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PREFACE 

The California Energy Commission’s Energy Research and Development Division 

supports energy research and development programs to spur innovation in energy 

efficiency, renewable energy and advanced clean generation, energy-related 

environmental protection, energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the 

California Public Utilities Commission to fund public investments in research to create 

and advance new energy solutions, foster regional innovation and bring ideas from the 

lab to the marketplace. The California Energy Commission and the state’s three largest 

investor-owned utilities—Pacific Gas and Electric Company, San Diego Gas & Electric 

Company and Southern California Edison Company—were selected to administer the 

EPIC funds and advance novel technologies, tools, and strategies that provide benefits 

to their electric ratepayers. 

The Energy Commission is committed to ensuring public participation in its research and 

development programs that promote greater reliability, lower costs, and increase safety 

for the California electric ratepayer and include: 

 Providing societal benefits. 

 Reducing greenhouse gas emission in the electricity sector at the lowest possible 

cost. 

 Supporting California’s loading order to meet energy needs first with energy 

efficiency and demand response, next with renewable energy (distributed 

generation and utility scale), and finally with clean, conventional electricity 

supply. 

 Supporting low-emission vehicles and transportation. 

 Providing economic development. 

 Using ratepayer funds efficiently. 

A Semantically Integrated Operational Dashboard for the Management of a Smart Grid 

is the final report for the Developing a Distribution Substation Management System 

project (Grant Number EPC-15-046) conducted by Siemens Corporation. The 

information from this project contributes to the Energy Research and Development 

Division’s EPIC program. 

For more information about the Energy Research and Development Division, please visit 

the Energy Commission’s website (www.energy.ca.gov/research/) or contact the Energy 

Commission at 916-327-1551. 

  

http://www.energy.ca.gov/research/
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ABSTRACT 

As the electric distribution system becomes increasingly complex with integrating more 

energy resources, existing distribution automation systems must be enhanced with 

functions to manage more renewable energy connected at the distribution level and 

provide greater control over the operation of these energy resources. Distribution 

management systems must automate more in monitoring and controlling operations at 

substations to respond quickly to problems and reduce outage times. In this project, 

Siemens Corporation has developed a semantically integrated management system for 

future secondary substations. This system provides an unprecedented level of 

operational automation with more reliable services, which can benefit utilities and 

ratepayers. This research project created an operational dashboard for future electrical 

distribution substations capable of downloading and installing software from a 

marketplace. The conceived innovative system provides grid operators with an intuitive 

and real-time visualization of the current state of the grid and (potential) problems. 

When the system detects a problem, the system suggests the grid operator download, 

install, and configure a specific piece of software (application) capable of fixing the 

problem detected on the faulty substation. Moreover, a grid operator is provided with a 

global view of the cluster being managed, which allows the operator to react faster to 

detected anomalies and prevent severe problems such as outages. 

Keywords: Smart grid, operational dashboard, smart grid operators, grid reliability, 

knowledge models, future secondary substations, augmented reality 

Please use the following citation for this report: 

Garcia, Kimberly, Jack Hodges, and Florian Michahelles. 2019. A Semantically 
Integrated Operational Dashboard for the Management of a Smart Grid. California 

Energy Commission. Publication. Number: CEC-500-2019-059. 

  



iv 

TABLE OF CONTENTS  

Page 

ACKNOWLEDGEMENTS ............................................................................................... i 

PREFACE .................................................................................................................. ii 

ABSTRACT ............................................................................................................... iii 

TABLE OF CONTENTS .............................................................................................. iv 

LIST OF FIGURES ..................................................................................................... v 

LIST OF TABLES ..................................................................................................... vii 

EXECUTIVE SUMMARY .............................................................................................. 1 

Introduction ........................................................................................................ 1 

Project Purpose ................................................................................................... 2 

Project Approach ................................................................................................. 2 

Project Results .................................................................................................... 3 

Advancing the Research to Market ........................................................................ 4 

Benefits to California ........................................................................................... 5 

