, 0, 0, 0.0043, 0.0323, 0.0771, 0.1426, 0.2329, 0.3528, 

0.5024, 0.6732, 0.8287, 0.9264,  0.9774, 0.9946, 0.999, 0.9999, 1, 1, 1, 1, 

1, 1, 1, 1, 1) 

Altamont Pass, Ocotillo IECclass2 = (0, 0, 0, 0.0052, 0.0423, 0.1031, 0.1909, 0.3127, 0.4731, 

0.6693, 0.8554, 0.9641, 0.9942, 0.9994, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 

Alta, Shiloh IECclass3 = (0, 0, 0, 0.0054, 0.053, 0.1351, 0.2508, 0.4033, 0.5952, 

0.7849, 0.9178, 0.9796, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 

Source: Lawrence Berkeley National Laboratory 
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Figure A-1: Seasonal Average of Interpolated 50m Wind Speed from Each Datasets for Historical 
Period 1980-2000 in the Central California Domain 

 
Source: Lawrence Berkeley National Laboratory 
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Figure A-2: Seasonal Average of Interpolated 50m Wind Speed from Each Datasets for Historical 
Period 1980-2000 in the Southern California Domain 

 
Source: Lawrence Berkeley National Laboratory 
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Figure A-3: Seasonal Average of Interpolated 140m Wind Speed from Each Datasets for Historical 
Period 1980-2000 in the Central California Domain 

 
Source: Lawrence Berkeley National Laboratory 
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Figure A-4: Seasonal Average of Interpolated 140m Wind Speed from Each Datasets for Historical 
Period 1980-2000 in the Southern California Domain 

 
Source: Lawrence Berkeley National Laboratory 
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APPENDIX B: 
Additional Data Relating to Historical Wind 
Resource Variability  

Table B-1: Summary Statistics of Annual Capacity Factor by Site 

 

Average 
CF 

Standard 
deviation of 
annual CF 

(Standard 
deviation of 
annual CF) / 
(Average CF) 

(Top Year CF) 
/ (Bottom 
Year CF) 

(Top 5 years CF) 
/ (Bottom 5 
years CF) 

Altamont Pass 0.40 0.020 4.9% 1.22 1.18 

Shiloh 0.45 0.017 3.9% 1.24 1.13 

Alta 0.57 0.024 4.2% 1.19 1.14 

San Gorgonio 0.31 0.025 7.8% 1.44 1.29 

Ocotillo 0.35 0.026 7.4% 1.47 1.26 

Source: Lawrence Berkeley National Laboratory 

Table B-2: Coefficient of Determination (R2) Between Site Annual Capacity Factors. 

  Altamont Shiloh Alta San Gorgonio Ocotillo 

Altamont 1 
    

Shiloh 0.28 1 
   

Alta 0.24 0.01 1 
  

San Gorgonio 0.13 0.03 0.55 1 
 

Ocotillo 0.07 0.00 0.48 0.66 1 

Source: Lawrence Berkeley National Laboratory 
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Table B-3: Capacity Factor and Portion of Total Annual Generation by Cluster 

Cluster 
Altamo
nt CF 

% 
Altamont 
Total 
Generati
on 

Shilo
h CF 

% Shiloh 
Total 
Generati
on 

Alt
a 
CF 

% Alta 
Total 
Generati
on 

San 
Gorgoni
o CF 

% San 
Gorgonio 
Total 
Generati
on 

Ocotill
o CF 

% 
Ocotillo 
Total 
Generati
on 

C1 or S1 65.4 33.5 63.3 29.2 

64.

0 10.1 39.9 11.5 37.4 9.6 

C2 or S2 32.4 10.3 35.3 10.1 

58.

1 12.0 16.7 6.3 20.6 6.9 

C3 or S3 22.4 5.8 24.6 5.7 

66.

1 18.1 41.7 20.7 44.3 19.6 

C4 or S4 21.2 5.0 43.3 9.1 

36.

2 9.8 15.1 7.5 19.5 8.6 

C5 or S5 49.9 7.9 45.5 6.5 

35.

9 5.5 7.2 2.0 7.2 1.8 

C6 or S6 37.4 7.5 36.0 6.5 

16.

5 2.7 0.9 0.3 1.7 0.5 

C7 or S7 46.2 16.3 64.4 20.4 

93.

0 9.8 69.9 13.5 83.0 14.2 

C8 or S8 45.8 5.3 40.7 4.2 

83.

8 11.4 71.4 17.6 81.0 17.8 

C9 or S9 8.5 2.1 16.6 3.7 

74.

