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PREFACE 
The California Energy Commission’s Energy Research and Development Division 

supports energy research and development programs to spur innovation in energy 

efficiency, renewable energy and advanced clean generation, energy-related 

environmental protection, energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 

Public Utilities Commission to fund public investments in research to create and 

advance new energy solutions, foster regional innovation and bring ideas from the lab to 

the marketplace. The California Energy Commission and the state’s three largest 

investor-owned utilities—Pacific Gas and Electric Company, San Diego Gas & Electric 

Company and Southern California Edison Company—were selected to administer the 

EPIC funds and advance novel technologies, tools, and strategies that provide benefits to 

their electric ratepayers. 

The Energy Commission is committed to ensuring public participation in its research 

and development programs that promote greater reliability, lower costs, and increase 

safety for the California electric ratepayer and include: 

• Providing societal benefits. 
• Reducing greenhouse gas emission in the electricity sector at the lowest 

possible cost. 
• Supporting California’s loading order to meet energy needs first with 

energy efficiency and demand response, next with renewable energy 
(distributed generation and utility scale), and finally with clean, 
conventional electricity supply. 

• Supporting low-emission vehicles and transportation. 
• Providing economic development. 
• Using ratepayer funds efficiently. 

Aerosol Impacts on the Hydrology and Hydropower Generation in California is the final 

report for Contract Number EPC-14-064 conducted by the University of California, 

Riverside. The information from this project contributes to the Energy Research and 

Development Division’s EPIC Program. 

For more information about the Energy Research and Development Division, please visit 

the Energy Commission’s website at www.energy.ca.gov/research/ or contact the Energy 

Commission at 916-327-1551. 
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ABSTRACT 
Recent studies have shown that aerosols can substantially influence temperature, 

precipitation, and snowpack in California through their direct, indirect, and deposition 

effects. The impact of aerosols on these meteorological variables can influence 

hydropower reservoir inflow, which can in turn impact hydroelectricity generation in 

California. This project developed a fully coupled aerosol-meteorology-snowpack 

forecasting model by integrating a weather research and forecasting model, a statistical 

inflow forecast model using dynamic regression method, and a hydroelectric power 

plant optimization model (Vista) to quantify the impact of aerosols on hydropower 

generation in California.  

Aerosols warm the California mountaintops through aerosol-snow interaction by local 

dust, cool the lower elevation areas through aerosol-radiation interaction, and reduce 

precipitation and snowpack in California. The researchers developed a comprehensive 

framework to quantify the impact of aerosols on inflow into the Big Creek Hydroelectric 

System. The developed framework seamlessly integrates the Weather Research and 

Forecasting Model with chemistry (WFR-Chem) and a statistical inflow forecast model. 

The simulation results show that the presence of aerosols results in a significant 

reduction of annual reservoir inflow (flow of water) by 4-14 percent.  

The research team calculated the impact of aerosols on hydropower generation and 

revenue by feeding the inflow forecasts of the lakes to the Big Creek Hydroelectric 

System both with and without considering the impact of aerosols into the Vista Decision 

Support System. From the simulation results, researchers found that aerosols reduce 

inflows into the reservoirs of Big Creek hydroelectric system by 1-10 percent. The 

presence of aerosols causes $2.8 million loss in revenue in a water year for Southern 

California Edison, providing more justification for stricter environmental regulations to 

reduce anthropogenic aerosol emissions. 

 

Keywords: WRF-Chem, Aerosol, Hydropower, Water-Energy Nexus, Inflow simulation 
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Hydrology and Hydropower Generation in California. California Energy Commission. 
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EXECUTIVE SUMMARY 

Introduction 

Recent studies have shown that aerosols, which are small solids or liquid particles 

suspended in ambient air, can substantially influence temperature, precipitation, and 

snowpack in California through their interactions with clouds. These interactions warm 

or cool the atmosphere, potentially changing how fast snow in the Sierra Nevada melts.  

The speed at which snow melts influences the flow of water to hydropower reservoirs, 

which, in turn, affects hydroelectricity generation. Hydropower is a clean source of 

electricity in California, and its generation during the summer is important to provide 

electricity during peak demand days, driven by the increased use of air conditioning 

units. The scientific community, however, had not quantified the effects of aerosols on 

hydropower generation before the execution of this project.   

Project Purpose 

This project developed an innovative and comprehensive framework for evaluating the 

effect of aerosols on hydropower generation in California. The framework seamlessly 

integrated the numerical weather forecasting model WRF-Chem (the Weather Research 

and Forecasting model coupled with Chemistry), a statistical inflow forecast model, and 

a hydroelectric power plant optimization model (Vista). Vista is a model used by 

Southern California Edison (SCE) to operate their Big Creek Hydroelectric System. The 

main outcome was determining the operational and economic impacts of aerosols on 

operating the Big Creek system.    

Project Approach  

The research team enhanced and used a version of the WRF-Chem model that included 

fully coupled aerosol-meteorology-snowpack interactions to investigate the effects of 

various aerosol sources on precipitation and snowpack in California. For example, how 

aerosols affect clouds and how clouds change the nature of the aerosols. In particular, 

the research team investigated the impacts of locally emitted and dust aerosols, and 

aerosols that originated outside California. The team examined several modeling 

options to best simulate snowpack conditions, temperature, and other weather variables 

via a series of comparisons of modeling results with observations from ground-based 

meteorological and hydrological stations and satellite data. The team used Florence Lake 

and Lake Thomas Alva Edison of the Big Creek Hydroelectric Project in the San Joaquin 

Region for water years 2013 and 2014 as the case study for this project. Finally, they 

used Vista, a hydropower management model used by SCE, to facilitate transferring 

information and results to SCE. 

Project Results 

The research team found an average reduction of precipitation from aerosols during 

October 2013 to June 2014 of about 7 percent. The team also found a 3 percent 

reduction for snow water equivalent and a 7 percent reduction in surface runoff (flows 
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of water) for the whole domain; the effects are even more pronounced in the 

mountaintops. The reduction in snow water equivalent is also more significant during a 

dry year, with a 9 percent reduction for the whole domain and 16 percent for the 

mountaintops.  

The case study on the Florence Lake and Lake Thomas Alva Edison of the Big Creek 

Hydroelectric Project in the San Joaquin Region for water years 2013 and 2014 suggests 

that the presence of aerosols results in a significant reduction of annual reservoir inflow 

(flow of water to the reservoirs) by 4 to 14 percent.  

Finally, the team calculated the effect of aerosols on hydropower generation and 

revenue for water year 2015 by feeding the inflow forecasts of all of the lakes of the Big 

Creek Hydroelectric System both with and without considering the impact of aerosols 

into the Vista Decision Support System. The results suggest that aerosols significantly 

reduce hydropower generation by 89,356 MWh in water year 2015, which is a 5.61 

percent reduction in the annual hydropower generation. This translates to a $2.8 million 

loss in revenue in a water year for Southern California Edison. This significant revenue 

loss due to aerosols provides another justification for stricter environmental regulations 

to reduce anthropogenic aerosol emissions. 

Knowledge Transfer 

The research team worked very closely with representatives from SCE and disseminated 

results by participating in technical conferences and publishing journal papers. This 

study is the first study to quantify the generation and costs impacts of aerosols on the 

operation of a hydropower system located in the Sierra Nevada. This study suggests that 

considering the effect of aerosols on precipitation and streamflow in rivers could 

significantly improve hydrological forecasts. The Technical Advisory Committee for this 

project consisted of technical representatives from SCE, the California Department of 

Water Resources, and the California Energy Commission.  

SCE staff co-authored a publication with the research team showcasing the results of the 

study and presented the results at a national conference organized by the Institute of 

Electrical and Electronic Engineering.  

SCE requested and received one long-term forecast from the research team to help them 

manage their Big Creek Hydroelectric Project. Additional resources will be necessary to 

provide this service to SCE for future years to run the models and interpret the results.   

Benefits for California 

The Energy Commission used the results of this study to inform the  design of a new 

modeling system to create the next generation of climate scenarios for California’s Fifth 

Climate Change Assessment. Energy Commission staff included the requirement for the 

new modeling system in a call for proposals that successfully ended in a new on-going 

research project. This new modeling system will simulate the effects of aerosols on 

climate for the rest of this century. The climate projections generated for the Energy 
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Commission so far have been the foundation of past studies about the effects of climate 

change to the energy system and the other sectors of the economy that have been a part 

of past California climate change assessments. These climate scenarios have also been 

used to developed long-term plans to manage energy, water, forestry, and other 

resources in California by the relevant state agencies such as the Energy Commission, 

CalFire, and the California Department of Water Resources. In addition, the Governor’s 

Office of Planning and Research requires the use of the climate scenarios developed for 

the Energy Commission for all state activities dealing with climate adaptation in 

California.   
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CHAPTER 1:  
Aerosol Seasonal Variability and Impacts 
on Seasonal Precipitation and Snowpack 

1.1 Introduction 
Water resources in California are derived predominantly from precipitation (mostly 

during the wintertime) and storage in the snowpack in the Sierra Nevada. Snowpack 

provides about one-third of the water used by California's cities and farms. The fresh 

water stored in the snowpack gradually releases through runoff into river flows during 

the warm and dry season. The amount and timing of snowmelt are critical factors in 

determining water resources in this region. It is important to understand the factors 

influencing precipitation and snowpack on seasonal timescale for water management 

and hydropower operation.  

The 2012-2014 California drought has been attributed to warming and anomalously low 

precipitation (Griffin and Anchukaitis, 2014). Previous studies suggested that warming 

trends are amplified in mountains compared to lowlands (Pepin et al., 2015). The 

amplified warming in mountain areas, also referred to as elevation-dependent warming, 

is generally attributed to a few important processes (Pepin et al., 2015), such as water 

vapor changes and latent heat release, surface water vapor changes, radiative flux 

changes associated with three-dimensional rugged topography (Gu et al., 2012a; Liou et 

al., 2013; Lee et al., 2015; Zhao et al., 2016), and snow-albedo feedback (Leung et al., 

2004). A review and assessment of the mechanisms contributing to an enhanced 

warming over mountain areas is given in Pepin et al. (2015).  

In addition to the warming effects of greenhouse gases, aerosols may have substantial 

impacts on water resources in California. Recent observational and numerical modeling 

studies have shown that aerosol pollutants can substantially change precipitation and 

snowpack in California (for example Rosenfeld et al., 2008a; Qian et al., 2009a; Hadley et 

al., 2010; Ault et al., 2011; Creamean et al., 2013, 2015; Fan et al., 2014; Oaida et al., 

2015). Lee and Liou (2012) illustrated that roughly 26 percent of snow albedo reduction 

from March to April over the Sierra Nevada is caused by an increase in aerosol optical 

depth (AOD). 

In California, aerosols can be generated locally or transported from remote sources. 

Among local aerosol types, dust comprises a significant fraction over California (Wu et 

al., 2017). Based on a four-month, high intensity record of size-segregated particulate 

matter (PM) samples collected from a high elevation site, Vicars and Sickman (2011) 

found that the mass concentration of coarse atmospheric PM in the southern Sierra 

Nevada, California, was dominated by contribution from dust (50 to 80 percent) 

throughout the study period. Dust aerosols can exert important impact on radiative 
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forcing and regional climate in California through its interaction with radiation (e.g., 

Zhao et al., 2013a) as well as its role as cloud condensations nuclei for cloud formation 

(such as Fan et al., 2014). Anthropogenic aerosols are geographically distributed because 

of localized emission sources, the short atmospheric residence time, and regional 

topography. With valleys and surround mountain barriers, dispersion of air pollutants is 

more difficult for locally emitted anthropogenic air pollution. The anthropogenic 

aerosols can cause changes in atmospheric circulation and regional climate especially 

where the aerosol concentrations are high and the synoptic atmospheric systems are not 

prominent (for example Qian et al., 2003; Fast et al., 2006; Rosenfeld et al., 2008a; Zhao 

et al., 2013a).  

Besides the local aerosol sources, the atmospheric transport of aerosol pollutants from 

the Asian continent (such as Jiang et al., 2007; Wang et al., 2015; Hu et al., 2016) is also 

a significant contributor to aerosol loading throughout the Pacific basin. Asian aerosols 

can reach relatively high concentrations above the marine boundary layer in the western 

US, representing as much as 85 percent of the total atmospheric burden of PM at some 

sites (VanCuren, 2003). Trans-Pacific dust transport has been found to be particularly 

relevant in high-elevation regions such as the Sierra Nevada, which typically represents 

free-tropospheric conditions due to the limited transport of lowland air pollutants and 

predominance of upper air subsidence (VanCuren et al., 2005). Observations from the 

CalWater campaign demonstrated that dust and biological aerosols transported from 

northern Asia and the Sahara were present in glaciated high-altitude clouds in the Sierra 

Nevada coincident with elevated ice nuclei (IN) particle concentrations and ice-induced 

precipitation (Ault et al., 2011; Creamean et al., 2013).  

Aerosols can influence precipitation, snowpack and regional climate through three 

pathways. First, aerosol-radiation interaction (ARI, also known as aerosol direct effect), 

can warm the atmosphere but cool the surface, resulting in changes in thermodynamic 

environment for cloud and precipitation and the delay of the snowmelt (Charlson et al., 

1992; Kiehl and Briegleb, 1993; Hansen et al., 1997; Koren et al., 2004; Gu et al., 2006, 

2016, 2017). Second, aerosol-cloud interaction (ACI, also known as aerosol indirect 

effect), which is related to aerosols serving as cloud condensation nuclei (CCN) and IN. 

By changing the size distribution of cloud droplets and ice particles, aerosol may affect 

cloud microphysics, radiative properties and precipitation efficiency, thus affect the 

atmospheric hydrological cycle and energy balance (Twomey, 1977; Jiang and Feingold, 

2006; Rosenfeld et al., 2008b; Qian et al., 2009b; Gu et al., 2012b). Third, aerosol-snow 

interaction (ASI). When aerosols (mainly absorbing aerosols, such as dust and black 

carbon) are deposited on snowpack, they can reduce snow albedo and affect snowmelt 

(Warren and Wiscombe, 1985; Jacobson, 2004; Flanner et al., 2007; Qian et al., 2011, 

2015; Zhao et al., 2014). Numerical experiments have shown that ARI reduces the 

surface downward radiation fluxes, cools the surface and warms the atmosphere over 

California (Kim et al., 2006; Zhao et al., 2013a), which could subsequently impact clouds, 

precipitation and snowpack. In a 2-D simulation, Lynn et al. (2007) shows that ACI 

decreases orographic precipitation by 30 percent over the length of the mountain slope. 
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Fan et al. (2014) showed that ACI increases the accumulated precipitation of an 

Atmospheric River event by 10 to 20 percent from the Central Valley to the Sierra 

Nevada due to a ~40 percent increase in snow formation. Snow impurities (ASI) increase 

ground temperature, decrease snow water, shorten snow duration and cause earlier 

runoff (Jacobson, 2004; Painter et al., 2007, 2010; Qian et al., 2009a; Waliser et al., 2011; 

Oaida et al., 2015). 

This study investigated the seasonal variations of aerosols and the impacts of various 

aerosol sources on seasonal precipitation and snowpack in California using a fully 

coupled high-resolution aerosol-meteorology-snowpack model. The researchers 

distinguish and quantify the impacts of aerosols from local emissions and transport, 

and the roles of different prevailing aerosol types in California, particularly dust and 

anthropogenic aerosols. 

The unique contributions of this study are: 

1. The researchers configured WRF-Chem model for successful use in California 

region and conducted WRF-Chem simulations that capture aerosol variations in 

the San Joaquin Valley (SJV), especially in the cold season.  

2. The researchers found that high-resolution model simulation could better 

resolve inhomogeneous distribution of anthropogenic emissions in urban areas, 

resulting in better simulation of aerosols. 

3. The researchers quantified the impact of aerosols on seasonal precipitation and 

snowpack and found that various aerosol sources in California may influence the 

region through different pathways. 

4. The researchers provided seasonal forecast for precipitation and snowpack in 

California. 

The remainder of this chapter is organized as follows. Section 1.2 provides existing 

studies using numerical models to investigate the effects of aerosols. Section 1.3 

presents the technical methods and data used in this study, including observations, 

model description, and experiment design. Section 1.4 provides the evaluation of the 

WRF-Chem model and the seasonal variations of aerosols in SJV. Section 1.5 presents 

the impact of aerosols on seasonal precipitation and snowpack in California. Section 1.6 

provides a 6-month forecast over California. Lastly, concluding remarks are given in 

Section 1.7. 

1.2 Literature Review 
Chemical transport models are a useful tool to understanding the formation and 

evolution of aerosols and their impacts on air quality, weather and climate. However, it 

is quite challenging to accurately simulate aerosol properties (Fast et al., 2014). Fast et 

al. (2014) summarized the factors contributing to the errors in regional-scale modeling 

of aerosol properties. They include 1) emission sources; 2) meteorological 

parameterizations; 3) representation of aerosol chemistry; 4) limited understanding of 
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the formation processes of secondary organic aerosol (SOA); 5) spatial resolution; and 6) 

boundary conditions. 

As one of the advanced regional air quality models available presently to the 

community, the Weather Research and Forecasting model with Chemistry (WRF-Chem) 

has been widely used to study aerosols and their impacts on regional air quality, 

weather and climate (for example Misenis and Zhang, 2010; Zhang et al., 2010; Zhao et 

al., 2010; 2013a, 2013b; 2014; Gao et al., 2011; Wu et al., 2011a, 2011b, 2013; Fast et al., 

2012, 2014; Scarino et al., 2014; Tessum et al., 2015; Campbell et al., 2016; Hu et al., 

2016). For example, Fast et al. (2014) showed that WRF-Chem simulations at 4 kilometer 

(km) horizontal resolution captured the observed meteorology and boundary layer 

structure over California in May and June of 2010 and the spatial and temporal 

variations of aerosols were reasonably simulated. Aerosol simulations by WRF-Chem are 

usually sensitive to local emission and long-range transport of aerosols from the 

boundary conditions provided by the global Model for Ozone and Related chemical 

Tracers, version 4 (MOZART-4). With a similar model set-up, Zhao et al. (2013b) 

conducted a one-year simulation at 12 km horizontal resolution and found that the 

WRF-Chem model represented the observed seasonal and spatial variation of surface 

particulate matter (PM) concentration over California. However, underestimation of 

elemental carbon (EC) and organic matter (OM) were noticed in the model simulation, 

with weak sensitivity to horizontal resolution. 

Although recent studies showed that aerosols can substantially influence precipitation 

and snowpack in California, they focused only on one of the aerosol sources or on a 

single event or one pathway. A complete account of the aerosol impacts from different 

sources through three pathways on regional climate in California has not been 

presented yet. In addition, large seasonal and spatial variation of aerosol occurrence and 

distribution are observed in the California Central Valley, such as the San Joaquin Valley 

(SJV). Improved understanding of the aerosol variability and impacts is necessary to 

provide further guidance for emission control strategies in the California.   

1.3 Technical Methods 

 Observations 

Column-integrated Aerosol Optical Properties. AOD is a measure of column-integrated 

light extinction by aerosols and a proxy for total aerosol loading in the atmospheric 

column. The Aerosol Robotic Network (AERONET) provides ground measurements of 

AOD every 15 minutes during daytime under clear skies (Holben et al., 1998), with an 

accuracy approaching ±0.01 (Eck et al., 1999; Holben et al., 2001; Chew et al., 2011). The 

monthly level 2.0 AOD product with cloud screening and quality control is used in this 

study. Ångström exponent (AE) is an indicator of aerosol particle size. Small (large) AE 

values are generally associated with large (small) aerosol particles (Ångström, 1929; 

Schuster et al., 2006). The AE between 0.4 µm and 0.6 µm is derived from AERONET 

observed AODs, and is used to evaluate the model-simulated AE. For comparison with 
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simulated AOD, AERONET AOD is interpolated to 0.55 µm from 0.50 µm and 0.675 µm 

using the AE. In the SJV, only one AERONET station at Fresno, CA (36.79°N, 119.77°W) 

has regular observations throughout the California water year 2013 (WY2013) from 

October 2012 to September 2013.  

The Multiangle Imaging Spectroradiometer (MISR) (Diner et al., 1998) instrument 

onboard the Terra satellite has provided global coverage of AOD once a week since 

December 1999. The standard MISR retrieval algorithm provides AOD observations at 

17.6 km resolution using 16x16 pixels of 1.1 km × 1.1 km each. About 70 percent of 

MISR AOD retrievals are within 20 percent of the paired AERONET AOD, and about 50 

percent of MISR AOD falls within 10 percent of the AERONET AOD, except in dusty and 

hybrid (smoke+dust) sites (Kahn et al., 2010). The researchers use version 22 of Level 3 

monthly AOD product at 0.5° resolution in this study. 

Surface Mass Concentration. Surface PM2.5 speciation and PM10 (particulate matter with 

diameter ≤ 10 µm) data are routinely collected by two national chemical speciation 

monitoring networks: Interagency Monitoring of Protected Visual Environments 

(IMPROVE) and the PM2.5 National Chemical Speciation Network (CSN) operated by 

Environmental Protection Agency (EPA) (Hand et al. 2011; Solomon et al., 2014). 

IMPROVE collects 24-h aerosol speciation every third day at mostly rural sites since 

1988. The same frequency of aerosol speciation dataset was collected at EPA CSN sites 

in urban and suburban areas since 2000. The observed organic carbon is converted to 

OM by multiplying by 1.4 (Zhao et al., 2013b; Hu et al., 2016). Some precursors of 

aerosol pollutions (such as NO2 and SO2) are observed hourly by EPA (data available at: 

https://aqsdr1.epa.gov/aqsweb/aqstmp/airdata/download_files.html) and are used in 

this study. Selected IMPROVE and EPA CSN sites used in this study are shown in Figure 

1-1a. 

Aerosol Extinction Profile. The aerosol extinction coefficient profile reflects the 

attenuation of the light passing through the atmosphere due to the scattering and 

absorption by aerosol particles as a function of range. Version 3 Level 2 532 nm aerosol 

extinction profiles derived from Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP) backscatter profiles collected onboard the Cloud-Aerosol Lidar and Infrared 

pathfinder Satellite Observation (CALIPSO) satellite are used (Omar et al., 2009; Young 

and Vaughan, 2009). Seasonal mean profiles are derived for WY2013 based on the 

methodology outlined in Campbell et al. (2012), whereby quality-assurance protocols are 

applied to individual profiles before aggregating and averaging the data. The 

researchers highlight that no individual profiles are included in the averages if the 

CALIOP Level 2 retrieval failed to resolve any extinction within the column, a potential 

issue to create bias that has recently been described by Toth et al. (2017).  Level 2 532 

nm aerosol extinction data classify aerosols into six types: clean marine, dust, polluted 

continental, clean continental, polluted dust and smoke. Dust and polluted dust are 

distinguished in the averages in this study for their contribution to total extinction and 

the vertical profile seasonally in the SJV. 
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 Model Description  

The WRF-Chem model Version 3.5.1 (Grell et al., 2005) updated by Pacific Northwest 

National Laboratory (PNNL) is used in this study (Zhao et al., 2014). This study uses the 

CBM-Z (carbon bond mechanism) photochemical mechanism (Zaveri and Peters, 1999) 

coupled with the sectional-bin MOSAIC (Model for Simulating Aerosol Interactions and 

Chemistry) aerosol scheme (Zaveri et al., 2008) as the chemical driver. The major 

components of aerosols (nitrate, ammonium, EC, primary OM, sulfate, sea salt, dust, 

water and other inorganic matter) as well as their physical and chemical processes are 

simulated in the model. For computational efficiency, aerosol particles in this study are 

partitioned into four-sectional bins with dry diameter within 0.039-0.156 µm, 0.156-

0.625 µm, 0.625-2.5 µm, and 2.5-10.0 µm. Zhao et al. (2013a) compared the effect of 

aerosol size partition on dust simulations. It showed that the 4-bin approach reasonably 

produces dust mass loading and AOD compared with the 8-bin approach. The size 

distribution of the 4-bin approach follows that of the 8-bin approach with coarser 

resolution, resulting in ±5 percent difference on the ratio of PM2.5-dust/PM10-dust in 

dusty regions (more large particles and less small particles). Dust number loading and 

absorptivity are biased high in the 4-bin approach compared with the 8-bin approach.   

Aerosols are considered to be spherical and internally mixed in each bin (Barnard et al., 

2006; Zhao et al., 2013b). The bulk refractive index for each particle is calculated by 

volume averaging in each bin. Mie calculations as described by Ghan et al. (2001) are 

used to derive aerosol optical properties (such as extinction, single-scattering albedo, 

and the asymmetry parameter for scattering) as a function of wavelength. Aerosol 

radiation interaction is included in the shortwave and longwave radiation schemes (Fast 

et al., 2006; Zhao et al., 2011). By linking simulated cloud droplet number with 

shortwave radiation and microphysics schemes, aerosol cloud interaction is effectively 

simulated in WRF-Chem (Chapman et al., 2009). Aerosol snow interaction is 

implemented in this version of WRF-Chem (Zhao et al., 2014) by considering aerosol 

deposition on snow and the subsequent radiative impacts through the SNICAR (SNow, 

ICe, and Aerosol Radiative) model (Flanner and Zender, 2005, 2006). Table 1 shows the 

different model configurations used to evaluate the modeling results. 

Table 1: Experiment Description for Model Evaluation 

Experiment ID Experiment description 

20km Simulation with the GOCART dust scheme at 20 km horizontal resolution. 