CHAPTER 1:  Introduction ......................................................................................... 7 

Smart Grid of the Future ......................................................................................... 7 

The Future Secondary Substation ......................................................................... 7 

Semantic Technologies ........................................................................................ 8 

User Interfaces.................................................................................................... 8 

CHAPTER 2: Project Approach ................................................................................. 10 

Semantically Integrated Operational Dashboard Architecture .................................. 10 

Grid Knowledge Models ........................................................................................ 11 

Future Secondary Substation Knowledge Models ................................................. 12 

FSSN Applications .............................................................................................. 13 

The Open Semantic Framework .......................................................................... 15 

The Data Stream Classifier .................................................................................... 16 

The Data Stream Classifier Backend ................................................................... 16 

The Data Stream Classifier Frontend ................................................................... 17 

The Application Placement Engine ......................................................................... 19 

Model Formula .................................................................................................. 20 



v 

Objective Function Components: Performance Metrics ......................................... 21 

App Placement Program ..................................................................................... 23 

Global FSSN Manager: Approach ........................................................................ 23 

The Semantically Integrated Operational Dashboard .............................................. 24 

The 2D Dashboard ............................................................................................ 25 

The Augmented Reality App ............................................................................... 25 

CHAPTER 3: Project Results ..................................................................................... 28 

Data Streams Classifier ......................................................................................... 28 

Testing Method ................................................................................................. 28 

Test Results ...................................................................................................... 29 

Classifier Performance ....................................................................................... 30 

Application Placement Engine................................................................................ 30 

Testing Scenarios .............................................................................................. 31 

Correctness ....................................................................................................... 33 

Parameter Effectiveness ..................................................................................... 36 

Resource Conservation vs Replication ................................................................. 36 

Load Balancing versus Minimal App Movement .................................................... 37 

Time versus Quality Tradeoff ............................................................................. 39 

The Semantically Integrated Operational Dashboard .............................................. 43 

CHAPTER 4: Technology/Knowledge Transfer Activities ............................................. 49 

CHAPTER 5: Conclusions ......................................................................................... 51 

CHAPTER 6: Benefits to Ratepayers ......................................................................... 53 

LIST OF ACRONYMS ................................................................................................ 55 

REFERENCES .......................................................................................................... 56 

 

LIST OF FIGURES 

Page 

Figure 1: Architecture Overview ............................................................................... 10 

Figure 2: Extensions to the Operational Smart Grid Knowledge Model ........................ 13 

Figure 3: The Classification Frontend Displays Available Gridline Data Points (left), 

Known Data Point Classes (right), and Observed Data Points (center) ........................ 17 



vi 

Figure 4: The 2D Dashboard .................................................................................... 25 

Figure 5: Storyboard Example for Installing Apps in Substation to Alleviate Anomaly ... 26 

Figure 6. Prototyping the Augmented Reality App ..................................................... 27 

Figure 7: Augmented Reality App Appearance During the User Tests ......................... 27 

Figure 8: Classification Errors for Different Settings of the SAMPLE_LENGTH Parameter

.............................................................................................................................. 29 

Figure 9: Placement for Scenario 2 ........................................................................... 34 

Figure 10: Placement for Scenario 2.1 ...................................................................... 35 

Figure 11: Placement for Scenario 2.2 ...................................................................... 36 

Figure 12: Placement for Scenario 3 ......................................................................... 36 

Figure 13: Placement Emphasizing Resource Conservation ........................................ 37 

Figure 14: Placement Emphasizing Replication of Frequently Used Apps ..................... 37 

Figure 15: Initial Placement for Load Balancing versus Minimal Movement Experiment 38 

Figure 16: Placement Emphasizing  Load Balancing ................................................... 39 

Figure 17: Placement Emphasizing Minimal App Movement ........................................ 39 

Figure 18: Placements for Scenario 2 After 1, 5, 10 and 15 Seconds (from top left to 

bottom right) .......................................................................................................... 41 

Figure 19: Placements for Scenario 3 After 1, 5, 10, 30 Seconds, 30 Minutes and 14 