3 16.9 43.5 18.0 47.3 17.4 

C10 or 

S10 63.6 6.1 52.6 4.5 

49.

9 3.3 26.8 3.3 36.7 4.0 

* (Note: These values correspond to Figure 5 in the main text). 

Source: Lawrence Berkeley National Laboratory 
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Table B-4: At Shiloh: Differences in Frequency, Capacity Factor, and Generation by Cluster 

 

Average # of 
days in top 5 
years 

Average # of 
days in 
bottom 5 
years 

Average 
CF in 
top 5 
years 

Average 
CF in 
bottom 5 
years 

% of total 
generation 
in top 5 
years 

% of total 
generation 
in bottom 5 
years 

(generation in top 
5 years)/ 
(generation in 
bottom 5 years) 

C1 80.0 69.0 64.4 60.6 30.0% 27.4% 1.23 

C2 42.8 50.8 37.0 34.6 9.2% 11.5% 0.90 

C3 34.2 41.4 31.2 26.5 6.2% 7.2% 0.97 

C4 35.4 29.2 45.9 39.5 9.5% 7.6% 1.41 

C5 20.0 23.8 50.5 40.9 5.9% 6.4% 1.04 

C6 34.2 30.2 38.4 32.7 7.6% 6.5% 1.33 

C7 49.0 53.0 65.0 61.2 18.5% 21.2% 0.98 

C8 15.8 18.2 44.2 38.4 4.1% 4.6% 1.00 

C9 39.6 36.8 17.9 16.6 4.1% 4.0% 1.16 

C10 14.6 12.6 57.8 46.4 4.9% 3.8% 1.44 

Source: Lawrence Berkeley National Laboratory 

Table B-5: At Altamont Pass: Differences in Frequency, Capacity Factor, and Generation by 
Cluster 

 

Average # of 
days in top 5 
years 

Average # of 
days in 
bottom 5 
years 

Average 
CF in 
top 5 
years 

Average 
CF in 
bottom 5 
years 

% of total 
generation 
in top 5 
years 

% of total 
generation 
in bottom 5 
years 

(generation in top 
5 years)/ 
(generation in 
bottom 5 years) 

C1 89.8 70.6 66.6 61.5 37.9% 32.4% 1.38 

C2 39.6 51.0 35.7 29.6 9.0% 11.3% 0.93 

C3 38.4 38.8 24.0 24.0 5.9% 6.9% 0.99 

C4 29.8 38.6 21.6 18.3 4.1% 5.3% 0.91 

C5 28.2 22.0 50.5 46.1 9.0% 7.6% 1.41 

C6 30.6 22.6 37.0 39.2 7.2% 6.6% 1.28 

C7 38.2 55.4 44.1 41.6 10.7% 17.2% 0.73 

C8 21.6 15.4 49.6 45.9 6.8% 5.3% 1.52 

C9 31.8 38.0 12.8 5.8 2.6% 1.7% 1.83 

C10 17.2 13.0 63.4 59.1 6.9% 5.7% 1.42 

Source: Lawrence Berkeley National Laboratory 
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Table B-6: At Alta: Differences in Frequency, Capacity Factor, and Generation by Cluster 

 

Average # of 
days in top 5 
years 

Average # of 
days in 
bottom 5 
years 

Average 
CF in 
top 5 
years 

Average 
CF in 
bottom 5 
years 

% of total 
generation 
in top 5 
years 

% of total 
generation 
in bottom 5 
years 

(generation in top 
5 years)/ 
(generation in 
bottom 5 years) 

C1 42.0 27.0 69.1 57.3 13.1% 8.0% 1.88 

C2 50.6 42.2 58.7 59.0 13.4% 12.8% 1.19 

C3 58.4 59.0 67.3 65.0 17.8% 19.8% 1.03 

C4 48.2 69.0 35.1 35.7 7.6% 12.7% 0.69 

C5 26.4 37.2 35.2 36.3 4.2% 7.0% 0.69 

C6 22.0 33.2 14.5 17.4 1.4% 3.0% 0.55 

C7 27.0 15.6 94.1 92.4 11.5% 7.4% 1.76 

C8 29.6 25.6 83.9 82.5 11.2% 10.9% 1.18 

C9 50.2 40.0 75.9 69.4 17.2% 14.3% 1.38 

C10 10.8 16.2 51.7 49.0 2.5% 4.1% 0.70 

Source: Lawrence Berkeley National Laboratory 

Table B-7: At San Gorgonio: Differences in Frequency, Capacity Factor, and Generation by Cluster 

 