20km_D2 Same as 20km, but with the DUSTRAN dust scheme. 

20km_P7 Same as 20km_D2, but with the ACM2 PBL scheme. 

4km Same as 20km, but at 4 km horizontal resolution. 

4km_D2 Same as 4km, but with the DUSTRAN dust scheme. 

Source: University of California, Riverside 
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The model simulations start on  September 1, 2012 and run continuously for 13 

months. With the first month used for the model spin-up, the researchers’ analysis 

focuses on WY2013 from October 2012 to September 2013. The model is configured 

with 40 vertical levels and a model top at 50 hPa. The vertical resolution from the 

surface to 1 km gradually increases from 28 m to 250 m. The model center is placed at 

38°N, 121°W, with 250 × 350 grid points at 4 km horizontal resolution, referred to as 

“4km”, covering California and the surrounding area (Table 2). To test the sensitivity of 

the aerosol simulations to horizontal resolution, the team conducted one simulation 

with the same model settings and domain coverage at 20 km horizontal resolution 

(referred to as “20km”). 

The physics parameterizations used in the simulations include the Morrison double-

moment microphysics scheme (Morrison et al., 2009), Rapid Radiative Transfer Model 

for General circulation model (RRTMG) shortwave and longwave radiation schemes 

(Iacono et al., 2008), Community Land Model (CLM) Version 4 land surface scheme 

(Lawrence et al., 2011). The Yonsei University (YSU) planetary boundary layer (PBL) 

scheme (Hong et al., 2006) is used in all of the simulations, except one sensitivity 

experiment that uses the ACM2 (Asymmetric Convective Model with non-local upward 

mixing and local downward mixing; Pleim, 2007) PBL scheme (referred to as “20km_P7”). 

Previous studies showed that YSU and ACM2 schemes have good performance in 

simulating boundary layer properties (such as Hu et al., 2010; Xie et al., 2012; Cuchiara 

et al., 2014; Banks and Baldasano, 2016; Banks et al., 2016; Chen et al., 2017). Subgrid 

convection, convective transport of chemical constituents and aerosols, and wet 

deposition from subgrid convection are parameterized using the Grell 3D ensemble 

cumulus scheme (Grell and Devenyi, 2002) in the 20 km simulations while convective 

processes are resolved in the 4 km simulations. The ERA-Interim reanalysis serves as 

initial and boundary meteorological conditions for WRF-Chem. The MOZART-4 global 

chemical transport model (Emmons et al., 2010) is used for initial and boundary 

chemical conditions. Fast et al. (2014) found that the MOZART-4 model overestimates 

aerosols in the free troposphere over California, which is also found in one of the 

researchers’ sensitivity experiments. Following Fast et al. (2014), the chemical initial and 

boundary conditions from MOZART-4 are divided by two in all simulations except 

20km_BC1.   

Anthropogenic emissions are provided by US EPA 2005 National Emissions Inventory 

(NEI05), with area-type emissions on a structured 4-km grid and point-type emissions at 

specific latitude and longitude locations (US EPA, 2010). Nineteen gases (including SO2, 

NO, NH3 etc.) are emitted, and aerosol emissions include SO4, NO3, EC, organic aerosols, 

and total PM2.5 and PM10 masses. Anthropogenic emissions are updated every hour to 

account for diurnal variability, while its seasonal variation is not considered in the 

simulations. A sensitivity experiment with 2011 NEI emissions does not produce 

significantly different results from the 2005 NEI emissions. Biogenic emissions are 

calculated online using the Model of Emissions of Gases and Aerosols from Nature 

(MEGAN) model (Guenther et al., 2006). Biomass burning emissions are obtained from 
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the Global Fire Emissions Database version 2.1, with eight-day temporal resolution 

(Randerson et al., 2007) and updated monthly. Sea salt emissions are derived from the 

PNNL-updated sea salt emission scheme that includes the correction of particles with 

radius less than 0.2 µm (Gong et al., 2003) and dependence on sea surface temperature 

(Jaeglé et al., 2011).  

Following Zhao et al. (2013b), dust emission is computed from the GOCART (Goddard 

Global Ozone Chemistry Aerosol Radiation and Transport) dust scheme (Ginoux et al., 

2001) in the 20km and 4km simulations. The GOCART dust scheme estimates the dust 

emission flux F as  

𝐹𝐹 = 𝐶𝐶𝐶𝐶𝑠𝑠𝑝𝑝𝑢𝑢10𝑚𝑚2 (𝑢𝑢10𝑚𝑚 − 𝑢𝑢𝑡𝑡)                , 

where C is an empirical proportionality constant, S is a source function for potential 

wind erosion that is derived from 1° × 1° GOCART database (Freitas et al., 2011), 𝑠𝑠𝑝𝑝 is a 

fraction of each size class dust in emission, 𝑢𝑢10𝑚𝑚 is 10-m wind speed, and 𝑢𝑢𝑡𝑡 is a 

threshold speed for dust emission.   

As shown later, a significant amount of dust is observed in the SJV, whereas the 

GOCART dust scheme produces little dust. Two sensitivity experiments at 20 km and 4 

km horizontal resolution (referred to as “20km_D2” and “4km_D2”, respectively) are 

conducted by switching the dust emission scheme to the DUST TRANsport model 

(DUSTRAN) scheme (Shaw et al., 2008). The DUSTRAN scheme estimates F as 

𝐹𝐹 = 𝛼𝛼𝐶𝐶𝑢𝑢∗4(1 − 𝑓𝑓𝑤𝑤𝑢𝑢∗𝑡𝑡
𝑢𝑢∗

)                , 

where C is an empirical proportionality constant, 𝛼𝛼 is the vegetation mask, 𝑢𝑢∗ is the 

friction velocity, 𝑢𝑢∗𝑡𝑡 is a threshold friction velocity, and 𝑓𝑓𝑤𝑤 is the soil wetness factor. The 

C value in GOCART and DUSTRAN is highly tunable for different regions. The original C 

values, 1.0 µg s2 m-5 in GOCART (Ginoux et al., 2001) and 1.0×10-14 g cm-6 s-3 in DUSTRAN 

(Shaw et al., 2008), are used in this study.  

 Experiment Design 

Since the model explicitly considers different sources and types of aerosols and 

contains the physical processes to represent various aerosol effects (ARI, ASI, and ACI), 

it is useful to decompose the aerosol effects based on aerosol sources/types and 

pathways. Note that the overall aerosols effects are not a simple sum of different 

aerosol sources/types, nor a linear combination of the ARI, ASI, and ACI effects. 

Differences between various simulations, however, help to identify the effect of a single 

source or pathway and the decomposition approach is a common practice in the 

experiment design of modeling studies. To examine the overall aerosol effects and the 

roles of locally generated and transported aerosols, the following five experiments have 

been designed (Table 2): 
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Table 2: Experiment Design for Impacts of Various Aerosol Sources. 

Experiment Anthropogenic 

Aerosols 

Dust 

Aerosol 

Transport Description 

CTRL Y Y Y Control experiment with all 

aerosol emissions/transports 

included 

NoLocDust Y N Y Local dust aerosol emission is 

not included 

NoLocAnth N Y Y Local anthropogenic aerosol 

emissions are not included 

NoTran Y Y N Aerosols transported from 

outside the model domain are 

not included 

CLEAN N N N Aerosol emissions/transports 

are not included 

CTRL: This is the control experiment with all aerosol emissions and transports included in the simulation. 

Source: University of California, Riverside  

2) NoLocDust: This experiment is performed without any local dust emission. 

Differences between the CTRL and NoLocDust experiments illustrate the effect of dust 

aerosols locally emitted. 

3) NoLocAnth: This experiment is similar to NoLocDust, except that emissions of local 

anthropogenic aerosols are turned off. Comparison between CTRL and this experiment 

will elucidate the effect of local anthropogenic aerosols. 

4) NoTran: The initial and boundary chemical conditions in the CTRL simulation are 

taken from the global Model for Ozone and Related Chemical Tracers, version 4 

(MOZART-4; Emmons et al., 2010). The chemical species transported into the model 

domain include organic carbon, black carbon, sulfate, nitrate, ammonium, sea salt, dust, 

etc. In the NoTran experiment, aerosols transport from outside the model domain, 

including those from East Asia and other regions, are not considered by setting the 

lateral boundary conditions for aerosols to zero. Differences between CTRL and NoTran 

will show the effect of transported aerosols.  

5) CLEAN: This experiment is performed without any local aerosol emissions or 

transport from outside the model domain while all the transported chemical species are 

kept, and therefore represents a scenario of clean condition. Aerosols are low in the 

simulation, but not zero, possibly due to aerosol chemistry. The CCN concentration at 

supersaturation of 0.1 percent is on the order of 10 cm-3 at most times of the CLEAN 

simulation. The distribution of liquid water path and ice water path in the CLEAN 
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simulation is also similar to that in the CTRL simulation, with differences in magnitude. 

Differences between the CTRL and CLEAN experiments would illustrate the effects of all 

primary aerosol types, including those locally emitted and transported from outside the 

domain. 

To distinguish the pathways through which the aerosols influence the precipitation and 

snowpack, the researchers also conducted a few other experiments (Table 3):  

6) NARI: This experiment is similar to the CTRL run, except that ARI is not included. 

Comparison between CTRL and this experiment will elucidate the effect of ARI. 

7) NASI: This experiment is similar to the CTRL run, except that ASI is not included. 

Comparison between CTRL and this experiment will show the effect of ASI. 

8) NARS: This experiment is similar to the CTRL run, except that both ARI and ASI are 

not included. By comparing this experiment and CLEAN, the effect due to ACI can be 

examined. 

Table 3: Experiment Design for Various Aerosol Pathways 

Experiment ARI ACI ASI Description 

NARI N Y Y ARI is not included 

NASI Y Y N ASI is not included 

NARS N Y N ARI and ASI are not included 

Source: University of California, Riverside 

1.4 Model Evaluation 
Shown in Figure 1, the researchers’ model domain includes three urban sites (Fresno, 

Bakersfield and Modesto) and two rural sites (Pinnacles and Kaiser) where surface 

measurements of aerosols are available. Because aerosols properties and model 

performance are similar at all urban sites, the researchers’ discussion is focused on the 

results at Fresno.  
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Figure 1: Daily Mean Anthropogenic PM2.5 Emission Rate 

 

Source: University of California, Riverside 

 Sensitivity to Horizontal Resolution 

Daily mean anthropogenic PM2.5 emission rates used in the 20km and 4km simulations, 

respectively are featured. Although both emission rates are derived from the 4 km 

NEI05 dataset, localized high emission rates with sharp gradients are evident in urban 

areas from the 4km simulation. The 20km simulation exhibits lower emission rates at 

the urban areas with weaker gradients due to the reapportionment process. As 

precipitation is an important process that removes aerosols, the researchers examine 

the simulated precipitation for the 20km and 4km runs and find that the 20km 

simulation produces 51 percent more precipitation, although the domain-averaged 

precipitation is lower in the 20km run than the 4km run (Figure 2).    

Consistent with higher emission rates and lower precipitation at Fresno, the 4km run 

simulates higher AOD than the 20km run in the cold season - October-November-

December and January-February-March; OND and JFM. (Figure 3). Averaged over a broad 

area encompassing Fresno and Bakersfield, the most polluted region in the SJV, the AOD 

is 0.090 in the 4km and 0.073 in the 20km, a 23 percent difference. Compared to the 

MISR observations, the 4km simulation reproduces the spatial distribution and 

magnitude of AOD in the cold season. However, the AOD difference between the 20km 

and 4km runs is small in the warm season (April-May-June and July-August-September; 

AMJ and JAS ), and both runs underestimate AOD by ~50 percent with respect to the 

MISR observations.  
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Figure 2: Monthly Precipitation (mm/day) from CPC 

 

Source: University of California, Riverside  
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Figure 3: Spatial Distribution of Seasonal Mean 550 nm AOD  

 

Source: University of California, Riverside 

Comparing the point values at Fresno in the 4km and 20km simulations (Figure 4), the 

researchers find similar results: the 4km AOD is closer to the AERONET measurements 

and is about 23 percent higher than that in the 20km run during the cold season, while 

both runs are biased low in AOD during the warm season. The different model 

sensitivities to horizontal resolution between the cold and warm seasons suggest that 

the dominant aerosol sources may be different for the two seasons. The researchers will 

elaborate upon the aerosol composition in the following section. MISR and AERONET 

observations display weak seasonal AOD variation in the SJV and at Fresno, respectively, 

which is not well represented in the 20km and 4km simulations.   
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Figure 4: Monthly Mean 550 nm AOD and 400-600 nm 

 

Source: University of California, Riverside 

Aside from AOD, significant seasonal variability of AE is shown at Fresno. AE exhibits a 

maximum about 1.50 in January and a minimum of 0.98 in April, suggesting relatively 

small particles in the winter and large particles in the spring. A relatively large AE value 

of 1.40 (corresponding to small particles) is observed in July, possibly related to the 

wild fires in late July in the SJV. WRF-Chem captures the seasonal variability of the AE 

well, with a correlation of 0.90 in the 20km and 4km simulations. The magnitude of AE 

is also approximately simulated in the cold season, with a mean of 1.15 (1.20) in the 

20km (4km) runs compared to 1.33 in the observation. However, the simulated AE is 

underestimated by ~30 percent in the warm season, indicating that the simulated 

particle size is biased high during this period.   

Significant seasonal variability of PM2.5 is observed in the SJV urban areas (Figure 5). PM2.5 

at Fresno peaks in January (26.18 µg m-3) and reaches a minimum of 7.03 µg m-3 in June, 

with an annual nonattainment value of 12.64 µg m-3. The 20km and 4km runs 

approximately capture the observed seasonal variability of PM2.5, with a correlation 

around 0.90 (Table 4). In the cold season, the 4km simulation overestimates PM2.5 by 27 
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percent while the 20km simulation exhibits a low bias of 19 percent compared with 

IMPROVE observations at Fresno (Table 5). The 4km simulation of PM10 is in good 

agreement with IMPROVE in the winter (December, January and February), but has 

significant low biases of between 30 and 85 percent in other months. The 20 km 

simulation underestimates PM10 throughout WY2013.  

Figure 5: Aerosol Mass (µg m-3) for Different Species From OBS  

 

Source: University of California, Riverside 

Table 4: Correlation With Observations for Different Species at Fresno, CA 

Species 20km 4km 4km_D2 20km_D2 20km_P7 

PM2.5 0.89 0.90 0.86 0.78 0.03 

PM2.5_NO3 0.94 0.95 0.94 0.94 0.91 

PM2.5_NH4 0.97 0.96 0.96 0.98 0.96 

PM2.5_OM 0.93 0.93 0.94 0.93 0.91 
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PM2.5_EC 0.98 0.98 0.98 0.98 0.96 

PM2.5_SO4 0.63 -0.16 -0.14 0.61 0.63 

PM2.5_dust -0.55 -0.50 0.48 0.55 0.36 

PM10 -0.25 -0.23 -0.08 0.01 -0.03 

Source: University of California, Riverside 

Table 5: Surface Aerosol Mass (µg m-3) for Different Species at Fresno, CA 

Species Cold season Warm season 

OBS 20km 4km  4km_

D2 

20km_

D2 

20km_

P7 

OBS 20km 4km  4km_

D2 

20km

_D2 

20km

_P7 

PM2.5 16.84 13.71 21.38 22.48 14.90 13.77 8.44 4.91 6.29 12.85 10.12 14.85 

PM2.5_N

O3 

5.43 6.36 9.54 9.22 6.22 3.16 0.84 0.55 0.69 0.79 0.66 0.57 

PM2.5_N

H4 

1.42 1.97 2.99 2.88 1.91 0.98 0.40 0.19 0.24 0.20 0.16 0.13 

PM2.5_O

M 

5.39 0.92 2.07 2.07 0.93 1.04 2.47 0.49 0.87 0.87 0.50 0.55 

PM2.5_EC 1.08 0.52 1.12 1.13 0.52 0.58 0.32 0.27 0.49 0.49 0.27 0.30 

PM2.5_SO

4 

0.87 0.53 0.82 0.81 0.53 0.46 1.04 0.54 0.61 0.60 0.53 0.49 

PM2.5_du

st 

0.90 0.11 0.11 1.65 1.50 4.18 2.08 0.04 0.03 6.49 5.16 10.05 

PM10 31.55 14.93 22.81 28.32 20.10 24.52 34.82 7.08 8.69 38.12 30.19 48.02 

Source: University of California, Riverside 

PM2.5 is a mixture of nitrate (NO3), ammonia (NH4), OM, EC, sulfate (SO4), dust and other 

aerosols. High concentrations of PM2.5 are primarily the result of NO3 at Fresno (Figure-5 

[c]). Both simulations produce the seasonal variability of NO3 with a correlation of 0.94, 

but high bias of 17 percent (75 percent) is found in the 20km (4km) simulations during 

the cold season. As one precursor of NO3, NO2 is underestimated by 43 percent in the 

20km run (Figure 6[a]). The overestimation in NO3 and underestimation in NO2 suggest 

that the precursor emissions may not the reason for the high biases in NO3. NH4 shows a 

similar performance to NO3, with an overestimation by 38 percent (111 percent) in the 

20km (4km) runs during the cold seasons. As shown later in section 1.4.3, both NO3 and 

NH4 simulations are quite sensitive to the PBL scheme applied.     
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OM, the second largest contributing species to cold season PM2.5 in the SJV (Table 5), is 

significantly underestimated by 82 percent in the 20km simulation. The 4km simulation 

produces higher OM, but it is still lower than the IMPROVE observations by 63 percent. 

Underestimating OM is expected, because SOA processes are not included in the 

researchers’ model infrastructure. Fast et al. (2014) used the simplified two-product 

volatility basis set parameterization to simulate equilibrium SOA partitioning in WRF-

Chem although SOA was still underestimated in their simulation. It remains ongoing 

research how to correctly represent SOA processes in regional climate models.  

Both the 20km and 4km simulations reproduce the seasonal variability of EC, with a 

correlation of 0.98 between the modeled and observed time series (Table 4). The 20km 

simulation underestimates EC by 52 percent (16 percent) in the cold (warm) season 

(Figure 5[e] and Table 5). The 4km simulated EC (1.12 µg m-3) exhibits good agreement 

with IMPROVE (1.08 µg m-3) in the cold season, but overestimates EC by 53 percent in the 

warm season.  

The seasonal variability of SO4 at Fresno is very different from other PM2.5 species. It 

peaks in May at 1.35 µg m-3 and reaches the minimum of 0.67 µg m-3 in August (Figure 

5[g]). The 20km simulated SO4 exhibits good correlation of 0.63 with the observation 

(Table 4), but is biased low by 28 to 63 percent throughout WY2013. Although the 

observed SO2, the precursor of SO4, has approximately similar seasonal variation to the 

observed SO4 (Figure 6[b]), the 20km simulated seasonal variability of SO2 resembles 

other anthropogenic emissions, with high values in the cold season and low values in 

the warm season, out of phase with the simulated SO4 and the observed SO2. The 4km 

simulation produces higher SO4 than the 20km run, resulting in better agreement with 

the observation (0.82 µg m-3 vs. 0.87 µg m-3) during the cold season (Figure5[g] and 

Table 5). However, the 4km run produces an increase of SO4 by only 13 percent 

comparing to the 20km run in the warm season, resulting in a correlation of -0.16 

between the 4km simulation and the observation.  
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Figure 6: NO2 and SO2 From EPA (OBS) and the 20km Run at Fresno, California 

 

Source: University of California, Riverside 

To explore the possible cause for underestiming SO4 and SO2 in the warm season in the 

20km and 4km simulations, the researchers conduct a sensitivity experiment with 

different chemical boundary conditions from the baseline runs. The researchers find 

that SO4 in the SJV is partly contributed to by marine intrusions (the different chemical 

boundary conditions between 20km_BC1 and 20km_D2) throughout the year, as pointed 

out by Fast et al. (2014). Including the marine intrusions, the 20km_BC1 simulated SO4 

tracks the observation at a correlation of 0.78. Doubled chemical boundary conditions in 

the 20km simulation results in 41 percent increase in SO4 at Fresno, with a stronger 

increase in the warm season. Compared to the observed SO4 of 1.04 µg m-3 in the warm 

season, the simulated SO4 of 0.79 µg m-3 in the 20km_BC1 run is closer to the 

observation than that simulated in the 20km_D2 run (0.53 µg m-3). The relative 

contributions of local emissions and remote transports (as well as other emission 

sources, such as wild fires) to SO4 concentrations in different seasons of the SJV require 

further investigation.  

Overall, the 4km simulation produces higher AOD and surface PM than the 20km 

simulation in urban areas of the SJV, especially during the cold season, resulting in 

better agreement with satellite and surface observations than the 20km simulation. Both 

the 20km and 4km simulations approximately capture the seasonal variability of PM2.5 

and most of its speciation. However, significant low biases of AOD and PM10 are found 
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during the warm season in both simulations. The underestimation also exists in a 

sensitivity experiment (not shown) with the same model setups except initialized in 

April, indicating that the identified model biases during the warm season are not caused 

by potential model drift after a relatively long simulation period. The relatively good 

performance in simulating PM2.5 but not PM10 during the warm season suggests that 

coarse aerosol particle mass (CM; 10 µm ≥ particulate matter with diameter > 2.5 µm), 

mainly dust in the SJV, is not properly represented in the model. The impact of dust 

parameterizations is investigated in the 4km_D2 experiment. 

 Sensitivity to Dust Scheme 

Limited amounts of PM2.5_dust (dust with diameter ≤ 2.5 µm) are observed in the SJV 

cold season, with a minimum of 0.37 µg m-3 in December (Figure 7). The amount of 

PM2.5_dust increases in the warm season, with a peak of 3.86 µg m-3 in September. The 

4km simulation produces comparable PM2.5_dust relative to IMPROVE in the winter, but 

almost no dust in other months (Figure 8 [upper panel]). On the other hand, the dust 

emission rate in the 4km_D2 run is significantly higher than the 4km run. The 

researchers have found that the source function, S, for potential wind erosion in the SJV 

is set to zero in the 1° × 1° GOCART dataset used for the 4km simulation. An updated 

source function, S, at higher resolution is needed for the GOCART dust scheme to 

correctly represent dust emissions in the SJV.   

The 4km_D2 simulation reproduces the amount of PM2.5_dust in OND. However, it 

overestimates PM2.5_dust by up to a factor of three in the warm season, resulting in an 

overestimation of PM2.5 by 52 percent (Figure 7[b] and Table 5). PM2.5_dust is not sensitive 

to long-range transport (from chemical boundary conditions in the model simulation). 

Both the 4km and 4km_D2 simulations capture the seasonal variability of PM2.5, but not 

that of PM10 (Figure 7[c]). The magnitude of PM10 in the 4km_D2 run is larger than the 

4km simulation. PM10 in the 4km_D2 run is overestimated in April-May-June (AMJ) but 

underestimated in July-August-September (JAS), leading to a comparable season mean of 

38.12 µg m-3 with IMPROVE observed 34.82 µg m-3. The overestimation of AMJ PM10 and 

PM2.5_dust in the 4km_D2 run is likely associated with the high bias in the simulated 

wind speed.   
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Figure 7: PM2.5_Dust, PM2.5, and PM10 From IMPROVE    

 

Source: University of California, Riverside 

Figure 8: Mean Dust Emission Rate (µg m-2 s-1) From the 4km and 4km_D2 Runs  

 

Source: University of California, Riverside 
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On the relative contribution of different aerosol species, IMPROVE observations at 

Fresno show that NO3 is the primary contributor (32.3 percent) to PM2.5 while only 5.3 

percent of PM2.5 is dust in the cold season (Figure-9 [Panel 1]). The 4km and 4km_D2 

runs roughly reproduce the relative contributions to PM2.5 in the cold season, with an 

overestimation of NO3 and NH4 and an underestimation of OM, consistent with the time 

series in Figure 5. Relative contributions of dust to PM2.5 are better simulated in the 

4km_D2 run (7.3 percent than the 4km one (<1.0 percent). IMPROVE shows that 46.6 

percent of PM10 is CM in the cold season (Figure 9 [Panel 2]). The 4km (6.3 percent) and 

4km_D2 (20.6 percent) runs underestimate the contribution of CM to PM10, mainly in 

October and November. In the warm season, dust (24.6 percent) becomes the primary 

contributor to PM2.5 while the contribution from NO3 decreases to 9.9 percent in 

IMPROVE observations Figure 9 [Panel 3]). Almost no PM2.5_dust is simulated in the 4km 

run while too much PM2.5_dust is produced in the 4km_D2 (50.5 percent) run during the 

warm season. The relative contribution of CM to PM10 is too small (27.6 percent) in the 

4km run, while the 4km_D2 run reflects an better relative contribution of 66.3 percent 

(as compared to an IMPROVE observed 75.8 percent (Figure 9 [Panel 4]).        