Hours (from top left to bottom right) ........................................................................ 42 

Figure 20. Installing an App Under Normal Conditions ............................................... 43 

Figure 21: Review and Confirmation of the Installation of an App .............................. 44 

Figure 22: Installation of the Adaptative Assignment Module App .............................. 44 

Figure 23: Installation of the Gridlink XMPP Stack Onto Available Substations ............. 45 

Figure 24: Voltage Violation in North Berkeley .......................................................... 45 

Figure 25: Dashboard Shows a Problem in a Substation ............................................ 46 

Figure 26. Apps Suggested to Fix a Voltage Violation ................................................ 46 

Figure 27: Using the App Placement Engine to Compute a Global Installation Plan ...... 47 

Figure 28: Using the App Placement Engine to Compute a Global Installation Plan ...... 47 

Figure 29: Installation of an App Completed ............................................................. 48 

  



vii 

LIST OF TABLES 

Page 

Table 1: Applications Considered in the Knowledge Models ........................................ 14 

Table 2: Scenario 2, App Description ........................................................................ 31 

Table 3: Scenario 3 App Descriptions ....................................................................... 33 

Table 4: Execution Times ........................................................................................ 40 

Table 5. Estimate of Reduction in Costs in PG&E Distribution Grid .............................. 54 

 

 

  



viii 

  



1 

EXECUTIVE SUMMARY  

Introduction 
Currently large quantities of data are produced everywhere, such as humans using 

applications, devices capable of sensing different environmental conditions, and 

machines able to record their operation and performance. However, the data produced 

is only collected and used in a restricted way to provide a very specific service. Some of 

the most popular trends in artificial intelligence are mainly concerned in processing and 

analyzing these large amounts of data to give meaning to it. Such methods give a 

degree of accuracy of the possible meaning of each piece of data, this understood data 

is then correlated with other probably relevant data that might help create more 

complex services.  

Semantic technologies are a set of methods and tools providing advanced ways to 

process data and can automatically understand the data produced. These technologies 

use a bottom-up approach, instead of trying to make sense of all the data and coping 

with errors that probabilistic approaches have by nature. Semantic technologies use 

formal languages to create knowledge models that give meaning to different raw data 

and are built based on such knowledge models, which describe the system in a way 

that the data produced has a meaning and a context within the system. Moreover, by 

promoting and adopting standardized knowledge models, applications and systems of 

the same domain can interact. Semantic technologies create a common understanding 

among users, applications, and platforms, helping users collaborate better with 

systems, and machines, hence those systems and machines communicate, and act 

autonomously without human help that interprets data. 

A “smart grid” combines “electrical” and “intelligent” infrastructures to the electrical 

systems to improve resiliency, reliability, flexibility, security, and efficiency. Substations 

are controlled and operated by supervisory control and data acquisition systems, which 

are enhanced by distribution management systems. On other end of the distribution 

grid, Internet of things (IoT)-enabled devices (smart meters, smart breakers) have 

been used to optimize the power system and guarantee a reliable cost-effective and 

carbon dioxide (CO2)-neutral operation.  

However, between substations and the other end of the grid, there is an intermediate 

point that can be automated to increase the resilience of the grid. This intermediate 

point corresponds to secondary substations that convert voltage from medium to low so 

that it can be used by customers. This project considered future secondary substations: 

smart hardware that can perform sophisticated functions, such as voltage and reactive 

power control (voltage control by the operator), and optimizing distributed generation 

over the low-voltage grid using specialized software that can be downloaded from a 

secured marketplace. The project developed an operational dashboard to manage 

future secondary substations effectively. The dashboard provides a useful tool for grid 
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operators to react faster to detected anomalies and prevent severe problems such as 

outages in the low-voltage grid. 

Project Purpose 
This research project developed an operational dashboard display for smart grid 

distribution substations based on semantic technologies. This dashboard can display the 

current grid state and warnings for detected problems, and it can automatically suggest 

solutions to the found problems. This project is to achieve an unprecedented level of 

automation for the management and operation of smart grids. The specific objectives of 

this research project were to:  

 Create an operational smart grid knowledge model to streamline the operation of 

the grid. 