Average # of 
days in top 5 
years 

Average # of 
days in 
bottom 5 
years 

Average 
CF in 
top 5 
years 

Average 
CF in 
bottom 5 
years 

% of total 
generation 
in top 5 
years 

% of total 
generation 
in bottom 5 
years 

(generation in top 
5 years)/ 
(generation in 
bottom 5 years) 

C1 42 29 47.2 34.0 15% 10% 2.02 

C2 44 44 15.5 16.1 5% 7% 0.98 

C3 56 49 43.8 36.2 19% 18% 1.38 

C4 52 68 16.4 13.7 6% 9% 0.90 

C5 28 34 6.7 7.2 1% 2% 0.76 

C6 26 30 0.9 1.2 0% 0% 0.69 

C7 31 21 73.0 66.6 17% 14% 1.64 

C8 31 24 72.1 69.5 17% 16% 1.38 

C9 42 51 48.2 38.3 15% 19% 1.02 

C10 12 15 30.3 27.3 3% 4% 0.87 

Source: Lawrence Berkeley National Laboratory 
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Table B-8: At Ocotillo: Differences in Frequency, Capacity Factor, and Generation by Cluster 

 

Average # of 
days in top 5 
years 

Average # of 
days in 
bottom 5 
years 

Average 
CF in 
top 5 
years 

Average 
CF in 
bottom 5 
years 

% of total 
generation 
in top 5 
years 

% of total 
generation 
in bottom 5 
years 

(generation in top 
5 years)/ 
(generation in 
bottom 5 years) 

C1 40 31 44.8 31.3 13% 8% 1.87 

C2 42 48 19.1 21.5 6% 9% 0.77 

C3 60 54 46.0 38.8 19% 19% 1.30 

C4 54 67 21.0 18.0 8% 11% 0.93 

C5 27 36 6.4 6.9 1% 2% 0.69 

C6 30 29 1.5 2.2 0% 1% 0.71 

C7 29 18 83.1 81.9 17% 13% 1.63 

C8 30 20 82.4 78.7 17% 14% 1.58 

C9 42 50 54.0 43.7 16% 19% 1.04 

C10 12 13 39.5 33.7 3% 4% 1.14 

Source: Lawrence Berkeley National Laboratory 

Table B-9: The Top and Bottom Years, by Capacity Factor, at Each Site  

Shiloh  Altamont Pass  Alta  Gorgonio  Ocotillo 

Top 5 
Years 

Bottom 
5 Years 

 Top 5 
Years 

Bottom 
5 Years 

 Top 5 
Years 

Bottom 
5 Years 

 Top 5 
Years 

Bottom 
5 Years 

 Top 5 
Years 

Bottom 
5 Years 

2007 2003  1983 1989  1998 1987  1998 1994  1998 1981 

2012 1998  2007 1988  1996 1992  1983 2001  2010 1988 

2008 2014  1981 2014  1983 2013  2010 1987  1983 1992 

1996 1989  2012 1993  1981 2015  1982 1984  2011 1987 

1990 1993  1982 1992  1982 1988  2011 1988  2002 1984 

Source: Lawrence Berkeley National Laboratory 
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Table B-10: Capacity Factor by Year and Site  

Year Shiloh Altamont 
Pass 

Alta San 
Gorgonio 

Ocotillo 

1980 0.45 0.41 0.58 0.33 0.36 

1981 0.43 0.43 0.60 0.31 0.32 

1982 0.45 0.42 0.60 0.34 0.35 

1983 0.43 0.44 0.60 0.37 0.38 

1984 0.44 0.41 0.55 0.27 0.29 

1985 0.44 0.39 0.58 0.32 0.36 

1986 0.43 0.38 0.54 0.29 0.33 

1987 0.46 0.39 0.54 0.27 0.31 

1988 0.45 0.37 0.53 0.27 0.32 

1989 0.42 0.38 0.59 0.31 0.38 

1990 0.46 0.41 0.57 0.32 0.35 

1991 0.46 0.39 0.55 0.30 0.33 

1992 0.43 0.36 0.53 0.29 0.31 

1993 0.39 0.36 0.57 0.32 0.35 

1994 0.43 0.40 0.57 0.29 0.34 

1995 0.45 0.40 0.55 0.32 0.34 

1996 0.47 0.41 0.62 0.33 0.38 

1997 0.45 0.41 0.57 0.32 0.37 

1998 0.43 0.41 0.63 0.38 0.43 

1999 0.44 0.40 0.56 0.32 0.37 

2000 0.44 0.40 0.58 0.31 0.37 

2001 0.46 0.40 0.56 0.29 0.36 

2002 0.46 0.40 0.56 0.31 0.38 

2003 0.43 0.41 0.56 0.30 0.34 

2004 0.46 0.42 0.56 0.31 0.34 

2005 0.45 0.39 0.55 0.31 0.35 

2006 0.44 0.39 0.56 0.31 0.34 
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Year Shiloh Altamont 
Pass 