Figure 9: Relative Contribution (%) of Aerosol Species from IMPROVE and the WRF-Chem 
(4km and 4km_D2) 

 

Source: University of California, Riverside 

AOD simulations are improved in the 4km_D2 experiment (Figure 10), with better 

agreement found from MISR in AMJ. AOD (0.114) in the 4km_D2 run is comparable to 

observations (0.131) in AMJ, but still underestimated by 53 percent in JAS. Consistent 

with AOD, the vertical distribution of aerosol extinction is reasonably simulated during 

the cold season in the WRF-Chem simulations, while large discrepancies are found in the 
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warm season (Figure 11). As observed by CALIOP at 532 nm, aerosols are confined below 

1 km in the cold season and decrease sharply with height. During AMJ, aerosols are well 

mixed between the surface and the altitude of 1.5 km and then decrease with height 

gradually. During JAS, the well-mixed aerosol layer is shallower than that in AMJ and the 

vertical profile of aerosol extinction is in-between the cold season and AMJ. Model 

simulations roughly capture the “bottom-heavy” structure of the extinction profiles 

observed by CALIOP especially in the cold season, but significant biases exist. One 

common problem for all four seasons is the low bias in the boundary layer and high bias 

in the free atmosphere. Similar discrepancy between the model simulations and CALIOP 

is shown in other studies (Wu et al., 2011a; Hu et al., 2016). The model does not capture 

the well-mixed aerosol layer during AMJ. The difference in the aerosol extinction 

profiles between the 4km and 4km_D2 runs is small during the cold season. 

Figure 10: Spatial Distribution of Seasonal Mean 550 nm AOD from the 4km_D2 Run in 
WY2013 

 

Source: University of California, Riverside 

Figure 11: Vertical Distribution of Seasonal Mean 532 nm Aerosol Extinction Coefficient 
(km-1) 

 

Source: University of California, Riverside 
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Dust in the boundary layer is a primary factor contributing to aerosol extinction in the 

SJV, as illustrated by the differences between the bulk seasonal CALIOP mean profile 

and those excluding the contributions of the dust and polluted dust (CALIOP_nodust) 

profiles. Simulated aerosol extinction falls between the two in all seasons, suggesting 

that dust is the primary factor contributing to the model biases in aerosol extinction. 

Although a small portion of PM2.5 is dust in the cold season, it contributes to about 50 

percent of total aerosol extinction (Figure 11[a] and [b]). A predominant portion of 

aerosol extinction in the lower troposphere is contributed by dust in the warm season 

(Figure 11[c] and [d]). There, the 4km_D2 simulation produces higher aerosol extinction 

between 0.3 km and 3 km than the 4km simulation, although it is still lower than 

CALIOP. The simulated aerosol extinction in the free troposphere is close to or larger 

than CALIOP, suggesting that aerosols transported from remote areas through chemical 

boundary conditions may not be the major factor contributing to the underestimation of 

dust between 0.3 km and 3 km in the SJV.   

Overall, the poor simulations of dust play a dominant role in the low bias of aerosols in 

the boundary layer during the warm season. The GOCART and DUSTRAN dust emission 

schemes used in this study have difficulties in reproducing dust emissions in the SJV, 

with an underestimation in GOCART and an overestimation in DUSTRAN. Improvement 

on the dust emission schemes is needed for capturing the seasonal variability of 

aerosols in the SJV. 

 The Role of Meteorology 

The WRF-Chem simulations approximately reproduce the seasonal variations of 

meteorological variables near the surface (correlations > 0.80), including temperature, 

RH, wind speed and precipitation. All of the model simulations exhibit warm and dry 

biases near surface and in the boundary layer, with cold and wet biases in the free 

atmosphere. The dry bias in the 4km_D2 run is about 10 percent near the surface 

throughout WY2013. Due to the relative dry environment (RH<50 percent) in the warm 

season, the underestimation of boundary layer aerosol extinction and column-integrated 

AOD is unlikely caused by the hygroscopic effects (Feingold and Morley, 2003). In the 

cold season, the surface wind speed is underestimated by 0.67 m s-1 (1.00 m s-1) in the 

4km_D2 (20km_D2) runs. In the warm season, the 4km_D2 run overestimates wind 

speed by 0.78 m s-1, while the 20km_D2 run has an underestimation of 0.16 m s-1. These 

results suggest that wind speed is not a major factor contributing to the low biases of 

aerosols in the boundary layer between 0.3 km and 3 km. Furthermore, the seasonal 

variability of precipitation is well captured in the simulations, while the magnitude of 

precipitation is weaker than the observations during the warm season. Thus, the 

researchers conclude that wet removal processes would not be a primary reason for the 

aerosol biases in the warm season.  

In the warm season, more aerosols are observed above 1.5 km than in the cold season. A 

well-mixed layer of aerosols is observed below 1.5 km in AMJ, consistent with the 

unstable lower troposphere below 1.5 km shown in AIRS and ERA-Interim (Figure 12). 
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The WRF-Chem model simulates neutral (or weakly stable) layers below 1.5 km, which 

may limit uplifting of aerosols from the surface, failing to create a deep well-mixed layer 

of aerosols. Although the dust emission at the surface is overestimated in AMJ in the 

4km_D2 run, the simulated neutral or weakly stable thermal structure does not favor 

convective vertical mixing, resulting in the low biases of aerosols between 0.3 km and 3 

km.  

Figure 12: Vertical Distribution of Season Mean Equivalent Potential Temperature (θ_e; K) 

       

Source: University of California, Riverside                                                                                                              

Similar biases of aerosol and instability in the lower troposphere are also shown in JAS 

(Figure 11[d] and Figure 12[d]). The stable boundary layer limits vertical transport of 

aerosols from the surface, contributing to the low bias of column-integrated AOD in JAS. 

In JAS, aerosol extinction close to the CALIOP observation is simulated in the free 

atmosphere, suggesting that the low bias in AOD is not due to the halved chemical 

boundary conditions from MOZART-4. In the cold season, in spite of some discrepancies 

in the magnitude of atmospheric stability, all of the simulations capture the stable lower 

troposphere (Figure 12[a] and [b]), consistent with relatively good performance of 

aerosol simulations in the cold season.  

As biases in the model simulations are found mainly within the boundary layer, a 

sensitivity experiment is conducted at 20 km resolution using the ACM2 PBL scheme 

(20km_P7). Although the changes in the meteorological variables (not shown) and 

atmospheric static stability are rather small, the simulated surface NO3 and NH4 in the 

20km_P7 run decrease by 50 percent compared to the 20km_D2 run (Figure 13). 
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Considering that more NO3 and NH4 are simulated at 4 km resolution than at 20 km 

resolution as shown in section 2.4.1, the use of the ACM2 PBL scheme at 4 km 

simulation would largely resolve the high biases of NO3 and NH4 in the 4km_D2 

simulation. The decrease of NO3 and NH4 near the surface is because more aerosols are 

transported to the layers above 0.5 km (Figure 14 [a] and [b]), possibly resulting from 

different convective vertical mixing in the PBL schemes. However, PM2.5_dust is 

significantly overestimated by a factor of 4 in the 20km_P7 simulation (Figure 14 [h]), 

leading to a small decrease of PM2.5 by only 8 percent compared with the 20km_D2 run 

in the cold season. In the warm season, PM2.5_dust in the 20km_P7 run is overestimated 

by a factor of five, causing an overestimation of PM2.5 and PM10 (Figure 13[a] and [b]). 

Aerosol extinctions in the boundary layer above the surface increase in the warm season 

(Figure 14 [c] and [d]), possibly related to overestimation of dust emissions and more 

conducive convective vertical transport in the PBL scheme.       

Figure 13: Aerosol Mass (µg m-3) for Different Species from OBS, the 4km_D2, 20km_D2 
and 20km_P7 Simulations  

 

Source: University of California, Riverside  
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Figure 14: Vertical Distribution of Seasonal Mean 532 nm Aerosol Extinction Coefficient 
(km-1) 

 

Source: University of California, Riverside 

In summary, the WRF-Chem model captures the seasonal variations of meteorological 

variables (temperature, RH, wind speed and precipitation), despite some deviations in 

magnitude. The low biases in aerosol optical properties of the warm season likely do not 

originate from hygroscopic effects, wet removal processes or dust emissions associated 

with the wind speed bias. The model simulates a stable environment in the warm 

season, which is opposite to the observed unstable environment. The simulated stable 

environment may be most likely responsible for low biases in the aerosol extinction 

above the surface (0.3-3 km) and the column-integrated AOD in the warm season. 

Switching to the ACM2 PBL scheme leads to improved vertical displacement of aerosols 

in the boundary layer, thus an improvement in the simulations of NO3 and NH4 in the 

cold season. However, dust emissions are significantly overestimated with the ACM2 PBL 

scheme, which contributes partly to the better simulation of aerosol extinction in the 

boundary layer and AOD in the column. These results highlight that improving the 

simulation of boundary layer structure and processes are critical for capturing the 

vertical profiles of aerosol extinction.  
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1.5 Impacts of Aerosols on Precipitation and Snowpack 
in California 

 Validation of Model Results 

Since the researchers’ focus is on the changes in precipitation and snowpack due to 

aerosol effects, the spatial distribution of averaged results over the period from October 

2012 to June 2013 when snow normally presents over the Sierra Nevada are first shown. 

Figure 15 illustrates a few important and relevant variables that the model simulates in 

the CTRL experiment, including liquid water path (LWP), ice water path (IWP), 

precipitation, snow water equivalent (SWE), and temperature at two meters (T2) above 

the ground. SWE is a common snowpack measurement. It is the amount of water 

contained within the snowpack and can be regarded as the depth of water over unit flat 

surface that would theoretically result if the entire snowpack melted instantaneously. 

Here, the model simulated SWE is the mean value of the accumulated SWE from 3-hourly 

model outputs. It is shown that clouds (Figure 15[a] and [b]), precipitation (Figure 1 [c]), 

snowpack (Figure 15[d]), and surface runoff mostly occur over the Sierra Nevada and 

Klamath Mountains in northern California. For temperature (Figure 15[e]), the central 

valley area appears to be relatively warm with two maxima over the northern and 

southern part of the central valley, respectively, while colder temperatures are found 

over the mountain ranges. The model-simulated precipitation is compared with 

corresponding observations from the Parameter elevation Regression on Independent 

Slopes Model (PRISM, 2004) gridded data product at 4 km resolution (Figure 15[f]). 

Compared to the PRISM observations, the model successfully captures the precipitation 

pattern, including the locations of the major precipitation centers, but slightly 

overestimates the magnitude over the Sierra Nevada. 

To validate the simulated seasonal variations, the monthly mean model simulated 

precipitation and T2 are compared with observations (Figure 16[a] and [c]). Model data 

are sampled onto observational sites before the comparison is conducted. For 

precipitation observations, besides the PRISM product, the researchers also employ the 

Climate Prediction Center (CPC) Unified Gauge-Based Analysis of Daily Precipitation 

product (Chen et al., 2008) at 0.25° x 0.25° resolution and the gauge measurements from 

Department of Water Resources (DWR). Observed air temperature is obtained from the 

California Irrigation Management Information System (Snyder, 1984). For SWE, daily 

accumulated SWE simulations are compared with measurements collected at Snow 

Telemetry (SNOTEL) stations. SNOTEL SWE is measured using a snow pillow sensor and 

biases in SWE measurement could occur when temperature differences between 

surrounding ground cover and the pillow sensor create uneven distribution of snow 

(Meyer et al., 2012). Both under- and over-estimation could happen depending on the 

snowmelt conditions and the snow density rate of change (Serreze et al., 1999; Serreze 

et al., 2001; Johnson and Marks, 2004).  
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Figure 15: Model Simulated (a) LWP (g m-2), (b) IWP (g m-2), (c) Precipitation (mm day-1), 
(d) SWE (mm), and (e) Temperature at 2 Meters, T2 (K) From the CTRL Simulation, and (f) 

PRISM Observed Precipitation (mm day-1), Averaged Over October 2012 to June 2013 

 

Source: University of California, Riverside 

Figure 16: Monthly Mean Precipitation, T2, and SWE  

 

Source: University of California, Riverside 
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It is shown that the model captures the maximum precipitation in December, with the 

magnitude falling between the observations from CPC and PRISM/DWR during winter, 

which is the major rainy season in California (Figure 16[a]). In the relative dry months 

from February to June, the simulated precipitation has similar magnitude to the 

observations, with slightly overestimation or underestimation in different months. For 

SWE, the model simulations represent seasonal variations of SWE with the maximum 

between March and April (Figure 16[b]), but the model overestimates SWE amount 

comparing to SNOTEL. While the model overestimates the surface temperature in 

magnitude, it captures the seasonal variations well, including the highest/lowest 

temperature in July/January, respectively (Figure 16[c]).  

The simulated aerosols over California using this model have been validated extensively 

in Wu et al. (2017) and in Section 1.4 by comparing to observations, such as MISR 

(Multiangle Imaging Spectroradiometer) and AERONET (Aerosol Robotic Network) AOD, 

CALIPSO (Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation) aerosol 

extinction, IMPROVE (Interagency Monitoring of Protected Visual Environments) and EPA 

CSN (National Chemical Speciation Network operated by Environmental Protection 

Agency) aerosol speciation.  

Here, The researchers present the distributions of AOD averaged over October 2012 to 

June 2013 for the MISR (Diner et al., 1998) observation and all aerosols in the CTRL 

simulation, together with locally emitted aerosols and those transported from outside 

the model domain, derived from the difference between the CTRL simulation and the 

corresponding experiment (NoLocAnth, NoLocDust and NoTran), respectively, to 

facilitate the understanding of the aerosol effects in different regions and from 

different sources (Figure 17). It is shown that the model simulation well captures the 

spatial distribution of AOD in California, including the maximum over the southern part 

of the valley area and larger AODs over the lower lands to the southeast of the Sierra 

Nevada (Figure 17[a] and [b]). Note that the smoother contour in MISR is due to the 

coarser horizontal resolution (0.5°) of the MISR data. The distribution of the locally 

emitted anthropogenic aerosols (Figure 17[c]), which are mostly located over the central 

valley associated with the emissions from local industries and farms, presents a similar 

pattern to the total AOD and substantially contributes to the maxima AOD over the 

region. Local dust aerosols mainly reside over the lower lands to the southeast of the 

Sierra Nevada while substantial amounts are also seen over the central valley (Figure 

17[d]). Transported aerosols are carried into the domain by atmospheric circulation and 

widely distributed, with more over the central valley due to the trapping of aerosols by 

the surrounding mountains (Figure 17[e]). 
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Figure 17: Spatial Distribution of Aerosol Optical Depth (AOD) Averaged Over October 
2012 to June 2013 

 

Source: University of California, Riverside 

Overall, the WRF-Chem model that the researchers employ in this study is a reliable tool 

for examining the impact of aerosols on the seasonal variations of precipitation and 

snowpack in California, especially over the Sierra Nevada. 

 Aerosol Effects on Precipitation and Snowpack 

The overall aerosol effects, from all aerosol types and sources (including locally emitted 

and transported) through the three pathways (ARI, ASI, and ACI), can be examined from 

the differences between the experiments CTRL and CLEAN. The two-tailed Student’s t 

test, in which deviations of the estimated parameter in either direction are considered 

theoretically possible, is applied to the 3-hourly data for each experiment in this study 

to measure the statistical significance of the simulations. Figure 5 shows the differences 

averaged over October 2012 to June 2013 in precipitation, SWE, and T2, where the dots 

represent differences of the 3-hourly data being statistically significant at above 90 

percent level. Due to the aerosol effects, temperature decreases over the central valley, 

where most aerosols are located, while significant warming occurs over the mountain 

tops (Figure 18[c]). Precipitation decreases over the Sierra Nevada (Figure 18[a]), 

consequently leading to decreased SWE (Figure 18[b]).  

To understand how the aerosols affect these important variables, the researchers 

examine the effects of ARI, ASI, and ACI separately. In the following figures (Figure 19 to 

Figure 25), the differences are statistically significant at 70 percent level. It is seen that 
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the major effect of ARI is to decrease the surface temperature over the whole domain 

through the scattering and absorption of solar radiation, with the maxima over the 

central valley where the aerosols are mostly located, contributing to the surface cooling 

caused by the total aerosols effects in that region (Figure 19[c]). The ARI induced surface 

cooling over the Sierra Nevada, although not as strong as over the central valley, leads to 

reduced snowmelt and hence slight increase in SWE, opposite to the overall aerosol 

effect on SWE (Figure 19[b[). The effect of ARI on rainfall is not very significant (Figure 

19[a]). The main effect of ASI is to increase the temperature (Figure 20[c]) over the 

snowy area of the Sierra Nevada through the reduction of snow albedo (Figure 20[d]) 

and hence more absorption of solar radiation at the surface, contributing to the reduced 

SWE over the Sierra Nevada (Figure 20[b]). The effect of ASI on precipitation is also 

minimal.  

Figure 18: Total Aerosol Effects (CTRL – CLEAN) on Spatial Distribution of Precipitation 
(mm day-1), SWE (mm), and T2 (K) 

 

Source: University of California, Riverside 
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Figure 19: ARI effects (CTRL – NARI) on Spatial Distribution of Precipitation (mm day-1), 
SWE (mm), and T2 (K) 

 

Source: University of California, Riverside  
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Figure 20: ASI Effects (CTRL – NASI) on Spatial Distribution of Precipitation (mm day-1), 
SWE (mm), T2 (K), and Surface Albedo  

 

Source: University of California, Riverside 

Figure 21 shows the effect of aerosols on clouds through ACI. When more aerosols are 

present in the atmosphere, more CCN are available for the formation of clouds with 

smaller cloud droplets. As a result, more non-precipitating clouds are produced when 

aerosol are included in the model. The enhanced LWP (Figure 21[a]) is primarily 

produced by the ACI effect (Figure 21[c]). There are no significant changes in IWP 

(including ice, snow, and graupel) because the aerosol effect on ice cloud formation is 

not explicitly treated in the model. The ACI effect leads to reduced precipitation and 

less SWE over the mountains (Figsures 22[a] and [b]). Temperature decreases over the 

valley due to more clouds formed associated with the ACI effect. The increase in 

temperature over the mountain areas (Figure 22[]c) is caused by the reduced snow 

amount, which results in weaker surface albedo (Figure 22[d]) and enhanced solar 

absorption at the surface and overwhelms the decrease of temperature, which may be 

caused by increased clouds.  
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Figure 21: Differences in LWP (g m-2), IWP (g m-2), (CTRL – CLEAN), LWP (g m-2), IWP (g 
m-2), and (NARS – CLEAN) 

 

Source: University of California, Riverside 

Figure 22: Differences in ACI Effects 

 

Source: University of California, Riverside 
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Overall, aerosols affect surface temperature, precipitation, and snowpack in California 

through the three pathways. ACI plays a dominant role in increasing cloud water but 

reducing precipitation, leading to reduced SWE and surface runoff over the Sierra 

Nevada. ASI also reduces SWE due to the smaller snow albedo associated with dirty 

snow, leading to more surface absorption and snowmelt. ARI, on the other hand, slightly 

increases SWE through the cooling of the surface. For surface temperature, ARI and ACI 

contribute together to the cooling of the valley area, while ACI and ASI significantly 

warm the surface over the mountaintops. Note that for the ASI effect, warming of the 

snow cover area through aerosol induced snow-albedo feedback is the cause for the 

reduced SWE. For the ACI effect, however, warming over the mountain region is a result 

from the reduced SWE, which can also induce snow-albedo feedback and result in 

smaller surface albedo and more surface absorption of solar radiation. 

Next, the researchers examine the roles of local anthropogenic aerosols and local dust 

as well as transported aerosols. The effect of local anthropogenic aerosols can be 

discovered from the differences between CTRL and NoLocAnth. It is shown that local 

anthropogenic aerosols slightly suppress precipitation (Figure 23[a]) via ACI, leading to a 

reduced SWE (Figure 23[b]) and a warming over the mountain tops (Figure 23[c]). The 

cooling of the valley area, where locally emitted anthropogenic aerosols are mostly 

located, is associated with the ARI effect and more non-precipitating clouds produced 

through ACI. Dust aerosols emitted from local sources mainly warm the surface through 

the reduction of snow albedo (ASI, Figure 24[c]), consequently enhancing the snowmelt 

and leading to the reduced SWE (Figure 24[b]). Local dust aerosols have no significant 

effect on precipitation (Figure 24[a]).  

Note that the effects of local anthropogenic and dust aerosols do not seem to be able to 

explain the total effects of aerosols, raising the question whether the transported 

aerosols play an important role in the precipitation and snowpack over the Sierra 

Nevada. Figure 25 illustrates the impact of aerosols transported from outside the model 

domain. It is shown that transported aerosols reduce the precipitation through ACI 

(Figure 25[a]), which exceeds the ARI effect and leads to decreased SWE and increased 

temperature over the southern part of the Sierra Nevada (Figure 25[b] and [c]). Over the 

central valley, as well as over the northern part of the Sierra Nevada, temperature 

decreases (Figure 25[c]) due to the relatively larger ARI effect of the transported 

aerosols compared to the ACI effect, resulting in less snowmelt and increased SWE over 

that region (Figure 25[b]). 

The overall changes induced by aerosols for surface temperature (K) and precipitation, 

SWE, and surface runoff in percentage averaged over October to June are given in Table 

6 for the whole domain (34-42 °N, 117-124 °W, not including ocean points), mountain 

tops (elevation ≥ 2.5 km), and lower elevations (elevation < 2.5 km).  For the whole 

domain in year 2012-2013, temperature is cooled by 0.19 K due to aerosol ARI (-0.14 K), 

as well as ACI (~0.06 K) mainly associated with transported aerosols (-0.17 K), 
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accompanied by reduction in precipitation, SWE, and surface runoff of about 7 percent, 

3 percent, and 7 percent, respectively. Reduction in precipitation is mainly caused by 

ACI (-6.26 percent) associated with transported (-2.97 percent) and local anthropogenic 

(-1.02 percent) aerosols. For SWE, reduction is attributed to ACI (-2.67 percent) and ASI (-

1.96 percent), while ARI contributes to an increase (1.88 percent). Surface runoff is 

defined as water from precipitation, snowmelt, or other sources that flows over the land 

surface, and is a major component of the hydrological cycle. Overall changes in surface 

runoff are similar to those in precipitation, accompanied by contributions from changes 

in snowmelt. For the mountaintops, warming of 0.22 K is found attributed to ASI (0.12 

K) and ACI (0.17 K) associated with local dust and anthropogenic aerosols, respectively, 

with 10 percent or more reduction in precipitation, snowpack, and surface runoff. 

Therefore, aerosols may contribute to California drought through both the warming of 

mountaintops and anomalously low precipitation over the whole area. For the lower 

elevations, the domain-averaged changes are similar to those for the whole domain, 

except for SWE, which slightly increases by 0.42 percent due to ARI (2.43 percent) with 

main contribution from transported aerosols (4.01 percent). 

Figure 23: Effect of Local Anthropogenic Aerosols on Spatial Distribution  

 

Source: University of California, Riverside 
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Figure 24: Effect of Local Anthropogenic Aerosols on Dust Aerosols  

 

Source: University of California, Riverside 
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Figure 25: Effect of Local Anthropogenic Aerosols on Transported Aerosols  

 

Source: University of California, Riverside 
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Table 6: Changes in Surface Temperature (K) and Precipitation, SWE, and Surface Runoff 
in Percentage Averaged Over October 2012 to June 2013 

Region Source/pathway T2 (K) Precipitation (%) SWE (%) Surface runoff (%) 

Whole Domain Total −0.19 −6.87 −3.17 −6.58 

ARI −0.14 −0.47 1.88 −0.21 

ASI 0.01 −0.03 −1.96 0.04 

ACI −0.06 −6.26 −2.67 −6.30 

LocAnth −0.02 −1.02 −0.91 −0.94 

LocDust 0.00 −0.19 −1.35 0.01 

Tran −0.17 −2.97 1.89 −2.90 

Mountain Tops 

 

Total 0.22 −11.53 −10.50 −9.58 

ARI −0.09 −0.61 0.76 −0.49 

ASI 0.12 0.26 −3.94 1.10 

ACI 0.17 −11.03 −7.57 −10.25 

LocAnth 0.03 −1.75 −1.60 −2.06 

LocDust 0.10 0.31 −2.99 1.49 

Tran −0.02 −5.25 −2.43 −4.76 

Lower Elevations Total −0.21 −6.62 0.42 −6.42 

ARI −0.14 −0.46 2.43 −0.19 

ASI 0.00 −0.04 −0.99 −0.01 

ACI −0.07 −6.00 −0.27 −6.09 

LocAnth −0.03 −0.98 −0.57 −0.89 

LocDust 0.00 −0.22 −0.55 −0.07 

Tran −0.17 −2.85 4.01 −2.81 

Source: University of California, Riverside 
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 Seasonal Variations of Aerosol Effects 

Figure 26 depicts the monthly mean AOD for total aerosols (brown solid), local 

anthropocentric aerosols (green dashed), local dust (blue dashed), and transported 

aerosols (red dashed) averaged over the whole domain, mountaintops, and lower 

elevation area from October 2012 to June 2013. It is seen that transported aerosols 

contribute to about two-thirds of the total AOD. The total AOD has two maxima, one in 

December and one in May, mainly associated with the seasonal variations of transported 

aerosols and local dust aerosols. Local dust AOD starts to increase in March and reaches 

a maximum around May, while transported aerosol AOD peaks in April (Figure 26[a]). 

The seasonal variations of AOD over the mountaintops and lower elevations are similar 

to those of the whole domain (Figures 26[b] and [c]). 