 Demonstrate the value of the developed model within an operational 

management interface that promotes the local operational control of individual 

distribution substations.  

 Extend the semantically integrated operational dashboard with the capability to 

manage future secondary substations at a global level, across individual 

substations. 

Project Approach  
This research takes a semantics-based approach to provide the flexibility that the 

rapidly changing smart grid requires. It consists of a set of descriptions, expressed in a 

machine understandable way, of the future secondary substations, the software that 

controls them, and the software that can be installed in such substations. These 

descriptions provide meaning and give context to data that are produced in the grid. 

These descriptions make it possible to identify anomalies and problems and to 

recommend actions to resolve them. 

To create the semantically integrated operational dashboard, Siemen Corporate 

Technology formed a team at its Artificial and Human Intelligence Research Group. The 

team had a common interest and background in knowledge modeling, knowledge 

representation, and user interfaces, but with different finer focuses. Moreover, the team 

conducted this research project under the advice of another Siemens research group in 

Vienna working on a smart cities project in Austria. Such a team is in charge of creating 

the software (applications) to help manage future secondary substations. Guided by its 

expertise and domain knowledge, the team was able to overcome the technical 

challenge regarding the relevant information that should be modeled in a machine in an 

understandable way. Moreover, the strategic alliance with a team located in Princeton, 

New Jersey, complemented the knowledge representation skills and expertise required 

for developing a global view for a set of managed substations. Finally, given that the 

objective of the project is to reduce the cognitive overload of grid operators at 

managing substations, an innovative augmented reality user interface was explored. 
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Augmented reality is a technology that allows users to superimpose computer-

generated images on the user’s view of the real world through the usage of devices 

such as augmented reality glasses, smartphones or tablets. Thus, grid operators are 

able to use their physical space as their workspace without being limited to a monitor. 

This project was divided in six technical tasks, with four main products:  

 Knowledge models for managing the smart grid. These knowledge models are 

the foundation of this research project.  

 Semiautomatic data classifier. This software component allows grid operators to 

create and train statistical classifiers that will be used to automatically classify 

the type of data stream coming to the system (such as voltage and current). 

 Application placement engine. Given a set of constraints specified by the smart 

gird operator, this software component is in charge of computing a feasible 

installation of specialized software within the set of future secondary substations 

that the grid operator manages. 

 Semantically integrated dashboard (2D and augmented reality user interface). 

This dashboard constitutes the final product of this research project, in which all 

the other software components come together to provide the grid operator with 

a user interface capable of making him or her aware of detected anomalies, 

suggest possible solutions, and let him or her install applications in a future 

secondary substation. 

Since this project is basic research, all the developed components were tested 

individually to ensure they provided the required functionality, the performance of these 

components was adequate, and they were easy to install and use. For the classifier, 

Siemens used data from a Siemens SICAM P855 multifunctional device, as well as 

randomly generated data for switching decisions, and a set from the Lawrence Berkeley 

National Lab was used.  

Project Results  
This research project developed a semantically integrated operational dashboard for 

electrical substations. The tool provides grid operators with an intuitive and real-time 

visualization of the current grid state and (potential) grid problems. Moreover, the 

dashboard can suggest solutions to encountered problems and provide a global view of 

the set of substations that a grid operator is managing. Thus, the increasingly complex 

smart grid becomes more accessible to operators.  

Although the results of the proposed project could be transferable to other types of grid 

nodes, the focus of this research was on distribution substations (secondary 

substations) for which main tasks are voltage transformation, voltage regulation, and 

the isolation of faults in the transmission or distribution systems. Those future 

secondary substations are “smart” hardware capable of downloading and installing apps 
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from a secured market place in the cloud to help monitor and operate the grid (voltage 

band violations).  