Alta San 
Gorgonio 

Ocotillo 

2007 0.48 0.44 0.57 0.31 0.35 

2008 0.47 0.42 0.57 0.31 0.35 

2009 0.45 0.41 0.56 0.32 0.37 

2010 0.44 0.40 0.58 0.36 0.39 

2011 0.44 0.39 0.58 0.34 0.38 

2012 0.48 0.43 0.57 0.30 0.35 

2013 0.45 0.39 0.53 0.31 0.34 

2014 0.42 0.36 0.55 0.31 0.34 

2015 0.45 0.40 0.53 0.31 0.34 

Source: Lawrence Berkeley National Laboratory 
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APPENDIX C: 
Characterization of the Central and Southern 
California Clusters 

Table C-1: Basic Characteristics of the Central Californian Clusters  

 

% of 

days  

per year 

% of days 

in Winter 

% of days 

in Spring 

% of days in 

Summer 

% of days 

in Fall 

Avg 

Temp (C) 

Monthly Temp 

Anomaly (C) 

Precipitation 

(mm/day) 

C1 20.53 0.86 19.66 44.32 16.85 16.85 -0.56 0.06 

C7 14.14 0.09 5.50 40.70 9.95 19.14 0.80 0.04 

C2 12.76 11.98 16.15 7.25 15.66 15.97 0.88 0.07 

C3 10.32 16.54 12.68 1.09 11.11 13.54 -0.14 0.38 

C9 10.01 16.23 6.13 0.72 17.16 14.69 0.58 0.06 

C4 9.36 16.94 9.45 1.06 10.16 13.25 -0.48 0.04 

C6 8.08 9.55 12.26 2.02 8.52 13.19 -0.95 0.11 

C5 6.37 13.52 7.67 0.06 4.37 13.27 0.13 1.64 

C8 4.60 12.13 3.11 0.06 3.24 13.25 0.37 2.09 

C10 3.83 2.16 7.40 2.72 2.99 13.52 -1.57 0.26 

Source: Lawrence Berkeley National Laboratory 
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Table C-2: Basic Characteristics of the Southern California Clusters 

 

% of 

days  

per year 

% of days 

in Winter 

% of days 

in Spring 

% of days in 

Summer 

% of days 

in Fall 

Avg 

Temp (C) 

Monthly Temp 

Anomaly (C) 

Precipitation 

(mm/day) 

S3 15.53 6.90 11.50 30.74 12.79 24.56 0.58 0.12 

S4 15.46 2.68 10.24 25.94 22.83 25.71 1.21 0.23 

S9 12.90 1.02 15.46 27.60 7.23 25.56 1.16 0.07 

S2 11.72 17.49 15.43 1.39 12.70 18.52 0.06 0.11 

S6 9.21 20.39 4.95 0.12 11.63 17.87 0.19 0.06 

S1 8.97 20.36 8.61 0.21 6.90 17.69 0.19 0.50 

S5 8.71 17.71 5.95 0.39 10.99 17.53 -0.57 0.09 

S8 7.70 1.05 11.41 11.84 6.35 21.18 -2.13 0.14 

S7 6.01 7.73 11.59 0.60 4.12 14.99 -3.58 0.38 

S10 3.79 4.68 4.86 1.18 4.46 18.63 -1.03 0.17 

Source: Lawrence Berkeley National Laboratory 
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Figure C-1: Average Wind Vectors for the Central California Clusters 
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* The upper right corner inlay the average number of days per month the cluster is found. The lower left corner inlay shows the average diurnal pattern of wind speed (m s-1) at the grid 
cells centered on the Altamont Pass and Shiloh wind farms. The information across the top of each panel includes the cluster number, the percentage of the year each cluster is found, 
the average temperature anomaly at the Altamont Pass and Shiloh wind farms (with the anomaly taken separately for each month and then averaged over the full-time span), and 
finally, the average daily precipitation.Source: Lawrence Berkeley National Laboratory 
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Figure C-2: Average Wind Vectors for the Southern California Clusters 
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APPENDIX D: 
Autocorrelation  

Figure D-1: Partial Autocorrelation Plots for (a) C7 and (b) C9 
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