Figure 26: Monthly Mean AOD Simulated from CTRL for Total Aerosols, Local 
Anthropocentric Aerosols, Local Dust, and Transported Aerosols  

 

Source: University of California, Riverside 

The monthly mean differences in precipitation due to the total aerosols (brown solid), 

ARI (green solid), ASI (blue solid), ACI (red solid), local anthropocentric aerosols (green 

dashed), local dust (blue dashed), and transported aerosols (red dashed) are shown in 

Figure 27. Reduced precipitation is seen over the whole domain, with the most 

contribution from transported aerosols, followed by local anthropogenic aerosols, both 

of which play roles in precipitation changes through ACI as previously shown. ARI, ASI, 

or locally emitted dust aerosols do not seem to play an important role in the monthly 

mean precipitation changes (Figure 27[a]). Two maxima of aerosol effects are found: one 

in December when it is the rainy season of the California and at the same time relatively 

larger AOD presents over this region (Figure 26[a]); the other peak reduction in 

precipitation due to the aerosol effects is found in May with a value of about 0.2 mm 

day-1 (Figure 27[a]), probably associated with the maximum aerosols (Figure 26[a]) and 
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also the orographic precipitation over the mountain region during that time period (Lee 

et al., 2015). Given that the monthly mean precipitation in May is only about 1 mm day-1, 

the reduction caused by aerosols is about 20 percent. For monthly mean precipitation, 

changes over the mountaintops and the lower elevation area, respectively, have similar 

seasonal variation patterns (Figurse-27[b] and [c]).  

Figure 27: Monthly Mean Differences in Precipitation (mm day-1)  

 

Source: University of California, Riverside 

For SWE, however, changes over the mountaintops are different from those in the lower 

area (Figure 28). For mountaintops, negative changes in SWE are seen over the whole 

period, with a maximum reduction of about 60 mm in May corresponding to the 

maximum AOD (Figure 28[b]). Major contribution is from local dust aerosols through 

ASI, as well as transported and local anthropogenic aerosols through ACI. ARI produces 

small positive changes (~ 5 mm in May) in SWE due to the scattering and absorption of 

solar radiation by aerosols which leads to surface cooling. For lower elevation area, 

slightly enhanced SWE is found during the winter time, associated with the effects of 

transported aerosols that produce more clouds through ACI, and together with the ARI 

effect, lead to the cooling of the surface and hence less snowmelt (Figure 28[c]). Over the 

whole domain, SWE is reduced with a maximum of about 2 mm in May, equivalent to 

about 2 percent reduction, mainly attributed to the local dust particles through ASI, and 

local anthropogenic and transported aerosols through ACI (Figure 28[a]).     
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Figure 28: Monthly Mean Differences in SWE (mm)  

 

Source: University of California, Riverside 

Changes in temperature also exhibit different patterns over the mountaintops and the 

lower elevations (Figure 29). Warming over the mountaintops is produced by dust 

aerosols through ASI with a maximum around May, and by transported aerosols through 

ACI during winter, which leads to reduced precipitation and SWE with a maximum in 

January (Figure 29[b]). Cooling over the lower elevation areas is caused by ARI, and is 

induced by more clouds generated in the model simulations due to transported aerosols 

through ACI, with a maximum cooling of about 0.3 K in April, corresponding to the 

maximum AOD of transported aerosols (Figure 29[c]). The average temperature changes 

over the whole domain are negative because of the large area of the lower elevations 

(Figure 29[a]). 
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Figure 29: Monthly Mean Differences in T2 (K) 

 

Source: University of California, Riverside 

Surface runoff reaches a maximum in December for the lower elevations and the whole 

domain, but a peak value in May for mountaintops when the temperature is warmer. For 

lower elevations where there is not much snow, surface runoff is mainly associated with 

precipitation and the changes present a similar pattern to those in precipitation 

(Figure30[c]). Changes in surface runoff for the whole area present similar patterns to 

those of the lower elevations because of the larger area of lower elevations (Figure 

30[a]). However, for mountaintops, changes in surface runoff are also associated with 

changes in snowmelt. Surface runoff over the mountaintops shows a slight increase in 

spring, and then a decrease after April (Figure-30[b]). The increase can be explained by 

the effect of local dust aerosols deposited on the snow, which reduces the snow albedo 

through ASI and warms the surface, leading to more and earlier snowmelt than normal, 

consistent with negative changes in SWE. The decrease after April is a combined effect 

of less snowpack available for melting caused by earlier snowmelt due to local dust 

aerosols and reduced precipitation caused by transported and local anthropogenic 

aerosols through ACI. Thus, the impact of aerosols is to speed up snowmelt at the 

mountaintops in spring and modify the seasonal cycle of surface runoff. 
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Figure 30: Monthly Mean Differences in Surface Runoff (mm day-1) 

 

Source: University of California, Riverside 

1.6 Seasonal Forecast for California 
The researchers have run 10 downscaling WRF and WRF-Chem simulations, respectively, 

to do 6-month forecast for November 2016 to April 2017 over California using different 

initial and boundary conditions obtained from global forecast data from NCEP Coupled 

Forecast System Model Version 2 (CFS). Figure 31 shows the monthly mean precipitation 

from the model ensemble results (CFS and WRF-Chem & WRF) and observations from 

PRISM and CPC. It shows that CFS and WRF models capture the seasonal variations with 

peak in January, although they underestimate the precipitation during December 2016 – 

February 2017. The maximum underestimates occur in February 2017, and the 

underestimates in WRF-Chem and WRF are closely associated with the low biases in the 

large-scale CFS model. In terms of 6-month averages (the values in the brackets), WRF-

Chem improves the forecast by about 5 percent as compared to CFS, and is also better 

that the result by WRF. 

Figure 32 shows the precipitation observations from CPC and PRISM, model ensemble 

prediction results from CFSV2, WRF-Chem, and WRF, and the differences between WRF-

Chem and WRF, for January 2017. Compared to observations (Figures 32[a] and [b]), CFS 

model obviously missed the strong precipitation band along the Sierra Nevada, and only 

simulated the precipitation center over the coastal area of northern California. WRF and 

WRF-Chem predictions, however, well captured the precipitation pattern and magnitude 

(Figures 32[d] and [e]) over the entire California for January 2017, which illustrates the 

importance and improvement of dynamical downscaling approach in the regional 
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forecast. It can also be seen that the simulations with aerosols included produced 

noticeable differences in the spatial distribution of precipitation (Figures 32[d]-[f]). More 

precipitation is found over the Sierra Nevada when aerosol effects are considered in the 

forecast, which, to some extent, corrects the underestimate of precipitation in WRF 

results. 

Figure 31: Monthly Mean Precipitation During November 2016 to April 2017 

 

Source: University of California, Riverside 
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Figure 32: Precipitation Observations for January 2017 

 

Source: University of California, Riverside 

1.7 Summary and Conclusion 
The research team employed a version of the WRF-Chem model with fully coupled 

aerosol-meteorology-snowpack to investigate the aerosol seasonal variability and the 

impacts of various aerosol sources on precipitation and snowpack in California. The 

team evaluated model simulations of aerosol seasonal variability in the San Joaquin 

Valley (SJV), California by satellite and in-situ observations. Results show that the WRF-

Chem model successfully captures the distribution, magnitude, and variation of SJV 

aerosols during the cold season. However, aerosols are not well represented in the warm 

season. Aerosol simulations in urban areas during the cold season are sensitive to 

model horizontal resolution, with better simulations at 4 km resolution than at 20 km 

resolution, mainly due to inhomogeneous distribution of anthropogenic emissions and 

better represented precipitation in the 4 km simulation. In rural areas, the model 

sensitivity to grid size is rather small. The researchers’ observational analysis reveals 

that dust is a primary contributor to aerosols in the SJV, especially during the warm 

season. Aerosol simulations in the warm season are sensitive to parameterization of 

dust emission in WRF-Chem. The GOCART (Goddard Global Ozone Chemistry Aerosol 

Radiation and Transport) dust scheme produces very little dust in the SJV while the 

DUSTRAN (DUST TRANsport model) scheme overestimates dust emission. Vertical 
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mixing of aerosols is not adequately represented in the model based on CALIPSO (Cloud-

Aerosol Lidar and Infrared pathfinder Satellite Observation) aerosol extinction profiles. 

Improved representation of dust emission and vertical mixing in the boundary layer are 

needed for better simulations of aerosols during the warm season in the SJV.    

The relative roles of locally emitted anthropogenic and dust aerosols, and aerosols 

originating from outside the model domain are differentiated through the three 

pathways, aerosol-radiation interaction (ARI), aerosol-snow interaction (ASI), and 

aerosol-cloud interaction (ACI). The convection-permitting model simulations show that 

precipitation, snow water equivalent (SWE), and surface air temperature averaged over 

the whole domain (34-42 °N, 117-124 °W, not including ocean points) are reduced when 

aerosols are included, therefore reducing large biases of these variables due to the 

absence of aerosol effects in the model. Aerosols affect California water resources 

through the warming of mountaintops and the reduction of precipitation; however, 

different aerosol sources play different roles in changing surface temperature, 

precipitation and snowpack in California by means of various weights of the three 

pathways. ARI by all aerosols mainly cools the surface, leading to slightly increased SWE 

over the mountains. Locally emitted dust aerosols warm the surface of mountaintops 

through ASI, in which the reduced snow albedo associated with dusty snow leads to 

more surface absorption of solar radiation and reduced SWE. Transported aerosols and 

local anthropogenic aerosols play a dominant role in increasing non-precipitating clouds 

but reducing precipitation through ACI, leading to reduced SWE and runoff over the 

Sierra Nevada, as well as the warming of mountain tops associated with decreased SWE 

and hence lower surface albedo. The average changes in surface temperature from 

October 2012 to June 2013 are about -0.19 K and 0.22 K for the whole domain and over 

mountain tops, respectively. Overall, the average reduction during October to June is 

about 7 percent for precipitation, 3 percent for SWE, and 7 percent for surface runoff 

for the whole domain, while the corresponding numbers are 12 percent, 10 percent, and 

10 percent for the mountaintops. The reduction in SWE is more significant in a dry year, 

with a 9 percent reduction for the whole domain and 16 percent for the mountain tops. 

The maximum reduction of ~20 percent in precipitation occurs in May associated with 

the maximum of aerosol loadings, leading to the largest decrease in SWE and surface 

runoff over that period. It is also found that dust aerosols could cause early snowmelt at 

the mountaintops and reduced surface runoff after April. 

Six-month downscaling forecast over California has been carried out using WRF and 

WRF-Chem driven by global forecast data from NCEP Coupled Forecast System Model 

Version 2 (CFSV2) as initial and boundary conditions. WRF and WRF-Chem predictions 

well captured the precipitation pattern over the entire California, which illustrates the 

importance and improvement of dynamical downscaling approach in the regional 

forecast. Initial conditions seem to play an important role in the model forecast. More 

detailed analysis and in depth studies will be needed to evaluate the performance of the 

high-resolution dynamical downscaling and examine the impacts of initial conditions on 

seasonal forecast. 
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CHAPTER 2:  
Impact of Aerosols on Reservoir Inflow: A 
Case Study for Big Creek Hydroelectric 
System in California 

2.1 Introduction 
Hydroelectric power plants play a key role in supporting the integration of increasing 

amounts of wind and solar energy as they have high level of operational flexibility and 

storage capability. Hydroelectric power plants take on important responsibilities such as 

flood control, navigation, irrigation, agricultural, urban water supply, and recreation in 

addition to enhancing the stability of power systems and security of power supply. 

Hence, it is important to determine the optimal operational schedule of single-stage or 

multistage hydroelectric power plants. An accurate and reliable reservoir inflow forecast 

model is in crucial need to enable optimal and efficient scheduling of hydroelectric 

resources (Gragne, et al., 2015; Madsen, et al., 2009; Valipour, et al., 2013) 

Typically, the river runoff in the Sierra Nevada region are highly influenced by 

meteorological variables such as temperature, precipitation, and snow water equivalent 

(SWE) (Cayan, et al., 1993). Since the reservoir inflows of this region are generated by the 

runoff captured by the reservoirs, therefore, these meteorological variables can be used 

as explanatory variables in reservoir inflow forecast models. In the past decade, 

researchers have discovered that the presence of aerosol particles in the atmosphere 

can exert great influence on the hydrological cycle in a region through the 

meteorological variables (Barnett, et al., 2005; Lohmann, 2005; Qian, et al., 2009; 

Ramanathan, et al., 2001).  

Aerosols are a mixture of tiny particles or liquids that are suspended in air and can 

range from 0.001 to 10 µm in size. A discussion on types and components of aerosol 

particles considered in this study is provided in Section 2.5.2. It has been shown that an 

increase in atmospheric aerosols primarily affects solar radiation entering earth's 

atmosphere, snow albedo, cloud formation, and precipitation. Aerosol effects can be 

differentiated in three pathways- aerosol-radiation interaction (ARI) or direct effect, 

aerosol-snow interaction (ASI), and aerosol-cloud interaction (ACI) or indirect effect. 

Reflective aerosol particles, such as nitrate and sulphate particles, scatter the solar and 

thermal radiation and increase planetary albedo cooling both surface and atmosphere 

(Andreae, et al., 2005; Charlson, et al., 1992; Haywood & Boucher, 2000; Johnson, et al., 

2004; Kaufman, et al., 2002; Kiehl & Briegleb, 1993; Penner, et al., 2006; Quaas, et al., 

2008). However, absorptive aerosols such as black carbon absorb radiation, decrease 

planetary reflectivity and increase air temperature (Jacobson, 2001; Johnson, et al., 

2004). Presence of soot particles and dust in snow darkens the surface and reduces the 
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snow albedo through aerosol-snow interaction (ASI)  (Chylek, et al., 1983; Clarke & 

Noone, 1985; Doherty, et al., 2010; Flanner, et al., 2007; Grenfell, et al., 2002; Hansen & 

Nazarenko, 2004; Jacobson, 2004; Lee-Taylor & Madronich, 2002; Marks & King, 2013; 

Marks & King, 2014) (Reay, et al., 2012; Warren, 1984; Warren & Clarke, 1990; Wiscombe 

& Warren, 1980; Ye, et al., 2012). Snow albedo perturbations increase the surface air 

temperature and accelerate snowmelt (Barnett, et al., 2005; Flanner, et al., 2007; Hansen 

& Nazarenko, 2004; Lau, et al., 2010; Ming, et al., 2009; Qian, et al., 2009; Wiscombe & 

Warren, 1980; Xu, et al., 2009). Further reduction of snow albedo takes place by snow 

albedo feedback (Brandt, et al., 2011; Flanner, et al., 2007; Hadley & Kirchstetter, 2012; 

Hansen & Nazarenko, 2004). 

Aerosol-cloud interaction or indirect effect of aerosols on climate includes a change in 

microphysical and optical properties of cloud droplets, which is related to aerosols 

acting as cloud condensation nuclei (CCN). Increasing the number concentration of CCN 

can lead to formation of more cloud droplets, which results in a decrease in cloud 

droplet radius leading to higher cloud albedo (Jones, et al., 1994; Twomey, 1974; 

Twomey, 1991). Another effect of decrease in cloud droplet size is the reduced 

precipitation through the ‘second indirect effect’ (Ramanathan, et al., 2001; Rosenfeld, 

2000). This is because small water droplets continue to drift in air and are less likely to 

grow to sufficient size to fall out as precipitation prolonging cloud lifetime (Albrecht, 

1989; Ackerman, et al., 2004; Kaufman, et al., 2005; Rosenfeld, 2000). Higher cloud 

reflectivity and increase in cloud lifetime also produce a net cooling effect on earth's 

surface by shading it from solar radiation. Absorptive aerosols can reduce low-cloud 

cover through the ‘semi-direct effect' (Johnson, et al., 2004; Hansen, et al., 1997) leading 

to positive radiative forcing. A detailed description of the effect of aerosol on 

precipitation and snow water equivalent in California (Wu, et al., 2017b) showed that 

aerosols reduce precipitation and SWE by 10 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 over mountaintops in the Sierra 

Nevada region. This is a result of (both anthropogenic and naturally occurring) aerosols 

serving as CCN, which leads to an increase of non-precipitating clouds. Aerosol 

deposition on snow increases absorption of solar radiation, leading to warming and 

further reduction of SWE over mountaintops. As the level of anthropogenic aerosol 

particles (such as sulfate and carbonaceous aerosols) increases rapidly from 

preindustrial times to the present-day over urban and industrial regions, their impact is 

becoming more significant on the hydrological cycle and thereby on reservoir inflow 

(Charlson, et al., 1991; Charlson, et al., 1992; Lohmann, 2005; Schwartz, 1996). It should 

be mentioned that, since aerosols are not evenly distributed around the earth, their 

impact on reservoir inflow varies quite a lot from region to region. It is critical to 

understand and quantify the impact of aerosols on reservoir inflow as it can influence 

hydropower generation and reservoir operations.  

The primary objective of this paper is to develop a reservoir inflow forecast model and 

subsequently quantify the impact of aerosols on inflow into Florence Lake and Lake 

Thomas Alva Edison in the Big Creek Hydroelectric System. Since Florence Lake and Lake 

Edison are the higher elevation reservoirs of the system, an accurate forecast of inflow 
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into these reservoirs can also improve the operational efficiency of the system greatly. 

The Big Creek Hydroelectric System resides in the San Joaquin Valley, which is 

surrounded by the Sierra Nevada mountain range in the east. San Joaquin Valley has one 

of the highest pollutant concentrations in the United States due to its unique 

geographical location. A detailed description of the study area is provided in Appendix 

2.3. Autoregressive integrated moving average model (ARIMA) is a well-known univariate 

time series model frequently used in hydrological forecasting.  ARIMA models can 

predict a time series variable based on its own past values (AR term) and past values of 

the error term (MA term). Including exogenous variables in ARIMA model improves 

forecasting accuracy and is commonly known as ARIMAX model or dynamic regression 

model. In this paper, the researchers first develop a statistical hydrologic model with 

dynamic regression method where meteorological variables such as temperature, 

precipitation, and SWE are used as explanatory variables. The best parsimonious 

dynamic regression model is selected using the Akaike Information Criterion (AIC), 

residual diagnostics and goodness-of-fit. Meteorological variables are then simulated 

using the WRF-Chem model with different aerosol emission levels. These simulated 

meteorological variables with and without aerosol impacts are fed into the dynamic 

regression model to quantify the impact of aerosols on reservoir inflow in the Big Creek 

Hydroelectric System. Detailed analysis of aerosol impacts on temperature, precipitation 

and SWE in California is not the objective of this study since it has been provided in 

(Wu, et al., 2017b). 

1. The unique contributions of this paper are listed as follows. 

2. The researchers developed an innovative and comprehensive framework for 

evaluating the impact of aerosols on reservoir inflow. The framework seamlessly 

integrates the numerical weather forecasting model (WRF-Chem) and the 

statistical inflow forecasting model (dynamic regression). 

3. The researchers developed a dynamic regression model to forecast daily inflow 

into the hydroelectric reservoirs. The model coefficients for the meteorological 

variables provide an intuitive understanding of how temperature, precipitation, 

and snow water equivalent influence reservoir inflow. 

4. The researchers quantified the impact of aerosols on reservoir inflow in the Big 

Creek Hydroelectric System based on the proposed dynamic regression model 

and WRF-Chem model. The simulation results show that the presence of aerosols 

resulted in a reduction of the annual reservoir inflow by 4 𝑝𝑝𝑡𝑡 14 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. 

The existing research on the effect of climate change and human activities on 

streamflow (Gleick & Chalecki, 1999; Knowles & Cayan, 2002; Lettenmaier & Gan, 1990; 

VanRheenen, et al., 2004) and inflow into reservoirs (Brekke, et al., 2004) in the San 

Joaquin Basin focus on the effect of carbon dioxide and several other greenhouse gases. 

There are very few examples in the literature studying the effect of natural and 

anthropogenic aerosols on streamflow and reservoir inflow (Givati & Rosenfeld, 2007). 

The researchers’ study focuses on exploring the impact of aerosols on inflow at the Big 
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Creek hydroelectric System located in the upper San Joaquin River system in the Sierra 

Nevada Mountains of Central California. 

The remainder of the paper is organized as follows. Section 2.2 summarizes existing 

studies on statistical inflow forecasting models and discusses the rationality of 

choosing dynamic regression model. Section 2.3 describes the study area. Section 2.4 

presents the overall framework of the researchers’ study. Section 2.5 presents the 

technical methods used in building the dynamic regression model to forecast reservoir 

inflow and the WRF-Chem model. Section 2.6 describes development of the dynamic 

regression models and their goodness of fit. Section 2.7 shows the evaluation of the 

WRF-Chem model and the impact of aerosols on inflow into the two hydropower 

reservoirs. Lastly, Section 2.8 concludes the paper by discussing the direction of future 

research and limitations of the study. 

2.2 Literature Review 
This section presents a review of research articles relevant to this paper that can be 

grouped into two categories, 1) statistical inflow forecasting models and 2) impact of 

aerosols on reservoir inflow. 

 Statistical Inflow Forecasting Models 

The existing models for hydrological modeling and forecasting can be separated into 

three groups; time series models (Moeeni, et al., 2017; Mohammadi, et al., 2005; 

Papamichail & Georgiou, 2001; Valipour, et al., 2013; Valipour, 2015), regression models 

(Galeati, 1990; Lall & Bosworth, 1994; Mohammadi, et al., 2005), and artificial neural 

network (ANN) models (Coulibaly, et al., 2000; Jain, et al., 1999; Kilinç & Ciğizoğlu, 2003; 

Mohammadi, et al., 2005; Valipour, 2015; Xu & Li, 2002). (Mohammadi, et al., 2005) 

compared regression, ARIMA, and ANN models to forecast spring inflows into the Amir 

Kabir reservoir in the Karaj watershed. (Valipour, et al., 2013) compared ARMA, ARIMA 

and the autoregressive ANN models to forecast monthly inflows of the Dez dam 

reservoir. Both of these studies chose ANN as the best model. (Moeeni, et al., 2017) 

compared SARIMA (seasonal ARIMA) and ANN-GA (ANN combined with genetic 

algorithm) models in making short-term and long-term predictions of monthly inflow 

into a dam where SARIMA model outperformed the ANN-GA model, especially in 

forecasting low values. (Papamichail & Georgiou, 2001) used stochastic SARIMA model 

to forecast monthly inflow of one or more months ahead into the planned Amopeos 

Reservoir in Northern Greece, which helped evaluate the optimal real time reservoir 

operation policies. The monthly forecasts were used to generate a synthetic series of 

monthly inflows that preserves the key statistics of the historical monthly inflows and 

their persistence Hurst coefficient, providing a probabilistic framework for reservoir 

design. Monthly means and the monthly standard deviations of the forecasted inflows 

were close to that of the measured inflows demonstrating the ability of SARIMA models 

to forecast monthly inflows and generate synthetic series of monthly inflows. (Valipour, 

2015) investigated SARIMA and ARIMA models for long-term runoff forecasting in the 
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United States. They found SARIMA model to be the best model in their study with an 

error of < 5 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for all states. Therefore, ARIMA model can be considered as an 

effective tool for forecasting reservoir inflow. Including exogenous covariates in ARIMA 

model (ARIMAX) helps explain the dynamic relationship between the response time 

series and the explanatory variable time series and improve forecast accuracy.  

Some of the underlying assumptions of regression model, such as normal distribution, 

homoscedasticity and no autocorrelation of error terms, are frequently violated when 

being applied to time series data (Makridakis, et al., 2008). The ARIMA modeling 

approach can be applied to model the information contained in the error term, which 

can take care of its autocorrelation. A transfer function model can be used to model the 

relationship between the response variable and explanatory variables. The regression 

model with ARIMA errors and transfer function is effectively the ARIMAX or dynamic 

regression model. Lastly, though ANN models might improve forecast accuracy, it is 

challenging to interpret the impact of aerosols on inflow by examining the weights on 

the meteorological input variables. In the light of all these considerations, the 

researchers decided to adopt the dynamic regression model to forecast inflow into the 

hydropower reservoirs. 

 Impact of Aerosols on Reservoir Inflow 

Few studies were conducted to examine the impact of anthropogenic aerosols on 

hydrology and water resources. (Givati & Rosenfeld, 2007) studied the impact of 

anthropogenic aerosols on available water resources in the Sea of Galilee in northern 

Israel and outflows of the main springs of Jordan River where large portion of water 

resources result from orographic precipitation.  

They applied the methodology developed by (Givati & Rosenfeld, 2004; Givati & 

Rosenfeld, 2005) to quantify the trend in orographic precipitation in the catchment 

areas and relate it to trends in runoff and spring outflows. They concluded that air 

pollution is the main reason behind the suppression of orographic precipitation over the 

hilly areas and the subsequent decreasing trend in the available water in the Sea of 

Galilee. However, the researchers’ study is not limited to anthropogenic aerosols. It also 

includes aerosols from various kinds of natural sources. 

2.3 Study Area: San Joaquin Region and Big Creek 
Hydroelectric Project 
The Big Creek Hydroelectric Project is an extensive hydroelectric system that accounts 

for 12 percent of California's total hydroelectric generation. The project is located on the 

upper San Joaquin River system in the Sierra Nevada Mountains of Central California. 

Sierra Nevada is a mountainous region where most precipitation are retained as snow 

until temperatures are sufficient for melt (Cayan, et al., 1993). 