The main outcome of this project is a system that can suggest solutions to grid 

operators to solve anomalies detected in the grid. The team successfully validated each 

software component developed within this project in terms of its ease of installation and 

usability. Moreover, the software components’ functionality was validated by building a 

simulated infrastructure that is constantly producing real-time data. This data is 

categorized by a statistical classifier, which feeds the knowledge models in charge of 

monitoring the data, raises alarms, and suggests solutions in case operators detect 

anomalies in the grid. The grid operator interacts with the system through either the 

two-dimensional or the augmented reality dashboard created in this project. These 

dashboards allow grid operators to go through the full managing process, from 

monitoring incoming grid data, to deciding if the suggested application to fix a potential 

problem in the grid is valid for the current problem, and whether the system computed 

installation plan for a set of future secondary substations is adequate.  

The team built two versions of the dashboard in this project with the objective of 

decreasing the cognitive overload that grid operators experience in analyzing and 

assessing the data that traditional operational dashboards provide. Thus, the reaction 

time to detected anomalies can be reduced resulting in a higher probability of 

preventing outages. This project helps build the path to a self-healing grid, given that at 

the current implementation, the project aims to support gird operators. However, 

operator input is only needed to confirm the plan computed by the developed system. 

In future research, this step could be skipped, making the execution of the plan fully 

automatic. 

Advancing the Research to Market 
To raise awareness and demonstrate the benefits that adopting cutting-edge 

technologies such as semantic technologies could bring in smart grid settings, the team 

held several meetings with Siemens stakeholders from the Energy Management 

business unit and received positive feedback. Different versions of the dashboard were 

also presented in internal Siemens conferences, such as Siemens ConneCTs 2017, and 

the Data Analytics and Artificial Intelligence Conference 2018. Outside of Siemens, the 

team presented the developed work to members of the California Institute for Energy 

and Environment and a research group from the Lawrence Livermore National 

Laboratory. Following are some of the outreach activities done during the project: 

 Met with Omnetric-Siemens looking for partners to apply for pilot project. 

 Met with members of the California Institute for Energy and Environment to 

introduce them to this research. 

 Met with Siemens stakeholders from Energy Management business unit. 
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 Met with the Lawrence Livermore National Laboratory research group looking for 

pilot partners. 

 Presented the project at Siemens ConneCTs 2017 in Princeton, New Jersey. 

 Distributed brochures at the EPIC symposium 2018 in Sacramento, California. 

 Presented HoloLens prototype at Siemens DAAI Conference (Data Analytics & 

Artificial Intelligence) in Nuremberg, Germany. 

The technical advisory committee for the project includes academics from the Lawrence 

Livermore National Laboratory and stakeholders from the Siemens Energy Management 

business unit. The committee held its first meeting in September 2017, and the project 

results presented included the knowledge models, data classifier, and mechanism for 

automatically finding applications to solve detected problems. The team received 

positive comments on the innovation of the approach, along with feedback about 

alternative hardware that could be used in a smart grid setting to acquire grid data and 

improve the accuracy of the data classifier. 

During the latest steps of this project, the team presented and published several 

technical papers. The Siemens Corporate Technology research team is looking for 

partners at Siemens and at California utilities to conduct a pilot project and user studies 

of the developed two-dimensional and augmented reality dashboards with grid 

operators. 

Benefits to California  
By implementing the proposed automated approach in an actual smart grid setting, 

ratepayers would benefit from better electricity reliability and lower costs. Using this 

automated system could help utilities improve their operations, enhance their outage 

management, and reduce electrical losses through faster control decisions. Moreover, it 

can allow utilities to take better advantage of asset use derived from reducing manual 

grid operation efforts and could improve grid monitoring capabilities for better planning.  

Adopting these technologies could have the potential to yield a reduction of the 

distribution grid System Average Interruption Duration Index value in the Pacific Gas 

and Electric Company (PG&E) distribution grid (excluding major events) of about 10 

percent, which would translate to cost savings of more than $1 billion per year to PG&E 

customers, including more than $134 million per year to PG&E residential customers. 