The hydroelectric project is owned and operated by Southern California Edison (SCE), 

which has a total installed capacity of 1,000 MW accounting for approximately 
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20 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of SCE's total generation capacity. The hydroelectric system includes 27 

dams, 23 generating units in nine powerhouses, miles of underground tunnels, and six 

major reservoirs with a combined storage capacity of 560,000 acre feet. Water from 

lakes in higher elevation are routed through the nine powerhouses and discharged to 

lakes in lower elevations that are connected through tunnels and penstocks. The water 

travels a combined vertical distance of 6,655 feet before being discharged through the 

last powerhouse into the San Joaquin River. Florence Lake and Lake Thomas Alva Edison 

are the higher elevation reservoirs of the system having surface elevation of 7300 and 

7648 feet respectively. The dam at Florence Lake captures runoff from the South Fork 

San Joaquin River, diverting it through the Ward Tunnel towards the Portal Powerhouse, 

which is the first powerhouse in the system to receive water. Lake Thomas Alva Edison 

is formed by the Vermillion Valley Dam constructed across the Mono Creek, a tributary 

of the South Fork of the San Joaquin River. It discharges some of its water to the Ward 

Tunnel and thereby further regulates the water supply to the Portal Powerhouse. Water 

running through Portal Powerhouse is discharged into the Huntington Lake where it is in 

turn diverted to lakes of lower elevation through other powerhouses. Thus, an accurate 

forecast of inflow into Lake Thomas Alva Edison and Florence Lake can greatly improve 

the operational efficiency of the Big Creek Hydroelectric Project. 

2.4 Framework 
This study aims at quantifying the impact of aerosol particles on inflow into Florence 

Lake Reservoir and Lake Edison and developing daily inflow forecasts for these two 

reservoirs. A dynamic regression model was developed to forecast the inflow, which 

uses meteorological variables like daily mean temperature, accumulative snow water 

equivalent, and incremental precipitation as explanatory variables. Observed inflow data 

and observed meteorological variables data were split into a training set and a testing 

set. Testing set was formed by withholding the data for the last water year from the 

model identification and estimation process and the rest are used as the training set. 

The training data set was used to estimate the model parameters. The forecasting 

accuracy of the model was assessed by performing out-of-sample forecasting on the 

testing set. Forecasts of the predictor variables considering the impact of aerosols on 

regional climate were calculated in the San Joaquin Valley of California using a version 

of Weather Research and Forecasting Model with Chemistry (Grell, et al., 2005; Zhao, et 

al., 2014) with fully coupled aerosol-meteorology-snowpack. Meteorological variable 

forecasts without impact of aerosols were also calculated for the same region. Both 

forecasts were used as respective testing sets for calculating inflow forecasts with and 

without impact of aerosols. Yearly and seasonally aggregated inflow forecasts were then 

compared to quantify the impact of aerosols on inflow into Lake Edison and Florence 

Lake. The procedure is summarized schematically in Figure 33. 

  



57 

 

Figure 33: The Overall Framework for Quantifying the Impact of Aerosols on Reservoir 
Inflow 

 

Source: University of California, Riverside 

2.5 Technical Methods 

 Dynamic Regression Model 

A dynamic regression model or ARIMAX model (Pankratz, 2012) uses time lagged 

explanatory variables to forecast the dependent variable while modeling the error term 

with an ARIMA model (Box, et al., 2015). Reasons for choosing dynamic regression 

model were discussed in Section 2.2. The researchers conducted model development by 

applying relevant theory to choose the input variables and then following standard 

methodology for building dynamic regression models. The linear transfer function (LTF) 

method suggested by (Pankratz, 2012) was applied here to specify the transfer functions 

and the methodology described by (Box, et al., 2015) was applied to determine ARMA 

order of the error time series. Finally, the coefficients of the entire model were 

estimated and the model was checked for adequacy. An overview of the dynamic 

regression model and LTF method is provided.  

A dynamic regression model is shown in Equation (2.1). A crucial assumption in 

dynamic regression is that the explanatory variables are not affected by the dependent 

variable, i.e. there is no feedback between the variables. 

   

 ( )t t tY v B X N= +   (2.1)

    

where 



58 

 

( )

Dependent variable
The vector of explanatory variables

Transfer function
Noise timeseries

t

t

t

Y
X
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=
=

=

=

 

A free form distributed lag transfer function model like Equation (2.2) for M explanatory 

variables can be estimated where the noise series is approximated by a low order 

regular AR term proxy. The order of the transfer function 𝑘𝑘𝑖𝑖  is chosen based on the 

empirical understanding of the model.  
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where 

( )
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The individual weights 𝑣𝑣𝑖𝑖,𝑗𝑗 are called impulse response weights. The transfer function 

can be written in a parsimonious form known as a rational distributed lag transfer 

function model as shown in Equation (2.3). 
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It should be noted that (𝑝𝑝𝑖𝑖 , ℎ𝑖𝑖 , 𝑏𝑏𝑖𝑖) are constants for the 𝑖𝑖-th explanatory variable. (𝑏𝑏, 𝑝𝑝, ℎ) 
are the orders of the rational distributed lag transfer function. The numerator of the 

transfer function model captures the lagged effect of the covariates and the 

denominator represents the decaying effects of the covariates. The noise series 𝑁𝑁𝑡𝑡  may 

have an autocorrelated time structure that can be described by an ARIMA model. 

 The autoregressive (AR) component in the ARIMA model refers to the lagged values of 

the dependent variable time series; the moving average (MA) component refers to the 

lagged error terms, i.e. residuals; and the integrated component represents the number 
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of times a time series must be differenced to achieve stationarity. A general notation for 

ARIMA models is 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑝𝑝,𝑑𝑑, 𝑞𝑞) where 𝑝𝑝 denotes the number of autoregressive terms, 

𝑞𝑞 denotes the number of moving average terms, and 𝑑𝑑 denotes the number of times a 

series must be differenced to induce stationarity. Using the general notations of an 

ARIMA model, the noise series can be written as: 
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( )t t

B
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B
θ
φ

=   (2.4) 
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Here, 𝑎𝑎𝑡𝑡  is assumed to be white noise. The white noise assumption implies zero mean, 

normal distribution, and constant variance. 

 Linear Transfer Function (LTF) Method 

The linear transfer function (LTF) method suggested by (Pankratz, 2012) was applied in 

this study to handle multiple inputs. The order of the rational form transfer function 

(𝑏𝑏𝑖𝑖 , 𝑝𝑝𝑖𝑖 , ℎ𝑖𝑖) for each variable 𝑖𝑖 needs to be determined together with the order of 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑝𝑝,𝑑𝑑, 𝑞𝑞) model for the noise time series 𝑁𝑁𝑡𝑡 .  LTF method uses a free form 

distributed lag model to estimate the impulse response weights in Equation (2.2) 

together with an initial autoregressive proxy for the autocorrelation term of the 

disturbance time series 𝑁𝑁𝑡𝑡 . If 𝑁𝑁𝑡𝑡  is not stationary with time varying mean, then both the 

input and output time series should be differenced accordingly. A parsimonious rational 

form transfer function similar to Equation (2.3) is then identified by comparing the 

estimated impulse response weight pattern with theoretical impulse response weight 

patterns. The methodology described by (Box, et al., 2015) is then applied to determine 

ARMA order of the error time series 𝑁𝑁𝑡𝑡 . Finally, the coefficients of the entire model are 

estimated and the model is checked for adequacy. 

Out-of-sample forecasting was performed to assess the forecasting accuracy of the 

model (Makridakis, et al., 2008). Some of the sample data at the end of the time series 

were withheld as the testing dataset. They were not used in the model identification and 

estimation process. The fitted model was used to forecast the response variable. Root 

mean square error (RMSE) and mean absolute error (MAE) were used as accuracy metrics 

to evaluate the performance of the proposed model and the benchmark models 

introduced in Section 2.5.1.1. RMSE and MAE values signify the goodness of fit of the 

forecast to the observed inflow and hence can evaluate the performance of the dynamic 

regression model. 

 ( )2

1

n
fi oi
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Y Y
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n=

−
= ∑   (2.5) 
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   (2.6) 

Here, 𝑖𝑖 denotes the day in a water year, 𝑌𝑌𝑓𝑓𝑖𝑖  represents the forecasted inflow on day 𝑖𝑖 𝑌𝑌𝑜𝑜𝑖𝑖 
denotes the observed inflow on day 𝑖𝑖, and 𝑝𝑝 is the number of days in the water year.  

 WRF-Chem Model 

The WRF-Chem model (Grell, et al., 2005) is a weather research and forecasting system 

that simulates chemistry and aerosols simultaneously with meteorology. This model has 

been extensively used to study regional air quality and their interactions with weather 

and climate (Barnard, et al., 2010; Chapman, et al., 2009; Fast, et al., 2012; Fast, et al., 

2014; Qian, et al., 2009; Wu, et al., 2011; Wu, et al., 2011; Wu, et al., 2013; Wu, et al., 

2017a; Wu, et al., 2017b) (Zhao, et al., 2010; Zhao, et al., 2014; Zhao, et al., 2013). In this 

study, the researchers used the WRF-Chem version 3.5.1 which includes aerosol 

interactions with radiation, cloud and snowpack (Zhao, et al., 2014). In the WRF-Chem 

control (CTRL) experiment, the researchers ran the model at 4 km horizontal resolution 

with the model domain covering California and surrounding regions. The major 

components of aerosols (nitrate, ammonium, elemental carbon, primary organic matter, 

sulfate, sea salt, dust, water, and other inorganic matter) as well as their physical and 

chemical processes were simulated in the model. Anthropogenic aerosol emissions were 

obtained from US EPA 2005 National Emissions Inventory (NEI05; US EPA, 2010). 

Anthropogenic emissions were updated every hour to account for diurnal variability. 

However, their seasonal variation was not considered in the simulation. Biomass burning 

emissions were obtained from the Global Fire Emissions Database version 2.1, with 8-

day temporal resolution and monthly updates (Environmental Sciences Division, 2013). 

However, year-to-year variability in biomass burning aerosols was not taken into 

account. Dust emissions were calculated using the DUST TRANsport model (DUSTRAN) 

scheme (Shaw, et al., 2008) following (Wu, et al., 2017a). The microphysics scheme used 

in this study is the Morrison 2-moment scheme. (Wu, et al., 2017b) showed that the 

model simulations reproduced the spatial and temporal variation of observed 

precipitation well. More details of the model setup can be found in (Wu, et al., 2017b). 

(Wu, et al., 2017a; Wu, et al., 2017b) evaluated the model performance on simulating 

aerosols and meteorological variables in California. It has been shown that the model 

reasonably captures the distribution and seasonal variability of aerosols from October 

to June, but underestimates aerosols from July to September. Since precipitation, 

snowpack and inflow are mainly within October-June, the underestimation of aerosols in 

July-September has limited impacts on the researchers’ results. The model reproduced 

the seasonal variations of temperature, precipitation, and SWE in California with some 

overestimation of temperature and SWE. In a CLEAN simulation, the researchers turned 

off local aerosol emissions and set aerosols from boundary conditions as zero, but kept 

chemical components from boundary conditions with aerosol chemistry on. The CCN in 
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the CLEAN experiment was approximately 10 𝑝𝑝𝑐𝑐−3, representing a clean environment. 

The simulations of clouds, precipitation and radiation are reasonable in the CLEAN run. 

Thus, meteorological variables from the WRF-Chem CTRL and WRF-Chem CLEAN 

simulations represent conditions with and without considering impact of aerosols 

respectively. Aerosol impacts on temperature, precipitation, and SWE were investigated 

in (Wu, et al., 2017b) and discussed in the introduction and Section 2.7. 

2.6 Building Inflow Forecasting Model 
In this section, the researchers explain how to build the dynamic regression model to 

forecast reservoir inflow of Florence Lake and Lake Edison, which are part of the Big 

Creek Hydroelectric Project in California. 

 Data Description 

The data set contains the daily average reservoir inflow in 𝑝𝑝𝑢𝑢 𝑓𝑓𝑝𝑝/𝑠𝑠 for five consecutive 

water years 2010-2014. A water year or a hydrological year is a 12-month period 

between October 1 of one year and September 30 of the next year. To predict the 

reservoir inflow, the researchers collected the meteorological data such as the daily air 

temperature, SWE, and incremental precipitation data from the website of California 

data exchange center. Data for meteorological variables, inflow and WRF-Chem 

simulations used in this study can be found in (Department of Water Resources, 2017). 

The meteorological data were collected and averaged over three weather stations of 

Kaiser Point (KSP), Volcanic Knob (VLC), and Upper Burnt Corral (UBC) located within the  

0.4 × 0.4𝑜𝑜 grid box with center at (37.32𝑜𝑜𝑁𝑁,−118.97𝑜𝑜𝐸𝐸). The study area with the grid box is 

shown in Figure 34 with the snow depth distribution map averaged over water year 

2013 overlaid on it. The observations of these meteorological variables are plotted in 

Figure 35. 
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Figure 34: Study Area With Grid Box and Weather Stations Identified  

 

Snow depth distribution averaged over water year 2013 is overlaid on the map 

Source: University of California, Riverside 

 

 

 

 

 

 

 

 

 

 

 

 



63 

 

Figure 35: Response Variables and the Explanatory Variables for Water Year 2010-2014 

 

Source: University of California, Riverside  
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 Predictor/Variable Selection 

Selection of appropriate predictors or explanatory variables is essential for accurate 

forecast and simple model interpretation. The inflows are generated by the runoff 

captured by the reservoirs from the San Joaquin River. Streamflow in the Sierra Nevada 

region has high correlation with temperature, SWE, and precipitation (Cayan, et al., 

1993). Therefore, these three variables were included in the model to forecast the 

inflow. 

Being a mountainous region, runoff in the Sierra Nevada region is dominated by 

snowmelt. Maximum runoff in the San Joaquin watershed occurs during the snowmelt 

runoff period (April-July) (Serreze, et al., 1999; Stewart, et al., 2004). Accordingly, most 

of the reservoir inflows occur in the late spring and early summer between April and 

July in both Florence Lake and Lake Edison (Serreze, et al., 1999; Stewart, et al., 2004). 

Therefore, snowmelt during this period is a useful predictor for reservoir inflow. 

Snowmelt can be calculated by max 𝐶𝐶𝑆𝑆𝐸𝐸𝑡𝑡 − 𝐶𝐶𝑆𝑆𝐸𝐸𝑡𝑡−1. 

To handle the seasonality, four dummy variables were introduced in Table 7: Response 

Variables and the Explanatory Variables for Water from 2010-2014 to represent four 

periods in a year. These periods are early spring, late spring, early summer, and late 

summer. The researchers also added interaction terms between the four meteorological 

variables with seasonal dummy variables to model different effects of meteorological 

variables in different seasons. Since there is a lag of several months between the peak 

snow accumulation and peak inflow in the researchers’ study area as seen from Table 7, 

80 days lagged snow water equivalent in the late summer was included in the final 

model to capture this effect. The complete list of variables in building the statistical 

dynamic regression model is tabulated in Table 8: List of Variables Used in the Dynamic 

Regression Model  of Variables Used in Dynamic Regression Model. 

Table 7: Response Variables and the Explanatory Variables for Water from 2010-2014 

Dummy Variables Description Season 

𝐷𝐷1 if Date 03/21-04/30, 0 

otherwise 

Early Spring 

𝐷𝐷2 If Date 05/01-05/31, 0 

otherwise 

Late Spring 

𝐷𝐷3 If Date 06/01-06/21, 0 

otherwise 

Early Summer 

𝐷𝐷4 If Date 06/22-09/22, 0 

otherwise 

Late Summer 

Source: University of California, Riverside 
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Table 8: List of Variables Used in the Dynamic Regression Model  

Variables Symbols 

Reservoir 

Inflow 

𝑌𝑌 

Temperature 

 

𝑋𝑋1 

SWE 𝑋𝑋2 

Precipitation 

 

𝑋𝑋3 

Snowmelt 𝑋𝑋4 

Dummy 

Variables 

𝐷𝐷1,𝐷𝐷2,𝐷𝐷3,𝐷𝐷4 

Interaction 

Terms 

𝑋𝑋1𝐷𝐷1, 𝑋𝑋1𝐷𝐷2, 𝑋𝑋1𝐷𝐷3, 𝑋𝑋1𝐷𝐷4, 𝑋𝑋2𝐷𝐷1, 𝑋𝑋2𝐷𝐷2, 𝑋𝑋2𝐷𝐷1, 𝑋𝑋2𝐷𝐷2, 𝑋𝑋2𝐷𝐷3, 𝑋𝑋2𝐷𝐷4, 𝑋𝑋3𝐷𝐷1, 𝑋𝑋3𝐷𝐷2, 𝑋𝑋3𝐷𝐷3, 
𝑋𝑋3𝐷𝐷4, 𝑋𝑋4𝐷𝐷1, 𝑋𝑋4𝐷𝐷2, 𝑋𝑋4𝐷𝐷3, 𝑋𝑋4𝐷𝐷4 

Source: University of California, Riverside 

 Model Development 

The team explored the model performance with and without natural log transformation 

of the response and explanatory variables and chose untransformed variables for 

further model building as it offered better prediction results and model interpretation. 

The development of the dynamic regression model for Florence Lake inflow forecast is 

described here. Similar procedure can be followed for Lake Edison. The development of 

dynamic regression model has three stages, (1) model identification, (2) model 

estimation, and (3) model diagnostic checking. 

 Model Identification 

As the first step to identify the appropriate dynamic regression model, a free form 

distributed lag for the transfer function of the explanatory variables like Equation (2.2)

was estimated with a low order regular AR term as proxy for the disturbance series 

autocorrelation pattern. A multiple regression model was formed and stepwise 

regression was performed to preliminarily select candidate variables and their time lags 

for building the free form distributed lag model. The orders of 𝑣𝑣(𝐵𝐵) for the other 

variables in the free form distributed lag model were determined to be 15 based on their 

𝑝𝑝-test statistics. It can be argued that the inflow is zero when the explanatory variables 

are zero i.e. when there is no snowmelt or precipitation and the temperature is 0𝑜𝑜F. 

Therefore, no constant term was included in the model.  
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The disturbance series 𝑁𝑁𝑡𝑡  was then checked for stationarity by augmented Dickey-Fuller 

test and found to be stationary. A parsimonious rational distributed lag transfer 

function model of order (𝑏𝑏, 𝑝𝑝, ℎ) similar to Equation (2.3) was identified by comparing the 

estimated impulse response weights with theoretical impulse response weight patterns. 

To demonstrate the process, the estimated impulse response weights of the variable 

𝑋𝑋4𝐷𝐷3, which corresponds to snowmelt in early summer, are shown in Table 9: Impulse 

Response Weights of Input Variable X4 D3 Response Weights of Input Variable 𝑋𝑋4𝐷𝐷3 and 

plotted in Figure 36. 

Table 9: Impulse Response Weights of Input Variable X4 D3 

Lag Estimate t-value Lag Estimate t-value p-value 

0 59.55 0.67 8 300.71 4.03 <.0001 

1 862.75 10.83 9 217.35 3.33 0.0009 

2 220.73 2.88 10 -240.18 3.94 <.0001 

3 84.11 1.01 11 65.52 1.09 0.2769 

4 548.99 6.67 12 -31.77 -0.57 0.5714 

5 67.09 0.84 13 8.60 0.15 0.8773 

6 -30.91 -0.42 14 -46.42& -0.81 0.4191 

7 192.40 2.56 15 190.53 3.39 0.0007 

Source: University of California, Riverside 

Figure 36: Impulse Response Weights of Input Variable X4 D3 

 

Source: University of California, Riverside 

There are six significant 𝑣𝑣 weights at lag 1, 2, 4, 7, 9 and 15 having 𝑝𝑝-value more than 2.0. 

This suggests that the dead time, 𝑏𝑏1 = 1. Since the 6 significant impulse response 

weights follow an exponential decay pattern, the order of the denominator operator was 
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determined to be 𝑝𝑝 = 1. The number of unpatterned terms is u =  0 . Finally, the order of 

the numerator operator is h =  u +  r −  1 =  0 + 1 −  1 =  0 . The order of the rational 

distributed lag transfer function for input variable snowmelt in early summer 𝑋𝑋4𝐷𝐷3 was 

thus determined to be (𝑏𝑏, 𝑝𝑝, ℎ) = (1,1,0) and the transfer function could be written as  
𝜔𝜔𝑖𝑖

(1−𝛿𝛿𝑖𝑖)
B. Similar procedure was followed for other input variables, and the dynamic 

regression model with parsimonious rational distributed lag transfer function similar to 

Equation (2.3) was determined. 

 Model Estimates 

An estimate of the parameters of the dynamic regression model was obtained at this 

stage. An appropriate ARMA model was identified for the error series 𝑁𝑁𝑡𝑡 and the entire 

model was refit using the ARMA model for error and the transfer function for the input 

variables. The parameter estimates of all candidate models were estimated by maximum 

likelihood estimation.  

First, the model was fit using only the transfer function of the input variables. The 

orders of AR and MA component of the model were identified by matching empirical 

autocorrelation patterns, e.g. autocorrelation function plot (ACF) and partial 

autocorrelation function (PACF) plots of the residual series with the AR and MA 

signature patterns (Figure 37). The ACF and PACF plots of the residual series are plotted 

in 8. ACF and the PACF exhibit large spikes that gradually die out indicating that they 

have autoregressive and moving averages properties. Though the ACF decays rather 

slowly and cuts off at lag 6, an AR order of 𝑝𝑝 = 6 is not realistic. An AR order of p =
1 was selected based on the Akaike Information Criterion (AIC) and ACF of the residuals. 

The PACF cuts off at lag 1. Therefore, the final ARMA model for the error series was 

determined to be (𝑝𝑝, 𝑞𝑞) = (1,1). At this stage, the dynamic regression model for Florence 

Lake can be written as Equation (2.7). 

Figure 37: ACF and PACF of Noise Series Nt 

 

Source: University of California, Riverside  
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 Diagnostic Checking 

The Ljung-Box test for white noise was used to statistically evaluate the degree to which 

the residuals are free from serial correlation. For seasonal time series, the lag for Ljung-
Box test is recommended to be ℎ = min(2𝑐𝑐, 𝑇𝑇

5
) where 𝑐𝑐 is the period of seasonality and 𝑇𝑇 

is the sample size. In the researchers’ study, the lag was calculated to be ℎ = 365 ×
3
5
=219. Though the residuals are not perfect white noise after lag = 25; for a long time 

series, this is acceptable. Moreover, Durbin Watson Statistic was calculated to detect 

presence of autocorrelation in the residuals and found to be 2, which shows that the 

residuals are not autocorrelated. Normality check of the model residuals was performed 

by checking a histogram of the residuals and the Q-Q normal plot of the residuals. The 

residuals were found to be approximately normally distributed and the Q-Q normal plot 

is approximately a straight line. The explanatory variables in the final model were 

checked for multicollinearity. For all explanatory variables, variance inflation factor (VIF) 

was calculated. A VIF close to 1 for an explanatory variable indicates no correlation of 

that predictor and the remaining explanatory variables. For all explanatory variables in 

this model, VIF was found to be < 1.60. Hence, there is no multicollinearity. Since there 

is no significant residual cross correlation and autocorrelation left, the model is 

adequate. Similar procedure was followed for Lake Edison. The dynamic regression 

model for Florence Lake and Lake Edison can be written as Equation (2.7) and (2.8) 
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Table 10: Parameter Estimates for Inflow Forecast Model of Florence Lake  

Coefficient Value Standard error 𝑝𝑝-value 𝑝𝑝-value 

𝜃𝜃1 .07 0.04 1.91 0.06 

𝜙𝜙1 0.78 0.02 33.60 <0.0001 

𝜔𝜔0,0 14.06 8.81 1.60 0.1 

𝜔𝜔0,1 6.37 9.08 0.70 0.5 

𝜔𝜔0,2 9.24 9.10 1.01 0.3 

𝜔𝜔0,3 7.74 9.079 0.85 0.4 

𝜔𝜔0,4 12.79 8.83 1.45 0.1 

𝜔𝜔1,0 1.16 1.27 0.92 0.3 

𝜔𝜔1,1 6.17 1.38 4.47 <0.0001 

𝜔𝜔1,2 1.06 1.38 0.77 0.4 

𝜔𝜔1,3 2.10 1.26 1.66 0.09 

𝜔𝜔2,0 2.13 1.23 1.73 0.08 

𝜔𝜔2,1 8.40 1.29 6.51 <0.0001 

𝜔𝜔2,2 -0.50 1.31 -0.38 0.7 

𝜔𝜔2,3 0.06 1.23 0.05 0.9 

𝜔𝜔3 93.18 23.23 4.01 <0.0001 

𝛿𝛿3 0.95 0.02 50.05 <0.0001 

𝜔𝜔4,0 0.86 1.29 0.66 0.5 

𝜔𝜔4,1 3.05 1.12 2.72 0.006 

𝜔𝜔4,2 1.97 1.12 1.76 0.08 

𝜔𝜔4,3 2.49 1.10 2.25 0.02 

𝜔𝜔5 324.03 38.22 8.48 <0.0001 

𝛿𝛿5 0.79 0.03 26.68 <0.0001 

𝜔𝜔6 12.92 1.94 6.66 <0.0001 

𝜔𝜔7 149.15 19.66 7.59 <0.0001 

𝛿𝛿7 0.92 0.01 62.27 <0.0001 
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Table 11: Parameter Estimates for Inflow Forecast Model of Lake Edison Results and 
Analysis 

Coefficient Value Standard error 𝑝𝑝-value 𝑝𝑝-value 

𝜃𝜃1 -.03 0.03 -0.89 0.4 

𝜙𝜙1 0.86 0.02 49.14 <0.0001 

𝜔𝜔0 0.52 0.24 2.25 0.02 

𝜔𝜔1 21.55 2.75 7.85 <0.0001 

𝜔𝜔2,0 0.31 0.46 0.69 0.5 

𝜔𝜔2,1 2.39 0.45 5.36 <0.0001 

𝜔𝜔2,2 0.97 0.44 2.17 0.03 

𝜔𝜔2,3 0.56 0.43 1.30 0.2 

𝜔𝜔3,0 1.16 0.45 2.58 .0099 

𝜔𝜔3,1 2.18 0.42 5.15 <0.0001 

𝜔𝜔3,2 1.75 0.43 4.06 <0.0001 

𝜔𝜔3,3 0.64 0.42 1.51 0.1 

𝜔𝜔3,4 0.47 0.37 1.27 0.2 

𝜔𝜔4 56.90 12.65 4.50 <0.0001 

𝛿𝛿4 0.31 0.23 1.35 0.2 

𝜔𝜔5,0 0.58 0.46 1.26 0.2 

𝜔𝜔5,1 0.68 0.37 1.80 0.07 

𝜔𝜔5,2 1.38 0.37 3.69 0.0002 

𝜔𝜔5,3 2.12 0.37 5.71 <0.0001 

𝜔𝜔6 126.80 14.58 8.70 <0.0001 

𝛿𝛿6 0.84 0.02 34.52 <0.0001 

𝜔𝜔7 2.48 0.88 2.82 0.0048 

𝜔𝜔8 85.75 8.24 10.40 <0.0001 

𝛿𝛿8 0.94 0.008 107.91 <0.0001 

Source: University of California, Riverside 
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 Parameter Estimates and Interpretation 

The estimated parameter values of the dynamic regression models with their t-values, p-

values and standard error are shown in Table 10 and Table 11. A larger value of 

absolute t-statistic and low p-value (< 0.05) imply that the true parameter value is not 0. 

It can be observed that, temperature, SWE, and precipitation play important roles in 

forecasting reservoir inflow. For both lakes, snowmelt during spring and summer has a 

strong and positive correlation with inflow. With high 𝑝𝑝-values, snowmelt is the most 

important variable in explaining the variability of inflow. This result is consistent with 

the fact that the runoff in the Sierra Nevada region is dominated by snowmelt. Prior 

season's SWE is also found to be a useful predictor for inflow during late summer. This 

can be explained by the fact that the snowpack during cold seasons plays a crucial role 

in runoff and subsequent reservoir inflow during warmer seasons in the Sierra Nevada 

region. Current season's temperature has a positive correlation with reservoir inflow in 

early/late spring and early summer. This is because, in higher elevation rivers, warmer 

temperature produces faster runoff and less snow (Cayan, et al., 1993). Apart from 

early/late spring and early summer, temperature does not have a significant impact at 

Florence Lake, but has moderate impact at Lake Edison. As shown in the model fitting 

results, same season precipitation has significant impact on reservoir inflow at Florence 

Lake and Lake Edison. As expected, precipitation is positively correlated with inflow 

since a higher level of precipitation generally results in more inflow. 

 Inflow Forecast Using Dynamic Regression Model 

After calibrating the dynamic regression model with the help of historical data, the next 

step of the study is to simulate inflow corresponding to the future meteorological 

variables. The forecast period is set to 365 days. The out-of-sample forecasting ability of 

the model was assessed by forecasting the reservoir inflow for both lakes in water year 

2014 using a testing set containing average meteorological data for the grid box region. 

The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) of inflow forecast 

were calculated and are shown in Table 12 

Table 12: Forecast Error Statistics (cu ft/s) for Water Year 2014 

Lake Statistics Dynamic 

Regression 

Regression Naive 

Florence RMSE 100.75 114.33 136.62 

MAE 73.46 73.46 79.02 

Edison RMSE 44.52 50.97 67.85 

MAE 27.84 38.12 38.31 

Source: University of California, Berkley 
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For comparison, the researchers included a benchmark model, which is a multiple 

regression model containing the same explanatory variables as the dynamic regression 

model. The time lagged relationships were incorporated by including the time lagged 

variables as separate explanatory variables. Inflow of the previous day was also included 

as an explanatory variable. RMSE and MAE from this multiple regression model are 

shown in Table 12. Another benchmark model would be a naive model. The naive model 

in the researchers’ study has been determined as Equation (2.9)  

 
current year

365
previous year

PeakSWE
PeakSWEt tY Y −= ×   (2.9) 

The small root mean square error indicates that the dynamic regression model is 

capable of producing a reasonable forecast of inflows into the reservoirs. The error in 

annual inflow forecast for Florence Lake and Lake Edison are only 0.15 percent and 10 

percent respectively. The results of both RMSE and MAE indicate that the dynamic 

regression model consistently outperforms the benchmark multiple regression model 

and the naive model. Moreover, the dynamic regression model is more parsimonious 

compared to the multiple regression model. Actual and forecasted inflow for Lake 

Edison and Florence Lake are plotted in Figure 38. Based on the plots, the dynamic 

regression model can perform one year ahead forecast of the reservoir inflow 

reasonably well. 

Figure 38: Comparison of Actual Inflow and Inflow Forecast with Observed Meteorological 
Variables in Water Year 2014 

 

Source: University of California, Riverside 

 Sensitivity Analysis of the Dynamic Regression Model 

A global sensitivity analysis of the dynamic regression model was performed with the 

purpose of assessing robustness of the model and simulation results. Input values of 
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the model were perturbed within their reasonable range and subsequent changes in 

model output were studied (Baroni & Tarantola, 2014; Chu-Agor, et al., 2011; Tomassini, 

et al., 2007; Uusitalo, et al., 2015). Changes in input values automatically cause 

perturbations in parameter estimates of the dynamic regression model. Little change in 

resultant output values indicates robustness of the model to perturbations of inputs 

and parameter estimates and shows the uncertainty of the output variables to be 

relatively small (Uusitalo, et al., 2015).  

A qualitative global sensitivity analysis (GSA) was performed in this study by visual 

inspection of model predictions. All input values were varied simultaneously within the 

entire allowable ranges of the input space and the effect on the output was studied 

(Baroni & Tarantola, 2014; Pianosi, et al., 2016). This allowed GSA to evaluate the relative 

contributions of each input factor to the model output variable and account for effects 

of nonlinear interactions between different inputs (Baroni & Tarantola, 2014; Ciannelli, 

et al., 2004; Harper, et al., 2011; Saltelli, et al., 1999). Though local sensitivity analysis 

where inputs are varied one at a time (OAT) is more common, it assumes linear 

relationship between inputs and outputs, making it only a perfunctory sensitivity 

analysis for most models (Saltelli, et al., 2010). GSA does not assume any such specific 

relationship between inputs and model predictions and therefore, is recommended for 

any kind of model (Saltelli, et al., 2010; Makler-Pick, et al., 2011; Rosolem, et al., 2012). 

The researchers followed the General Probabilistic Framework (GPF) based on Monte 

Carlo simulation for the global sensitivity analysis of deterministic models proposed by 

(Baroni & Tarantola, 2014). The flowchart for the GPF can be found in (Baroni & 

Tarantola, 2014). As is the norm, output in the sensitivity analysis does not refer to the 

entire range of temporal inflow variable produced by the model (Pianosi, et al., 2016). 

Rather, it is measured as the variability induced in the model performance measure, 

RMSE of the testing set. In the first step, all sources of uncertainty in the input 

meteorological variables 𝑈𝑈𝑥𝑥𝑖𝑖  were characterized. Since meteorological data were taken as 

the average of three weather stations- namely KSP, UBC and VLC, uncertainty may arise 

due to variability of meteorological variables between the calculated average and actual 

value at the location of Florence Lake and Lake Edison. Errors and approximations in 

input data measurement are other sources of uncertainty. Since meteorological variable 

measurements are not available at Florence Lake and Lake Edison, to account for the 

uncertainty, a grid box of 0.5 × 0.5𝑜𝑜  with center at 32.32𝑜𝑜𝑁𝑁,−118.97𝑜𝑜𝐸𝐸 was considered. 

Two more weather stations, Huntington Lake (HNT) and Tamarack Summit (TMR), are 

located within the grid box along with the three existing weather stations. Average of 

the meteorological variables in these five weather stations were calculated. In 

accordance with the comparison between data from the average of three weather 

stations and five weather stations, a random error was introduced to the daily nominal 

value of each variable. Measurement difference in the meteorological variables depend 

on type of water year and season. As such, unnaturally big variability can be introduced 

if random values are taken from the probability distribution of the difference time 

series. To preserve the temporal correlation of the meteorological variables, a random 
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variable following uniform distribution on the interval [0, 1] was multiplied with 

(𝑥𝑥5 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖𝑜𝑜𝑠𝑠𝑠𝑠 − 𝑋𝑋3 𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑖𝑖𝑜𝑜𝑠𝑠𝑠𝑠) where 𝑋𝑋 denotes meteorological variables. The resultant random 

error was added to the meteorological variables data to produce the perturbed inputs. 

Each variable was physically constrained to avoid unrealistic values (e.g. negative value 

for precipitation and SWE).  

The realization of each uncertainty was then associated with a scalar input factor F𝑖𝑖 =
1. . .128 for i = 1. .3. The three input factors were assumed to be independent. To 

minimize the number of model runs, a quasi-randomized, low-discrepancy sampling 

design called sobol sequence was used to sample the three discrete uniform distribution 

according to the method present in (Baroni & Tarantola, 2014; Saltelli, et al., 2010). No 

correlations among the three input factors were considered in the sampling design. The 

simulations were run using a number of sampling points 𝑁𝑁 = 128, which corresponds to 

total number of model runs, 𝑁𝑁𝑡𝑡 = 𝑁𝑁(2 × 3 + 2) = 1024. A combination of MATLAB and 

SAS codes were run to perform the sensitivity analysis. 

Result and analysis 

Figure 39 shows the probability distribution of the RMSE of forecasted inflow with 

perturbed inputs at Florence Lake and Lake Edison in water year 2014. Out of the 1024 

model runs performed in the sensitivity analysis, the model that produces median RMSE 

is selected for analysis of results. Forecasts of the selected perturbed input model are 

plotted in Figure 40 along with actual inflows and forecasts of reference model for both 

lakes in water year 2014. The annual inflow of the selected perturbed input model is 

compared with the observed and reference model inflow forecast for water year 2014 in 

Table 13. Here, reference model is the inflow forecast model with unperturbed inputs. 

Annual inflow for the perturbed model has less than 5 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 error for both Florence 

Lake and Lake Edison. The RMSE results and forecasts show a general good performance 

of the model under perturbed inputs, which shows the robustness of the model to 

perturbed inputs and parameter estimates.  

Figure 39: Probability Distribution Function (%) of the RMSE of Forecasted Inflow with 
Perturbed Inputs in Water Year 2014 

 

Source: University of California, Riverside  
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Figure 40: Comparison of Actual Inflow, Simulated Inflow, and Simulated Inflow from the 
Selected Perturbed Input Model with Median RMSE in Water Year 2014 

 

Source: University of California, Riverside 

Table 13: Annual Reservoir Inflow for the Selected Perturbed Input Model with Median 
RMSE and Reference Model in Water Year 2014 

Lake Actual Reference Model Perturbed Model 

Florence 99979 99818 94872 

Edison 49339 54062 49270 

Source: University of California, Berkley 

Sensitivity of the dynamic regression model was also performed with respect to number 

of water years used. Two models were estimated using three and four water years in the 

training set respectively for both lakes. Water year 2013 and 2014 work as the 

corresponding testing sets. Parameter estimates of both models are compared for 

changes in sign. No parameter estimate changes sign between these two simulations for 

both Florence Lake and Lake Edison. The annual inflow error is 15 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 and 5 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
respectively at Florence Lake and Lake Edison when four water years of data is used in 

the training set to forecast inflow of water year 2013. Therefore, it can be argued that 

the model is robust against an increase in the amount of training data. 
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2.7 Quantifying the Impact of Aerosols on Reservoir 
Inflow 

 Evaluation of the WRF-Chem Simulation 

The researchers investigate the WRF-Chem model performance in the researchers’ 

region of interest. WRF-Chem CTRL and WRF-Chem CLEAN simulation are WRF-Chem 

model with and without considering impact of aerosols respectively. As shown in Figure 

41 the meteorological variables simulated from the WRF-Chem model are reasonably 

close to the observed variables. The WRF-Chem model results are highly correlated with 

the observed meteorological variables for both water years. The correlation coefficients 

between the observed and WRF-Chem CTRL simulations for temperature and SWE range 

from 0.88 − 0.97 for 2013. The correlation coefficient for precipitation ranges from 

0.66 − 0.73 which is adequate for the researchers’ model since it has lesser impact on 

inflow. Visual inspection and one way ANOVA show that the WRF-Chem model 

underestimates temperature and precipitation in the researchers’ interested region. The 

model underestimates the SWE from December to March and overestimates the SWE 

from April to June. 
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Figure 41: Comparison of Observed and WRF-Chem CTRL and CLEAN Simulated 
Meteorological Variables 

 

Source: University of California, Riverside 

The meteorological variables simulated from the WRF-Chem CTRL and WRF-Chem 

CLEAN models are highly correlated. The RMSE of the simulated meteorological 

variables with the observed variables are shown in Table 14. It can be observed that the 
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meteorological variables from the WRF-Chem CTRL simulations are closer to the 

observed meteorological variables than those from the WRF-Chem CLEAN simulations. 

In general, temperature from WRF-Chem CTRL simulations is higher than those of the 

CLEAN simulations because aerosol deposition increases impurity of snow (Wu, et al., 

2017b). Precipitation and SWE from WRF-Chem CTRL simulations are lower than the 

CLEAN simulations. To understand how the aerosols affect these two variables, (Wu, et 

al., 2017b) the effects of ARI, ACI, and ASI separately and found that ACI plays a 

dominant role in increasing cloud water but reducing precipitation, leading to reduced 

SWE. Increase of non-precipitating clouds can be explained by the fact that more CCN 

are available for the formation of clouds with smaller cloud droplets when more 

aerosols are present in the atmosphere. More detailed analysis on aerosol impacts on 

precipitation and snowpack in the researchers’ region of interest can be found in (Wu, et 

al., 2017b). Higher temperature, snow albedo effect and feedback lead to higher 

snowmelt with aerosols in the late spring. However, snowmelt is lower with aerosols 

during early/late summer because of lower prior season's SWE and higher snowmelt in 

the late spring. From the correlation coefficient of WRF-Chem CTRL and CLEAN 

simulations, and ANOVA, the difference between the simulated SWE and precipitation in 

the CTRL and CLEAN simulations is larger in 2013 compared to 2014. In other words, 

the impact of aerosols on these meteorological variables is stronger in 2013. 

Table 14: RMSE of WRF-Chem Simulated Meteorological Variables with Respect to 
Observed Variables  

Year Simulation Temperature 

(𝐹𝐹) 
SWE 

(inch) 

Precipitation 

(inch) 

2013 CTRL 4.86 2.10 0.20 

 CLEAN 4.91 2.61 2.61 

2014 CTRL 5.78 2.48 0.23 

 CLEAN 5.93 2.85 0.25 

Source: University of California, Riverside 

 Quantification of the Impact of Aerosols on Reservoir Inflow 

The impact of aerosols on reservoir inflow was quantified for two water years 2013 and 

2014. To quantify the impact of aerosols on inflow, the researchers ran dynamic 

regression model using the meteorological variables simulated from the WRF-Chem 

CTRL and CLEAN models as inputs of the testing data set. The actual inflow (red) is 

compared with simulated inflow from observed meteorological variables (blue) and 

WRF-Chem simulated meteorological variables (green and purple) in Figure 42. The 

inflow simulated by the meteorological variables from the CTRL simulations match well 

with the actual inflow. The difference in inflow between the CTRL and CLEAN 

simulations 𝐴𝐴𝑝𝑝𝑓𝑓𝐼𝐼𝑡𝑡𝐼𝐼𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶 − 𝐴𝐴𝑝𝑝𝑓𝑓𝐼𝐼𝑡𝑡𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 represents the impact of aerosols, which is plotted 
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in Figure 43. The observed inflow and meteorological data for 2010-2012 are used as the 

training set while simulating inflow for water year 2013. 

Figure 42: Comparison of Actual Inflow, Simulated Inflow from Observed Meteorological  

 

Source: University of California, Riverside 
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Figure 43: The Impact of Aerosols on Reservoir Inflow 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 − 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪Variables 

 

 

Source: University of California, Riverside 

It can be observed that for the same year, the impact of aerosols on inflow is consistent 

in direction and similar in magnitude in both lakes. After simulating inflow for both 

water years under CTRL and CLEAN conditions, annual and seasonal inflow with and 

without considering the impact of aerosols were calculated. The impact of aerosols on 

inflow into reservoirs was then calculated by Equation (2.10) 

 
w/Aerosols w/oAerosols

w/oAerosols

100%
Inflow Inflow

Inflow
−

×   (2.10) 

The impact of aerosols on annual and seasonal inflow are tabulated in Table 15. For 

seasonal analysis, the researchers first define the four seasons- fall is defined as the 

period of 10/01-12/21, winter is defined as 12/22-03/20, spring is defined as 03/21-

05/31, and summer is defined as 06/01-09/30.  

In general, aerosols lead to slightly higher inflow in the late spring and significantly 

lower inflow during summer (11 𝑝𝑝𝑡𝑡 26 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 reduction) as seen from Table 16. These 

results can be explained by the seasonal variation of the impact of aerosols on the 

meteorological variables. During spring, the presence of aerosols leads to higher 

temperature and snowmelt, which translate into a higher inflow. On the other hand, 

aerosols lead to lower precipitation which results in a small reduction in the inflow. The 
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aggregated effect of aerosols on inflow through temperature, snowmelt, and 

precipitation is slightly higher inflow in the spring. Lower prior season's SWE and lower 

current season's snowmelt together with lower precipitation result in lower inflow in 

summer. The presence of aerosols suppresses the precipitation, which leads to lower 

inflow for the Florence Lake during fall and winter. In the Lake Edison, inflow in fall and 

winter is simulated using precipitation and temperature. Aerosols lead to lower 

precipitation and higher temperature, which translate into lower inflow in fall and 

slightly higher inflow in winter. The overall effect of aerosols is a reduction in annual 

inflow by 4 𝑝𝑝𝑡𝑡 14 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 for both lakes as shown in Table 16. 

The impact of aerosols is more significant in water year 2013 than in water year 2014 

for both lakes. This is because the impact of aerosols on the meteorological variables is 

more pronounced in water year 2013 as seen from the mean of the meteorological 

variables from CTRL and CLEAN simulations. The annual impact of aerosols is stronger 

in Florence Lake. This is because the fall and winter inflow are simulated using only 

precipitation for Florence Lake. For Lake Edison, the fall and winter inflow is simulated 

using both precipitation and temperature. The higher temperature effect from aerosols 

offsets some of the reduction in inflow in Lake Edison. Therefore, the annual impact of 

aerosols on inflow is lower in Lake Edison. 

Table 15: Annual Reservoir Inflow Under Different Aerosol Conditions. 

Lake Year Actual (𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑝𝑝) CTRL(𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑝𝑝) CLEAN(𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑝𝑝) 

Florence 2013 117390 113610 13163 

2014 99980 11974 12541 

Edison 2013 58572 61004 66240 

2014 49339 55446 58247 

Source: University of California, Riverside 

Table 16: Impact of Aerosols (%) on Annual and Seasonal Reservoir Inflow  

Lake Year Annual Fall Winter Spring Summer 

Florence 2013 -14% -11% -5% -.01% -26% 

2014 -4% -2% -1% 2% -11% 

Edison 2013 -8% -1% 0.2% 1% -18% 

2014 -5% -0.4% 0.3% 0.6% -11% 

Source: University of California, Riverside 
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 Quantifying Impact of Aerosols With Perturbed Inputs 

Though the impact of aerosols on inflow is consistent in sign for all the seasons at both 

lakes for water years 2013 and 2014, it can be observed that the difference between 

CTRL and CLEAN inflow is small. The most significant impact occurs in the late spring 

and summer when the WRF-Chem simulations of SWE have a large error. Therefore, 

forecasts of inflow in water year 2013 and 2014 and the impact of aerosol on inflow 

were calculated with perturbed testing set inputs to gain more confidence in the impact 

of aerosol results. To account for the discrepancy between the observed meteorological 

variables and WRF-Chem CTRL simulation outputs, the difference between these two 

time series was calculated for all of the meteorological variables. A random error was 

introduced to the daily values of the meteorological variables of the WRF-Chem 

simulated testing set. To preserve the temporal correlation of the meteorological 

variables, a random variable following uniform distribution in the interval [0, 1] was 

multiplied with 𝑋𝑋𝑜𝑜𝑜𝑜𝑠𝑠 − 𝑋𝑋𝑊𝑊𝐶𝐶𝑊𝑊−𝐶𝐶ℎ𝑒𝑒𝑚𝑚 𝐶𝐶𝑇𝑇𝐶𝐶𝐶𝐶 where 𝑋𝑋 denotes meteorological variables. The 

resultant random error was added to the meteorological variables of the testing set to 

generate the perturbed inputs. Both CTRL and CLEAN simulations were perturbed by the 

same error. Input meteorological variables of the training set are not perturbed. The 

dynamic regression model was then simulated with the perturbed WRF-Chem CTRL and 

CLEAN testing sets for Florence Lake for both water years. 1,024 model runs were 

performed in the same fashion as Section 2.6.3.6. Out of the 1024 models, the model, 

which produced the median RMSE, was selected for analysis of results. The difference in 

inflow between the CTRL and CLEAN simulations was then calculated and plotted in 

Figure 44 for the selected model.   

Table 17 presents a comparison of the impact of aerosols on annual and seasonal 

reservoir inflow for the reference and selected perturbed input model scenarios. It can 

be observed that, for all of the simulations, the sign and magnitude of the difference in 

inflow with the selected perturbed input model are similar to the reference model. Here, 

the reference model denotes the unperturbed input model.  

Therefore, it can be safely argued that the difference between the inflows arise from the 

difference between meteorological variables with and without impact of aerosol. 

 

 

 

 

 

 

 

  



83 

 

Figure 44: The Impact of Aerosols on Reservoir Inflow (𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 − 𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑰𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪) for the 
Selected Perturbed Input Model with Median RMSE  

 

Source: University of California, Riverside 

Table 17: Comparison of Impact of Aerosols on Annual and Seasonal Reservoir Inflow for 
the Reference and Selected Perturbed Input Model with Median RMSE  

Lake Year  Annual Fall Winter Spring Summer 

Florence 2013 Reference -14% -11% -6% -.07% -26% 

Perturbed -13% -10% -5% 0.05% -23% 

2014 Reference -4% -2% -1% 2% -11% 

Perturbed -4% -0.10% -0.09% 2% -10% 

Edison 2013 Reference -8% -1% 0.2% 1% -18% 

Perturbed -8% -1% 0.1% 1% -17% 

2014 Reference -5% -0.4% 0.3% 0.6% -11% 

Perturbed -5% -0.2% 0.4% 0.7% -10% 

Source: University of California, Riverside 
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2.8 Summary and Conclusion  
The research team developed a comprehensive framework to quantify the impact of 

aerosols on reservoir inflow by synergistically combining the WRF-Chem model and a 

dynamic regression model. The dynamic regression model can also be leveraged to 

perform one-year ahead daily inflow forecast. The team conducted a case study using 

Florence Lake and Lake Thomas Alva Edison of the Big Creek Hydroelectric Project. The 

dynamic regression model was found to be adequate and performed well compared to 

the benchmark models. The researchers investigated the impact of aerosols on the 

inflow into these hydropower reservoirs over two water years. The simulation results 

show that the presence of aerosols significantly reduces the annual inflow into the 

hydropower reservoirs of the Big Creek Hydroelectric Project. Moreover, aerosols 

significantly reduce the amount of inflow in the summer when the marginal economic 

value of water is extremely high. The presence of aerosols also slightly increases the 

inflow in the spring when the run-off risk is high. Therefore, it can be concluded that, 

the presence of aerosol is detrimental to the optimal utilization of hydroelectric power 

systems. The change in inflow due to impact of aerosol in different seasons with 

different water and electricity demands can assist the reservoir operators in 

determining the optimal operation policy for the reservoirs. Further scarcity of reservoir 

inflow during dry seasons can motivate the San Joaquin River region water resources 

planners to focus their efforts on mitigation strategies. The findings from this research 

can provide another justification for stricter environmental regulations to reduce 

anthropogenic aerosol emissions. 

Forecast of the inflow into the hydropower reservoirs obtained from this study can 

assist in optimizing the cascaded hydropower system. In the future, the researchers 

plan to integrate the year ahead inflow forecast of Florence Lake and Lake Edison into 

the long-term scheduling of the Big Creek Hydroelectric Project. The impact of aerosols 

on hydroelectric generation and economic value will be assessed. Future studies will 

also address the drawbacks of the study. The limited historical reservoir inflow data 

prevented the researchers’ model from capturing long-term trends in reservoir inflow 

due to changes in the level of aerosols in the atmosphere. Reservoir inflow data from 

2015 onwards will be available and they will be used to forecast reservoir inflow for 

water year 2017 onwards and quantify the impact of aerosols on reservoir inflow. 

 

 

 

 

 



85 

 

CHAPTER 3:  
Impact of Aerosol on Hydropower 
Generation 

3.1 Introduction 
Hydropower is an important source of electricity generation accounting for one third of 

the renewable generation. In 2016, hydro-produced electricity accounted for 14.62 

percent of California’s total system power. Here, the amount of hydroelectricity 

generation varies each year and is largely dependent on snowmelt runoff and rainfall. 

Due to their head potential and snow storage, higher elevation basins in the Sierra 

Nevada Mountains count for almost 50 percent of the hydroelectricity produced in 

California (Aspen Environmental and M-Cubed 2005). Big Creek Hydroelectric System 

owned and operated by Southern California Edison is located in the upper San Joaquin 

River system in the high altitudes of the Sierra Nevada Mountains producing about 12 

percent of the California’s total hydroelectricity generation. It is a cascaded hydropower 

system with multiple artificial reservoirs, long tunnels, steel penstocks and 

powerhouses.  

In a storage scheme hydropower plant, reservoir inflow has a strong relationship with 

the power generated and profit earned by the generation company (GENCO) as 

hydropower production is inherently reliant on reservoir storage or head for energy 

production. The reservoirs in the Big Creek Hydroelectric system are filled during the 

spring run-off in April mainly from melting snow. Though inflows into these reservoirs 

are snowmelt dominated, they are also influenced by other meteorological variables 

such as temperature and precipitation. Natural and anthropogenic aerosols have a great 

influence on temperature, snow water equivalent and precipitation and thus influences 

inflows into the reservoirs. In the simulation results of the previous chapter, it has been 

shown that aerosols have an impact on precipitation, snow water equivalent and 

snowmelt leading to a significant reduction of annual reservoir inflow by 4 to 14 percent 

in Lake Thomas A. Edison and Florence Lake of the Big Creek Hydroelectric system. 

Since hydropower generation is inherently dependent on reservoir inflow, aerosols 

ultimately influence hydropower production and profit earned by the generation 

company (GENCO).  

The primary objective of this study is to calculate the impact of aerosols on the 

hydropower generation in the Big Creek Hydroelectric System and to subsequently 

calculate the impact of aerosols on total profit earned by Southern California Edison 

from the Big Creek Hydroelectric System. Inflow forecasts into Lake Thomas A. Edison, 

Florence Lake, Bear Diversion, Huntington Lake, Mammoth Lake, Redinger Lake and 

Shaver Lake of the Big Creek Hydroelectric System are calculated with and without 

considering the impact of aerosols for water year 2015. The inflows are then fed into 
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the long-term hydro Vista Decision Support System in a one-year time horizon to 

maximize the profit generated from the hydropower production in the hydroelectric 

system. Vista Decision Support System is a toolbox to assist in both planning and 

operations of the hydroelectric systems to maximize the value of water resources and 

power generation and market activity. 

The unique contribution of this study is that the researchers have developed a 

comprehensive framework for evaluating the impact of aerosols on hydropower 

generation and subsequent profit earned that seamlessly integrates numerical weather 

forecasting model (WRF-Chem), statistical inflow forecast model, and the hydro Vista 

Decision Support System. The simulation results show that aerosols significantly reduce 

hydropower generation by 89356 MWH in water year 2015, which is a 5.61 percent 

reduction in the annual hydropower generation. The presence of aerosols subsequently 

causes a staggering $2.8 million loss in revenue in a water year for Southern California 

Edison. 

The remainder of this chapter is organized as follows. Section 3.2 describes hydropower 

plants, Section 3.3 discusses the Big Creek Hydroelectric Project in detail, Section 3.4 

describes the Vista DSS, Section 3.5 presents the methods used in this study for 

integrating the inflow forecast results and the Vista DSS, Section 4.6 shows the impact 

of aerosols on hydropower generation and revenue earned from the Big Creek 

Hydroelectric System and finally, Section 3.7 concludes the chapter. 

3.2 Hydropower Plant 
Hydropower plants capture the potential energy of falling water to generate electricity 

where a turbine converts the kinetic energy of falling water into mechanical energy and 

a generator converts the mechanical energy from the turbine into electrical energy. The 

potential difference is captured at a location by constructing dams on rivers. Typical 

components of a hydroelectric plant are a dam or barrage, a head-race water conveying 

system like a conduit called penstock or an open channel to transport water from the 

reservoir to the turbines, turbines coupled to generators and tailwater discharge conduit 

that conveys the water out of the turbine to the river. The potential energy difference is 

determined by the difference between the headwater and tailwater level subtracted by 

the head losses from entrance, trash rack, conduit friction, bend, contraction, split and 

exit losses. The most common turbines are Kaplan, Francis, and Pelton wheel designs. A 

hydropower plant is shown in Figure 45 
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Figure 45: Hydropower Plant Representation  

 

Source: University of California, Riverside 

3.3 Big Creek hydroelectric Project 
The Big Creek Hydroelectric Project is an extensive cascaded hydroelectric system that 

accounts for 12 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of California's total hydroelectric generation. The project is 

located on the upper San Joaquin River system in the high altitudes of the Sierra Nevada 

Mountains of Central California.  

The hydroelectric project is owned and operated by Southern California Edison (SCE), 

which has a total installed capacity of 1000 MW accounting for approximately 20 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
of SCE's total generation capacity. The hydroelectric system includes 27 dams, 23 

generating units in nine powerhouses, miles of underground tunnels, and six major 

reservoirs with a combined storage capacity of 560,000 acre feet. Water from lakes in 

higher elevation are routed through the nine powerhouses and discharged to lakes in 

lower elevations that are connected through tunnels and penstocks. The water travels a 

combined vertical distance of 6,655 feet before being discharged through the last 

powerhouse into the San Joaquin River.  

Florence Lake and Lake Thomas Alva Edison are the higher elevation reservoirs of the 

system having spillway elevation of 7327 and 7642 feet respectively. The dam at 

Florence Lake captures runoff from the South Fork San Joaquin River, diverting it 

through the Ward Tunnel towards the Portal Powerhouse, which is the first powerhouse 

in the system to receive water. Florence Lake has a storage capacity of 64,406 acre feet.  

Lake Thomas Alva Edison is formed by the Vermillion Valley Dam constructed across 

the Mono Creek, a tributary of the South Fork of the San Joaquin River. It has a 123,035 

acre-feet storage capacity. It discharges some of its water to the Ward Tunnel and 
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thereby further regulates the water supply to the Portal Powerhouse. Portal Powerhouse 

has one 10,000 KW unit of the Francis type. Water running through Portal Powerhouse is 

discharged into the Huntington Lake where it is in turn diverted to Big Creek 

Powerhouse No. 1 constituting a drop of 2100 feet. This powerhouse has four double 

overhung impulse turbines having a total capacity of 81,000 KW. The water can also be 

diverted to the Eastwood Power Station and into Shaver Lake from Huntington Lake, 

constituting a drop of 1700 feet. Shaver Lake reservoir is the largest reservoir of the Big 

Creek hydroelectric System having an operating capacity of 135,283 acre-feet and a 

spillway elevation of 5,370 feet. The water drops another 1900 feet from big Creek 

Powerhouse No. 1 to Big Creek Powerhouse no 2. Adjacent Big Creek Powerhouse 2A 

receives water from Shaver Lake exclusively for the operation of two double overhung 

impulse turbines having a combined capacity of 96,000 KW. The combined operating 

capacity of these two plants in 162,000 KW. Water from these two powerhouses is 

discharged to a common afterbay and after that drops another 800 feet to Big Creek 

Powerhouse No. 8. This powerhouse consists of two vertical Francis-type reaction 

turbines having a total operating capacity of 58,000 KW. Mammoth Pool reservoir 

formed by a dam built across the San Joaquin river feeds water to the Mammoth Pool 

Powerhouse through an eighth-mile tunnel and penstocks. Water from the mammoth 

Pool Powerhouse and Big Creek Powerhouse no. 8 drops another 800 feet through Big 

Creek Powerhouse no. 3 after being discharged to a common afterbay. The water is then 

discharged to Redinger Lake, the smallest reservoir in the Big Creek Hydroelectric 

System from where the water drops a final 400 feet through Big Creek Powerhouse No.4 

and is discharged to the San Joaquin River. A schematic of the project is provided in 

Figure 46. 
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Figure 46: Big Creek Hydroelectric Project Schematics  

 

 

Source: University of California, Riverside 
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3.4 Hydro Vista Decision Support System 
Hydropower’s fast response characteristic makes it a suitable candidate to meet peak 

electricity demand, which commands a higher price per kilowatt-hour so its value can 

therefore be further enhanced by participating in multiple energy markets. To maximize 

benefit from hydropower generation, efficient scheduling of available energy resources 

as per load demand is an important task in modern power systems, which calls for 

optimal scheduling of hydropower reservoirs. Two important objectives in a 

hydropower system are to generate during periods when electricity demand is high and 

energy has high price and to minimize necessary spilling (water is released without 

producing hydropower).  In California, peak energy demand occurs during summer and 

most spillages are carried out during the spring months, which is the runoff period 

indicating reservoir refilling period. Spillage can also occur in winter. Moreover, 

hydropower reservoirs often have multiple additional functions such as flood control, 

navigation, irrigation, water supply, recreation etc. that often pose potentially 

conflicting objectives.  

These tasks are performed by Hydro Vista Decision Support System, which is a toolbox 

to assist in both planning and operations of the hydroelectric systems to maximize the 

value of water resources and power generation and market activity. It also helps 

determine long-term storage planning and management and assists in both short and 

long-term planning and scheduling of generation and real-time dispatch. The system’s 

capacity to plan encompasses right from the inflows into the reservoirs to the ultimate 

goal of revenue generation from the power generation. However, the Vista DSS does not 

control system operations, rather human staffs control them. It also helps run analyses 

to investigate alternative operation policy, outage schedules, system upgrades or 

development.  

At Big Creek Hydroelectric System, Vista DSS is used in day ahead market optimization, 

medium term water management and prompt month analysis of Hoover Contract. The 

Long-term optimization goals are to develop the best schedule of generation, water 

releases and transactions in default one-year time horizon while meeting various 

physical and operational constraints. The short term optimization goals are the same 

with time horizon of several hours to two week. The optimization is driven by inflow, 

load and transactions.  

The hydraulic system of the hydroelectric system and the transmission system are 

represented in the Hydro Vista DSS for different scenarios consisting of different 

configuration cases and data cases. Facility data are used to describe the physical 

structures in a river system such as reservoir and hydro plants to represent the 

hydraulic system. Different scenarios are built using different configuration cases, 

facility case, outages cases, different water resource operational constraints cases, 

transmission operational constraint cases, LTGS hydrology sequences, different shot-

term inflow cases, load forecast cases, xchange cases and energy cases. There are nine 

integrated modules to perform these tasks, which includes two data management 
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modules for set-up, and data input, three analysis and forecasting modules, two 

operations optimization modules for scheduling and planning, a study module and a 

report module.  

 Vista Modules 

 Data Management Modules 

Facility and operational data are required in the Vista DSS. Vista DSS requires both static 

and dynamic data. Static data are defined as part of system setup. They include system 

description, plant/unit characteristics, transmission system configuration, Hydro license 

and constraints. On the other hand, dynamic data examples are unit generation and 

discharge, water levels, outage schedules, price forecasts, load forecasts and thermal 

production costs. The data management modules are data and RT data Vista for 

handling and accessing static system data and accessing and analyzing real-time data 

respectively, Xchange Vista for defining transaction opportunities to purchase or sell 

energy. Vista services is used for downloading real-time data from SCADA, outages, 

price forecasts, load forecasts and dispatchable thermals. It is also used to calculate 

actuate project inflows and inflow forecasts. Data are downloaded automatically at user-

specified intervals. Vista Data Relationships are shown in Figure 47. Subsequently Vista 

Data Input is shown in Figure 48. 

Figure 47: Vista Data Relationships  

 

Source: University of California, Riverside 
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Figure 48: Vista DSS Data Input 

 

Source: University of California, Riverside  

 Analysis and Forecasting Modules 

Analysis and forecasting modules include Inflow Vista for defining and deriving inflow 

forecasts and Load Vista to download and derive energy-demand forecasts. Inflow 

forecasts are needed to generate long-term inflow scenarios, short-term generation 

scheduling and flood management. 

 Planning and Scheduling Modules 

Operations optimization modules consist of LT Vista for medium to long-term water 

storage and energy-generation management that guides water operations, hydrothermal 

generation and energy transactions, ST Vista for short-term energy generation and 

transaction scheduling, and RT Vista for real-time energy dispatch. LT Vista has default 

time horizon of one year. It can also be user defined, from several weeks to several 

years. The optimization has a weekly time step or user defined variable daily blocks. ST 

Vista has a time horizon of several hours to two weeks. It has three analysis tools- 

optimization, simulation and simulation with constraints. Optimization considers all 

constraints and transaction and is driven by inflow, load and transactions. On the other 

hand, simulation does not consider constraints and transaction and is defined by inflow 

and user-defined generation and spill. Simulation with constraints considers 

constraints, but does not consider transactions. It is driven by inflow, user-defined 

generation and spill, and reservoir and tailwater elevations.  
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 Study and Report Module 

AUTO Vista in study module analyzes detailed system operations for multiple 

hydrological scenarios where the periods of study can extend from one to many years. 

The results are evaluated statistically. Report Vista can generate reports related to 

operation and scheduling e.g. FERC compliance reports, CPUC compliance reports and 

internal standard reports like generation to data, water management and after the fact 

efficiency reports. 

3.5 System Representation 
Hydroelectric system representation is an integral part of the Vista DSS. The system 

representation is discussed in this section. 

 Physical System Representation 

A hydropower system has hydraulic system components. For modeling purposes, a 

water resource system can be disaggregated into a number of hydraulically independent 

basins. A hydraulic system consists of River and Watersheds. Rivers can be single, 

multiple uncoupled and multiple coupled. Each river system can be represented by a 

schematic comprising nodes and arcs as shown in Figure 49.  

Nodes are points of interest in the water resource system being modeled, such as 

reservoir, tailwater junction, river junction, source and sink and arcs. Reservoir and 

river junction nodes combine a number of inflow and outflow channels in the network. 

Reservoirs nodes have storage associated with them where as river junction nodes do 

not. Tailwater junction nodes are similar to river junction nodes with an addition 

important function to sum outflows from generation plant and spillways and yield a 

river water level that works as a tailwater level to compute generation plant head. 

Source node supplies water to an arc while a sink node demands water from an arc.  

An arc is a directed line segment that joints an upstream node to a downstream node. 

The direction of flow is defined from the upstream node to the downstream node. There 

are four types of arcs- inflow, power, spillway and river reach. Inflow arcs represent 

inflow into the river system to be modeled and are typically a local inflow or tributary, 

power arcs represent one or more turbines and their associated flow, spillway arcs 

represent the total flow through one or more spillway structures that flow to a common 

node and river reach arcs indicate physical conveyances such as natural or manmade 

channels. Figure 50 illustrates the system schematic of a single river single reservoir.  

Facility data are used to describe the physical structures in a river system such as 

reservoir and hydro plants. They are represented mathematically along with estimated 

parameters. On the other hand, operational data are used to represent the conditions 

under which a river system operates including regulatory control.  

 

 



94 

 

Figure 49: System Representation of Hydro Vista DSS  

 

Source: University of California, Riverside 

 

 

 

 

 

 

 

  



95 

 

Figure 50: Schematic of a Single River Single Reservoir  

 

Source: University of California, Riverside 

 Reservoir Representation (Elevation Volume Relationship) 

In Vista DSS, a storage reservoir is represented by its full supply level (FSL), dead storage 

level (DSL) and the coefficients of the polynomial defining the storage elevation-volume 

relation. The elevation-volume relationship is represented by the following equations in 

the Vista DSS: 

𝐶𝐶 = 𝐶𝐶0 + 𝐶𝐶1 × (𝐸𝐸𝐸𝐸 + 𝐶𝐶2)𝐶𝐶3 (3.1)  

when storage is a function of headpond elevation only 

𝐶𝐶 = 𝐶𝐶0 + 𝐶𝐶1 × (𝐸𝐸𝐸𝐸 + 𝐶𝐶2)𝐶𝐶3 + 𝐶𝐶4 × 𝑄𝑄𝐶𝐶5 (3.2) 

when storage is a function of both the headpond elevation and the inflow to the headpond 

where 

𝐶𝐶 =  headpond storage in cfs-hr or cms-hr 

𝐸𝐸𝐸𝐸 = ℎ𝑝𝑝𝑎𝑎𝑑𝑑𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑 𝑝𝑝𝐼𝐼𝑝𝑝𝑣𝑣𝑎𝑎𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 𝑝𝑝𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑𝑖𝑖𝑝𝑝𝑐𝑐 𝑝𝑝𝑡𝑡 𝐶𝐶 𝑖𝑖𝑝𝑝 𝑓𝑓𝑝𝑝 𝑡𝑡𝑝𝑝 𝑐𝑐 

Q = 𝑖𝑖𝑝𝑝𝑓𝑓𝐼𝐼𝑡𝑡𝐼𝐼 𝑝𝑝𝑡𝑡 𝑝𝑝ℎ𝑝𝑝 ℎ𝑝𝑝𝑎𝑎𝑑𝑑𝑝𝑝𝑡𝑡𝑝𝑝𝑑𝑑 𝑖𝑖𝑝𝑝 𝑝𝑝𝑓𝑓𝑠𝑠 𝑡𝑡𝑝𝑝 𝑝𝑝𝑐𝑐𝑠𝑠  

𝐶𝐶0,𝐶𝐶1,𝐶𝐶2,𝐶𝐶3,𝐶𝐶4,𝐶𝐶5 = 𝑝𝑝𝑞𝑞𝑢𝑢𝑎𝑎𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 𝑝𝑝𝑡𝑡𝑝𝑝𝑓𝑓𝑓𝑓𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑠𝑠 

To derive the elevation volume relationship, elevation and corresponding volume for a 

series of points spanning the maximum possible operating range of the headpond or 

reservoir is required. The elevation-volume data should cover the operating range of the 
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reservoir, up to the dam crest elevation at a minimum. The given data is used to find the 

optimized coefficients such that the sum of weighted residual errors is minimized over 

the entire data range. The weights are useful in assigning higher weights to data points 

that fall in the operating range of the reservoir (between full supply level and dead 

storage level) and zero weights to outliers. The operating constraints that should be 

added in the solver in determining this relationship are that the intercept 𝐶𝐶1 should 

always be below the dead storage level (DSL) and the value of 𝐶𝐶0 should be 0 unless 

attempting to fit the DSS equations ot negative storage values.  

 Channel Representation 

In the Vista DSS, river reach arcs are used to model flow travel time and attenuation, 

which takes place when there is a significant distance between plants or reservoirs in a 

river. The Muskingum-Cunge channel flow routing method, which is closely related to 

the Musungkim routing method, is employed here. Musungkim routing method assumes 

that a storage in a single river reach is related to its inflows and outflows. To give both 

temporal and spatial resolution, the total reach length of the river reach is broken into a 

number of subreaches and outflow from each is treated as the inflow into the next. The 

travel time through each subreach is assumed equal to the Vista computation time step. 

Number of subreaches is assumed equal to the ratio of the lag between the inflow and 

outflow hydrograph peaks to DSS Vista time step rounded to the nearest integral 

number. The routing equation is as follows: 

𝑄𝑄𝑡𝑡0 = 𝐶𝐶1 × 𝑄𝑄𝑡𝑡𝑖𝑖 + 𝐶𝐶2 × 𝑄𝑄𝑡𝑡𝑖𝑖 + 𝐶𝐶3 × 𝑄𝑄𝑡𝑡−10 (3.3) 

where 𝑄𝑄𝑡𝑡0 is outflow during time step t in 𝑓𝑓𝑝𝑝3/𝑠𝑠 or 𝑐𝑐3/𝑠𝑠, 𝑄𝑄𝑡𝑡𝑖𝑖 is inflow during time step t in 

𝑓𝑓𝑝𝑝3/𝑠𝑠 or 𝑐𝑐3/𝑠𝑠, and 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3 are routing coefficients.  

The routing coefficients are determined by fitting the routing equation to the observed 

field data so that the sum of weighted residual errors is minimized, and the Muskingum 

coefficients sum to unity.  

 Stage-Discharge Relationship 

Data for a number of flow gauges can be configured and used in deriving local inflow 

and for updating inflow forecast models. Channel water levels data are collected from 

the flow gauges, which must be converted into discharge by a stage-discharge rating 

curve. The rating curves are modeled using a piecewise approximation, i.e. each 

polynomial applies to a specific range and the ranges are defined by breakpoints. The 

equation is as follows: 

𝑄𝑄 = 10𝐶𝐶1×𝑙𝑙𝑜𝑜𝑙𝑙(𝐶𝐶𝐶𝐶−𝐶𝐶3)+𝐶𝐶2 (3.4) 

Where Q is the total river discharge in 𝑓𝑓𝑝𝑝3/𝑠𝑠 or 𝑐𝑐3/𝑠𝑠, EL is the stage or water level in ft or 

m and 𝐶𝐶1,𝐶𝐶2,𝐶𝐶3 are stage-discharge coefficients. 

To estimate stage-discharge coefficients, both stage and corresponding discharge 

observations for a series of points spanning as many different discharges and stages as 
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possible are required. The relationship is modeled by fitting Equation 3.4 to observed 

field data to find the coefficients such that the sum of weighted residual errors is 

minimized. 

 Spillway Representation 

Spillway refers to discharge structures controlling releases from a reservoir to a river or 

tailwater junction point. In the Vista DSS, spillway discharge is modeled as a function of 

reservoir elevation and spillway opening. It is modeled by fitting the Vista DSS discharge 

equations to spillway rating data obtained from field measurements. The Vista DSS has 

several types of discharge control structures having various discharge equations- spill 

gates, spill gates-U.S. Army Corps Formulation, overflow weirs, stoplog structures, 

orifice gates, butterfly valves, uncontrolled canal, uncontrolled tunnel, and flashboards. 

Elevation and corresponding discharge observations for a series of spillway openings 

spanning the maximum possible operating range of the headpond or reservoir up to the 

dam crest elevation or at a minimum operating range of the reservoir, sill elevations for 

each structure, width of each structure or bay or area if applicable, maximum number of 

stop logs and maximum opening, FSL and DSL are required to derive spillway discharge 

equations. Moreover, operating procedures for each structure are required because of 

the computational overhead associated with each discharge equation definition in the 

Vista DSS. Grouping (considering structure operating in the same way as a single 

structure) is done whenever possible to model the spillway discharge. 

Discharge through spill gates (both spill gates and spillway gates-U.S. Army Corps 

Formulations) are modeled by two equations depending on whether the gate is in or out 

of the water. If the gate is out of water or slightly submerged (less than 1/5 of the depth 

above sill), free overflow conditions exist and the weir equations apply; otherwise, the 

structure functions as an orifice and orifice flow condition exists. The equation for the 

flow over an overflow structure (weir overflow) is of the form: 

𝑄𝑄 = 𝐶𝐶𝑓𝑓 × 𝐸𝐸𝑒𝑒 × (𝑆𝑆𝐸𝐸 − 𝐸𝐸𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙)𝐶𝐶𝑓𝑓 (3.5) 

Where 𝐶𝐶𝑓𝑓 is a function of WL and 𝐸𝐸𝑓𝑓 is a coefficient, 𝐸𝐸𝑒𝑒 is the effective width, 𝑆𝑆𝐸𝐸 is the 

water level, and 𝐸𝐸𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙 is the elevation of the sill. 

𝐶𝐶𝑓𝑓 = 𝑝𝑝𝑓𝑓 + 𝑝𝑝𝑓𝑓1 × (𝑆𝑆𝐸𝐸 − 𝐸𝐸𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙) + 𝑝𝑝𝑓𝑓2 × (𝑆𝑆𝐸𝐸 − 𝐸𝐸𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙)2 (3.6) 

Equation 3.5 is used to model free overflow condition of spillway gates, spillway gates -

U.S. Army Corps Formulations and flow over weir. Additionally, same set of equations 

are used for stoplog structures with (𝑆𝑆𝐸𝐸 − 𝐸𝐸𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙 − 𝐼𝐼𝑡𝑡𝑐𝑐𝑙𝑙) replacing (𝑆𝑆𝐼𝐼 − 𝐸𝐸𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙) term where 

𝐼𝐼𝑡𝑡𝑐𝑐𝑙𝑙 is the height of the structure on the sill, e.g. stop logs with their own set of 

coefficients.  

For orifice flow conditions of spillway gates when the gate is submerged, the following 

equation is used 

𝑄𝑄 = 𝐶𝐶𝑜𝑜 × 𝐸𝐸𝑒𝑒 × 𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 × (𝑆𝑆𝐼𝐼 − 𝐸𝐸𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙)𝐶𝐶𝑜𝑜 (3.7) 
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where 𝐶𝐶𝑜𝑜  is a function of opening height and 𝐸𝐸𝑜𝑜 is a coefficient. 

𝐶𝐶𝑜𝑜 = 𝑝𝑝𝑜𝑜 + 𝑝𝑝𝑜𝑜1 × 𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑝𝑝𝑜𝑜2 × 𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝2 + 𝑝𝑝𝑜𝑜3 × 𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝3 (3.8) 

Equations for describing gated flow condition of spillway gates- U.S. Army Corps 

(formulations when the gate is submerged) is of the form 

where 𝐶𝐶𝐺𝐺 and 𝐸𝐸𝐺𝐺  are coefficients, H is the head over the spillway crest, i.e. 𝑙𝑙 − 𝐸𝐸𝑠𝑠𝑖𝑖𝑙𝑙𝑙𝑙, 𝑙𝑙2 is 

the 𝑆𝑆𝐸𝐸 − 𝐸𝐸𝑙𝑙𝑠𝑠𝑡𝑡𝑒𝑒𝑠𝑠𝑒𝑒𝑠𝑠𝑡𝑡, 𝑙𝑙1 = 𝑙𝑙2 − 𝑐𝑐𝑎𝑎𝑝𝑝𝑝𝑝 𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑐𝑐 and 𝑄𝑄𝑊𝑊 is calculated using Equation 3.5. 

The equation for describing the flow through an orifice is of the form: 

𝑄𝑄 = 𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝 × 𝐶𝐶 × (𝑆𝑆𝐸𝐸𝑢𝑢/𝑠𝑠 − 𝑆𝑆𝐸𝐸𝑑𝑑/𝑠𝑠)𝐶𝐶 (3.10) 

where C and E are structure dependent coefficients, 𝑆𝑆𝐸𝐸𝑢𝑢/𝑠𝑠 and 𝑆𝑆𝐸𝐸𝑑𝑑/𝑠𝑠 are the upstream 

and downstream water levels and “Open” is the fraction of the orifice area that is open 

(0.0 𝑝𝑝𝑡𝑡 1.0). C is determined by a similar equation as Equation 3.8.  

The discharge relation for describing the flow through butterfly valves have the same 

form as Equation 3.10 as with “𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝” representing the effective opening (area open). 

Equations for describing the flow through uncontrolled canal and uncontrolled canal 

has the same form as Equation 3.10 with their own set of coefficients and “𝑂𝑂𝑝𝑝𝑝𝑝𝑝𝑝” term 

replaced by 𝐸𝐸𝐶𝐶 and 𝐴𝐴𝑝𝑝𝑝𝑝𝑎𝑎 respectively. For flashboards, flow is modeled using the weir 

flow equations when the dam or flashboard sections are overtopped. Flashboard 

operations are modeled by specifying the date that boards are put into place and the 

date they are removed or fail and using two sets of coefficients- coefficients for broad 

crested weirs when flashboards are removed/fail and coefficients for sharp-crested 

weirs when flashboards are in place to describe the flow-water elevation relations. 

Coefficients for the spillway discharge equations are obtained by fitting the Vista DSS 

elevation discharge equation to the Vista DSS elevation-discharge equation to the 

spillway rating data obtained from field measurements such that the sum of weighted 

residual errors is minimized. As usual, higher weights are assigned to the data points 

that fall in the operating range between FSL and DSL and zero weight is assigned to 

outliers.   

 Hydro Plant Representation (Power Polynomial) 

For modeling hydro power plant, power generation from a single generating unit is 

defined by a power polynomial. The theoretical relationship that the unit power 

polynomials are based on is 

𝑝𝑝 = 𝐶𝐶 × 𝜂𝜂𝑝𝑝 × 𝑄𝑄 × ℎ𝑠𝑠 (3.11) 
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where 

𝐶𝐶 = coefficient 9.812 × 10−3 in metric or 8.460 × 10−3  in imperial 

𝑃𝑃 = generated power in MW 

𝜂𝜂𝑝𝑝 = overall generating efficient (turbine and generator) (between 0 and 1) 

𝑄𝑄 = turbine discharge in 𝑓𝑓𝑝𝑝3/𝑠𝑠 or 𝑐𝑐3/𝑠𝑠 

ℎ𝑠𝑠 = net head in ft or m 

Power polynomial for each unit is a third order equation that represents unit power 

generations as a function of the head and the discharge along with all the headlosses 

(entrance, trash rack, conduit friction, bend, contraction, split and exit losses) acting on 

that unit. DSS distinguishes between plant related headlosses and unit related 

headlosses to handle situations like when a single common power tunnel or power canal 

splits to supply water to two or more units so that the total headloss associated with a 

given unit would be the sum of the plant-related headloss and the unit-related 

headlosses specific to that unit. The power polynomial is given below: 

𝑃𝑃 = 𝑎𝑎 + 𝑏𝑏 × 𝑄𝑄 + 𝑝𝑝 × 𝑄𝑄2 + 𝑑𝑑 × 𝑄𝑄3 (3.12) 

 

where 

𝑃𝑃 = power produced by one unit in MW 

𝑄𝑄 = discharge flowing through one unit in 𝑓𝑓𝑝𝑝3/𝑠𝑠 or 𝑐𝑐3/𝑠𝑠 

𝑎𝑎, 𝑏𝑏, 𝑝𝑝,𝑑𝑑 = functions of unit gross head and are given by following relationships 

𝑎𝑎 = 𝑎𝑎1 + 𝑎𝑎2 × ℎ + 𝑎𝑎3 × ℎ2 

𝑏𝑏 = 𝑏𝑏 + 𝑏𝑏2 × ℎ + 𝑏𝑏3 × ℎ2 

𝑝𝑝 = 𝑝𝑝1 + 𝑝𝑝2 × ℎ + 𝑝𝑝3 × ℎ2 

𝑑𝑑 = 𝑑𝑑1 + 𝑑𝑑2 × ℎ + 𝑑𝑑3 × ℎ2 

where 𝑎𝑎𝑠𝑠 , 𝑏𝑏𝑠𝑠 , 𝑝𝑝𝑠𝑠,𝑑𝑑𝑠𝑠 = power polynomial coefficients 

ℎ = unit gross head defined as the headpond elevation minus the tailwater elevation 

(plant gross head) minus the plant related losses 

Plant related headloss = 𝐶𝐶𝑝𝑝𝑄𝑄𝑝𝑝2 

where 𝐶𝐶𝑝𝑝 is the plant headloss coefficient and 𝑄𝑄𝑝𝑝 is the discharge through the plant and 

equals the sum of the unit flows. 

To derive the unit power polynomial coefficients, sets of corresponding unit discharge, 

efficiency, and power magnitudes for at least three different net heads, one of which 

should be the unit’s design head are recommended. ′𝑎𝑎′ term in equation is set to be 0 to 
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ensure proper behavior of the power polynomial functions over the full range of 

discharge magnitudes. Estimation of the power polynomial coefficients may be 

formulated as a multiple linear regression problem with twelve independent variables 

given by above equations. The solution should satisfy the conditions that the second 

derivation of efficiency with respect to discharge should be less than 0 and the 

derivative of power with respect to discharge should be greater than or equal to 0 over a 

unit’s discharge range. Otherwise, the problem may be formulated as a nonlinear 

optimization problem with the above constraints where the optimization objective is to 

minimize weighted sum of square residuals. Since the optimization approach requires 

good starting values and coefficients can be quite small, the multiple regression method 

is recommended to be tried first. 

 Tailwater Representation 

Tailwater elevation is used to compute generation plant head and discharge through 

low-level sluiceways in Vista DSS. To model tailwater elevation, elevation and 

corresponding discharge observations are needed for a series of points spanning many 

different discharges and elevations along with the long term average tailwater elevation. 

It is crucial to identify whether the downstream water level influences the tailwater 

elevation. When the tailwater elevation is not influenced by the downstream water level, 

it is a function of total river flow downstream of the plant and is expressed by Equation 

3.13. However, when the downstream level influences the tailwater elevation, the 

tailwater relationship is a function of both discharge and downstream water level and is 

expressed by Equation 3.14 and 3.15.  

𝑇𝑇𝑆𝑆𝐸𝐸0 = 𝑎𝑎 + (𝑏𝑏 × 𝑄𝑄𝑐𝑐) (3.13) 

𝑇𝑇𝑆𝑆𝐸𝐸1 = 𝑇𝑇𝑆𝑆𝐸𝐸0 + 𝑐𝑐𝑎𝑎𝑥𝑥(0, 𝑓𝑓(𝑆𝑆𝐸𝐸𝑑𝑑
𝑠𝑠

)) (3.14) 

𝑓𝑓(𝑆𝑆𝐸𝐸𝑑𝑑/𝑠𝑠) = 𝑑𝑑 + 𝑝𝑝 × 𝑆𝑆𝐸𝐸𝑑𝑑/𝑠𝑠 + (𝑓𝑓 + 𝑐𝑐 × 𝑆𝑆𝐸𝐸𝑑𝑑
𝑠𝑠

) × 𝐸𝐸𝑝𝑝(𝑄𝑄0 + 𝑄𝑄) (3.15) 

where TWL is the tail water elevation, Q is the total river discharge, 𝑆𝑆𝐸𝐸𝑑𝑑/𝑠𝑠 is the 

downstream water level and 𝑎𝑎, 𝑏𝑏, 𝑝𝑝,𝑑𝑑, 𝑝𝑝, 𝑓𝑓,𝑐𝑐,𝑄𝑄0 are tailwater elevation coefficients. In the 

event that the downstream headwater is the tailwater level, equation apply with the 

coefficients e and 𝑄𝑄0 equal to 1 and all other coefficients equal to 0. 

Finally, the tailwater elevation is modeled by fitting the Vista DSS tailwater elevation 

equations to the observed field data in absence of which a hydraulic model may be used 

to simulate the required data or the long-term average tailwater can be assumed. The 

coefficients are found so that the sum of the weighted residual errors is minimized, and 

the values are close to the theoretical values. 

 Load and Transaction opportunities 

Transactions are defined as the economic signal used in the optimization, which are 

purchases and sales opportunities in the area. Sales are considered as positive and 

purchases are considered as negative. There are five types of products for transaction- 
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energy and ancillary services like non-spinning reserve, spinning reserve (non AGC), 

regulation up and regulation down services as shown in Figure 51. In addition to 

obtaining payment for energy, generators are paid for the frequency regulation and 

operating reserves. 

Frequency regulation is a tool employed by the power grid operators when the system 

frequency gets too high or low. Offering frequency regulation to the grid operators 

means that the generator is willing to increase (regulation up) or decrease outputs 

(regulation down) by some amount. 

Figure 51: Products for Transaction in the Electricity Market 

 

Source: University of California, Riverside 

Operating reserves are additional generating requirements from the hydroelectric plants 

modeled in the system. It is the total of all spinning and non-spinning reserve that is 

available within 10 minutes. Spinning reserve is the extra generating capacity that are 

already connected to the power system. Non-spinning reserve is the extra generating 

capacity that is not currently connected to the system but can be brought online after a 

short delay. The operating reserve categories are shown in Figure 52. 
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Figure 52: Reserve Categories  

 

Source: University of California, Riverside 

 Constraints 

There are three types of constraints in the Vista DSS- physical constraints, operational 

conditions and operational constraints. Examples of constraints are seasonal reservoir 

limits, minimum flow requirements, ramping limits of reservoir or downstream of 

project, fishery elevation or discharge, keeping reservoir as full as possible during 

boating season etc. It is difficult to translate the constraints into mathematical 

equations. 
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 Physical Constraints 

Physical constraints represent physical operating limits e.g. limitations of units/tunnels, 

minimum/maximum turbine limits etc. They are mandatory, and the constraints must 

always be respected. Physical limits are captured by facility data definition.  

 Operational Conditions 

Operational conditions represent actual operating model of the system e.g. outages, out 

of service status of generating or pumping units or spillway structures etc. Operational 

conditions are optional. They are applied for a user-specific period and must always be 

met for outages. 

 Operational Constraints 

Operational constraints for the Vista DSS include reservoir elevation, discharge, 

scheduled releases, flood rule and time average i.e. flow volume over a specific period. 

Operating constraints are optional except for minimum and maximum target reservoir 

levels. To define a constraint, data describing constraint type, start date, end date and 

constraint cost are required except for the flood rule constraint. Constraint costs are 

user defined “relaxation cost” for each constraint such that the optimizer is allowed to 

relax any constraint, but at its “relation cost”. This allows users to prioritize constraints 

in the event that they have to be violated.  

 Reservoir Elevation Constraints 

Reservoir elevation constraints are defined on a weekly basis. They include  

1. minimum target elevation- minimum reservoir elevation  

2. maximum target elevation- maximum reservoir elevation  

3. stable- reservoir elevation to be maintained 

4. stable or rising- reservoir elevation to be maintained or exceeded 

5. ramping- maximum daily reservoir elevation rate of change 

The minimum and maximum target elevation constraints define the operational range of 

the reservoir and are always requited in the Vista DSS. 

 Discharge Constraints  

Discharge constraints are applied to individual arcs, e.g. spill arcs or power arcs or both 

spill and power arcs. They include 

1. minimum- minimum allowable discharge 

2. minimum or inflow- lower of either minimum discharge constraint or local inflow 

3. maximum- maximum allowable discharge 

4. maximum or inflow- higher of either maximum discharge constraint of local 

inflow 

5. ramping- maximum hourly rate of change of discharge 
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 Scheduled Releases 

Scheduled releases describe minimum discharge constraint for short-term releases for 

specific purposes like recreation or water quality. Scheduled releases are kept separate 

from other discharge constraints for their large number and high frequency. 

 Flood Rule Constraints 

During high inflows into the reservoir, flood rule constraints allow for a water level 

reduction. They are specified in terms of a table of reservoir inflow versus reservoir 

elevation.   

 Time Averaged Constraints 

These constraints allow the user to specify a minimum flow volume that must be 

equaled or exceeded over a specified “n hour” interval. Each constraint is valid between 

given start and end dates given in the format: MM-DD-YYYY: HHMM 

 Long-term Vista Optimization of Hydropower Generation 

To estimate the impact of aerosols on hydropower generation in a hydro year, we use 

Vista DSS to optimize the generation schedule of the cascaded hydropower system. The 

goal is to maximize the hydropower system's revenue from providing energy, spinning 

reserve, frequency regulation up, and frequency regulation down services subject to 

physical, operational, and contractual constraints. The decision variables include the 

generation units' status and the amount of generation from each powerhouse. The 

optimization algorithm assumes that the cascaded hydroelectric system is a price taker 

in the electricity market. The inputs to the optimization include the inflows to various 

reservoirs and prices for energy and ancillary services. The hydropower plant operation 

optimization problem is formulated as follows. 

The hydropower plant operation optimization problem is formulated as follows: 

subject to 

𝑃𝑃𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠 ≤ 𝑃𝑃𝑠𝑠𝑡𝑡 ≤ 𝑃𝑃𝑠𝑠𝑚𝑚𝑠𝑠𝑥𝑥 ,    𝑝𝑝 = 1, … ,𝑁𝑁, 𝑝𝑝 = 1, … ,𝑇𝑇 

and other physical and operational constraints 

where 

𝑈𝑈𝑠𝑠𝑡𝑡 = up/down status of generating unit n at hour t (0: unit down, 1: unit up) 

𝑃𝑃𝑠𝑠𝑡𝑡= power generation of unit n at hour t 

𝑓𝑓𝑡𝑡= forecasted energy price for hour t in $/MWh 

𝑝𝑝𝑡𝑡𝑟𝑟𝑒𝑒𝑠𝑠= forecasted price for spinning reserve service for hour t in $/MWh 

𝑃𝑃𝑠𝑠𝑡𝑡𝑟𝑟𝑒𝑒𝑠𝑠 = spinning reserve capacity scheduled for unit n at hour t 
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𝑝𝑝𝑡𝑡
𝑟𝑟𝑒𝑒𝑙𝑙,𝑢𝑢𝑝𝑝 = forecasted price for frequency regulation up service for hour t in $/MWh 

𝑃𝑃𝑠𝑠𝑡𝑡
𝑟𝑟𝑒𝑒𝑙𝑙,𝑢𝑢𝑝𝑝 = frequency regulation up capacity scheduled for unit n at hour t 

𝑝𝑝𝑡𝑡
𝑟𝑟𝑒𝑒𝑙𝑙,𝑑𝑑𝑜𝑜𝑤𝑤𝑠𝑠 = forecasted price for frequency regulation down service for hour t in $/MWh 

𝑃𝑃𝑠𝑠𝑡𝑡
𝑟𝑟𝑒𝑒𝑙𝑙,𝑑𝑑𝑜𝑜𝑤𝑤𝑠𝑠 = frequency regulation down capacity scheduled for unit n at period t 

𝐹𝐹 = operation and maintenance cost of the cascaded hydroelectric system 

𝑃𝑃𝑠𝑠𝑚𝑚𝑖𝑖𝑠𝑠= minimum rated capacity of unit n 

𝑃𝑃𝑠𝑠𝑚𝑚𝑠𝑠𝑥𝑥= maximum rated capacity of unit n 

N= Number of generation units 

T= Number of hours in a water year 

3.6 Method 
To calculate the impact of aerosols on hydropower generation, Vista DSS is used to 

optimize the schedule of generation for one hydro year time horizon to maximize 

revenue generation while the input for the inflows into the reservoirs are calculated with 

and without considering the impact of aerosols on reservoir inflows. Inflow forecasts 

into the Big Creek Hydroelectric system with and without aerosol are computed for 

water year 2015.  

Historic inflows for Lake Thomas A. Edison and Florence Lake are available from water 

year 2010 to 2014. A dynamic regression model is used to calculate the forecast of 

inflows in water year 2015. The meteorological data are collected and average over three 

weather stations of Kaiser Point (KSP), Volcanic Knob (VLC) and Upper Burnt Corral 

Coral (UBC) located within a 0.4 × 0.4𝑜𝑜 grid box with center at (37.32𝑜𝑜𝑆𝑆,−118.97𝑜𝑜𝐸𝐸). WRF-

Chem CTRL and CLEAN simulations of the meteorological variables are available for the 

water year 2015 at the grid box location. Dynamic regression model is run using the 

meteorological variables from the WRF-Chem CTRL and CLEAN simulations to forecast 

inflows into these two reservoirs with and without considering the impact of aerosols. 

WRF-Chem CTRL and CLEAN simulations of the meteorological variables at 0.4 × 0.4𝑜𝑜  
grid boxes with center at the location of Huntington Lake(37.14𝑜𝑜𝑁𝑁,−119.10𝑜𝑜𝑆𝑆), Shaver 

Lake (37.12𝑜𝑜𝑁𝑁,−119.29𝑜𝑜𝑆𝑆), Mammoth pool (37.35𝑜𝑜𝑁𝑁,−119.30𝑜𝑜𝑆𝑆) and Redinger Lake 

(37.14𝑜𝑜𝑁𝑁,−119.43𝑜𝑜𝑆𝑆) are available to calculate inflow into these lakes with and without 

considering the impact of aerosols. As the historic inflow data for Huntington, Shaver, 

Redinger and Mammoth lake were not available before water year 2015, it is assumed 

that the inflow forecasts into these lakes with and without considering the impact of 

aerosols are the same as the inflows into whichever of the Florence Lake or Lake Edison 

the said lake is located closest to subjected to the WRF-Chem CTRL and CLEAN 

simulations corresponding to the grid box with center at the location of the lake scaled 

by the actual inflows. Moreover, it is assumed that the Bear inflows are about 90 percent 
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of the Lake Edison inflows as it is correlated to Lake Edison inflows and to some extent, 

Florence Lake. Further assumptions are listed below: 

1. It is assumed that we are coming off a dry year into another dry year. Therefore, 

there is no recreational requirement for Huntington Lake, hence loosening the 

constraint. 

2. Miniscule side flows into Dam 5, Dam 6 and Pittman are assumed with no 

difference in the “with aerosol” and “without aerosol” scenario as these inflows 

are very low in dry years and cannot be stored as they don’t directly reach a big 

reservoir. 

Inflow forecasts into the lakes are fed into the long-term hydro Vista DSS, which 

produces the optimum generation schedule for a one-year time horizon for the water 

year 2015 to maximize the value of energy from the hydroelectricity generation while 

meeting the physical and operational constraints. The optimization is run to maximize 

profit earned from the value of energy and ancillary services such as. regulation up, 

regulation down services and spinning reserve. The optimization has a weekly time step. 

In solving the long-term optimization problem, the problem is formulated as a Mixed 

Integer Linear programming problem by approximating non-linear relationships as 

linear relationships. 

3.7 Result and Analysis 

 Impact of Aerosols on Big Creek Reservoir Inflows 

The research team quantified the impact of aerosols on reservoir inflow for water year 

2015. The team ran a Dynamic regression model using the meteorological variables 

from WRF-Chem CTRL and CLEAN simulations as input to the testing data set. 

Therefore, the researchers obtained two inflow forecasts both with and without 

considering the impact of aerosols for each lake in the Big Creek Hydroelectric System. 

They calculated the impact of aerosols on reservoir inflow by Equation 3.9. The overall 

effect of aerosols is a reduction in annual inflow by 1.3 to 10 percent for all of the lakes, 

as shown in Table 18 and Table 19. 

In all of the lakes, aerosols led to lower inflow in all of the seasons due to reduced SWE, 

precipitation, and snowmelt. Significantly lower annual inflow is observed in Lake 

Edison and Florence due to impact of aerosols. However, the reduction in inflow is not 

so significant in the other reservoirs. Similarly, significantly lower inflow in summer is 

observed in Lake Edison and Florence Lake due to impact of aerosols, which is not seen 

in the case of other reservoirs. In all of the lakes, the impact of aerosols is small during 

spring. Lake Edison has a smaller impact in fall and winter, while others had bigger 

impacts during these seasons. It was assumed that the inflow forecasts of the lakes 

other than Edison and Florence follow the inflow forecast of Florence Lake subjected to 

the WRF-Chem simulations of meteorological variables corresponding to their own 

locations.  
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Table 18: Annual Reservoir Inflow under Different Aerosol Conditions  

Lake Actual With Aerosol Without Aerosol 

Edison 36044 47662 50332 

Florence 74241 85335 92786 

Huntington 28485 34755 35803 

Mammoth 17492 22272 22572 

Redinger 63205 46884 47910 

Shaver 83838 80959 82446 

Source: University of California, Riverside 

Table 19: Impact of Aerosols (%) on Annual and Seasonal Reservoir Inflow  

Lake Annual Fall Winter Spring Summer 

Edison -5 -1 -0.5 1 -15 

Florence -10 -8 -12 -0.5 -23 

Huntington -3 -6 -8 -1 -7 

Mammoth -1 -5 -11 -0.8 -1 

Redinger -2 -6 -10 -1 .0069 

Shaver -2 -8 -5 -1 -1 

Source: University of California, Riverside 

3.7.2 Impact of Aerosols on Hydropower and Revenue Generation  

The researchers calculated the impact of aerosols on hydropower generation and 

revenue in water year 2015 by feeding the inflow forecasts of all of the lakes of the Big 

Creek Hydroelectric System both with and without considering the impact of aerosols 

into the Vista DSS. The team ran LT Vista for a one water year time horizon with a goal 

of optimizing the schedule of generation to maximize the energy value, i.e. the profit 

earned by the GENCO. The revenue comes from participating in the markets for energy 

and ancillary services (for example frequency regulation, operative reserves) 

The simulation results show that aerosols reduce hydropower generation by 89,356 

MWh with an annual loss of revenue of approximately $2.8 million. The impact of 

aerosols on hydropower generation and revenue are calculated to be 5.61 percent and 

3.88 percent, respectively. These results are shown in Table 20. 
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Table 20: Impact of Aerosols on Total Hydropower Generation and Revenue in Water Year 
2015 

 CTRL (with 

aerosol) 

CLEAN (without 

aerosol) 

Difference Percentage 

Difference 

(%) 

Revenue $70,954,360 $73,818,350 $2,863,990 3.88 

MWH 1,502,330 1,591,686 89,356 5.61 

Source: University of California, Riverside 

The loss of hydropower generation and subsequent loss of revenue can be explained by 

the lower annual inflow into the hydropower reservoirs due to impact of aerosols, which 

results into lower head, thus lowering hydropower generation. Aerosols reduce annual 

inflow into the reservoirs of the Big Creek Hydroelectric System by 1 to 10 percent. 

However, in a cascaded hydropower system, influence of inflows into the higher 

elevation reservoirs on hydropower generation is higher. The reduction in annual inflow 

into the higher elevation reservoirs Lake Edison and Florence Lake varies from 5 to 10 

percent and thus explains the 5.561 percent loss in hydropower generation. The 

significant loss of revenue earned from hydroelectricity generation due to presence of 

aerosols can provide justification for stricter environmental regulations to reduce 

anthropogenic aerosol emissions. 

The impact of aerosols on revenue earned from selling energy, spinning reserve, 

regulation up, and regulation down services are shown in Table 21. It is observed that 

the impact of aerosols is not significant in case of revenue earned from spinning reserve 

and regulation up services. However, the reduction in revenue is significant in case of 

revenue earned from selling energy and regulation down service. 

Table 21: Impact of Aerosols on Hydropower Generation Revenue Based on Revenue Type 
in Water Year 2015 

Products CTRL (with aerosol) CLEAN (without 

aerosol) 

Difference 

Energy revenue $47,886,920 $50,292,810 $2,405,890 

Spinning reserve 

revenue 

$6,717,860 $6,719,640 $1780 

Regulation up $9,774,540 $9,784,180 $9640 

Regulation down $6,575,040 $7,021,720 $446,680 

Source: University of California, Riverside 
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3.8 Conclusion 
The researchers calculated the impact of aerosols on hydropower generation and 

revenue by feeding the inflow forecasts of all of the lakes of the Big Creek Hydroelectric 

System both with and without considering the impact of aerosols into the Vista Decision 

Support System. The team ran LT Vista for a one water year time horizon with a goal of 

optimizing the schedule of generation to maximize the profit earned by the GENCO 

while meeting physical and operational constraints. From the simulations results, the 

team found that aerosols significantly reduce hydropower generation by 89,356 MWh in 

water year 2015, which represents a 5.61 percent reduction in the annual hydropower 

generation. This can be explained by the fact that aerosols reduce inflows into the 

reservoirs of Big Creek hydroelectric system by 1 to 10 percent and the reduction in 

inflow in the more influential higher elevation reservoirs is 5 to 10 percent. Thus, a 

reduction in the plant generation head results in a reduction in power generation. The 

presence of aerosols causes a staggering $2.8 million loss in revenue in a water year for 

Southern California Edison. This signification loss of aerosols provides another 

justification for stricter environmental regulations to reduce anthropogenic aerosol 

emissions. 
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