Even using a more conservative estimate of 5 percent, the potential yearly economic 

benefit of the developed project would be upward of $67 million, considering only 

California residential customers. Moreover, more automation in grid control rooms 

would also allow available staff to focus on services and locations of the grid, in which 

the highly automated proposed system cannot recover on its own. 

These benefits can directly affect private, commercial, and industrial consumers who 

can profit from more reliable services and reduced business losses due to improved grid 

resiliency as well as potential bill savings thanks to a higher degree of automation, 
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which also implies a lower grid cost operation. More automation within the smart grid 

also implies benefits for society, since it could allow more renewable energy resources, 

reduce environmental emissions, improve the security of electricity delivery, and reduce 

the import of crude oil through transportation electrification. 
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CHAPTER 1:  
Introduction 

Smart Grid of the Future 
The current power distribution grid is controlled and operated by supervisory control 

and data acquisition systems (SCADA). Such systems have been enhanced by 

distribution management systems (DMS) that provide useful tools such as network, and 

fault location and control. Even though the degree of automation of the distribution grid 

is high up to substation level, the low voltage grid remains poorly equipped, providing 

hardly any measurements that can help managing the low voltage grid efficiently. IoT-

enabled power grid devices, such as smart meters, smart breakers, and smart storage 

systems have been highly adopted to optimize the power system and guarantee a 

reliable cost-effective and carbon dioxide (CO2)-neutral operation. However, these IoT 

components are at the end of the distribution chain. A complementary approach, and 

perhaps of higher ecological impact can be obtained from turning the currently 

passively operated secondary substations to active ones, capable of providing functions 

that impact the lower voltage grid, and provide services that consider external 

information, such as forecasting and weather information. To this end, Siemens 

Corporate Technology in Europe, specifically in Austria, in conjunction with the Austrian 

Technology Institute have proposed the Intelligent Secondary Substation (Faschang, et 

al. 2017), which is a smart secondary substation capable of performing sophisticated 

functions, such as voltage and re-active power control, and distributed generation 

optimization over the low voltage grid. To perform these functions, a Smart Grid 

Application (a piece of software) is installed in an Intelligent Secondary Substation 

(such as Voltage Guard Application).   

This research project builds on top of the current efforts being done by the Siemens 

research groups in Europe. Thus, Smart hardware called Future Secondary Substations 

(FSSNs) are considered as the equivalent American smart hardware of the Intelligent 

secondary substations from Europe. In this research, a semantically integrated 

operational dashboard for Future Secondary Substations is proposed. This dashboard 

provides managing and control tools for grid operators to react quickly to the different 

conditions in the low voltage grid.   

The Future Secondary Substation 
A FSSN is a smart hardware on the low distribution grid. Applications (Apps) are the 

main functional elements of the FSSN system. These apps are software downloaded 

and installed in a FSSN from a market place (Appstore) to remedy detected grid 

problems as well as for performing routine monitoring tasks. Conception and 

implementation of these apps is beyond the scope of this project. These Apps are 

created in a joint effort by the Siemens groups in Vienna, Austria and the Austrian 
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Institute of Technology. The link between the semantically integrated operational 

dashboard developed in this project and the actuals Apps that perform an action over 

the grid, is the Operational Smart Grid Knowledge Model, a component of the 

dashboard developed within this project that contains “cognitive twins” of the Apps. 

Such “cognitive twins” are human-readable description as well as machine-interpretable 

information about the Apps. 

Semantic Technologies 
In today’s world, there are large quantities of data been produced everywhere, such as 

humans using applications, devices capable of sensing different environmental 

conditions, and machines able to record their operation and performance. However, the 

data being produced is only collected and exploited in a very restricted manner to 

provide a very specific service. Some of the most popular trends in Artificial Intelligence 

are mainly concerned in processing and analyzing these large amounts of data to give 

meaning to it. Such methods give a degree of accuracy of the possible meaning of each 

piece of data, this understood data is then correlated with other probably relevant data 

that might help create more complex services. Thus, the question arises, would not it 

be possible to create systems that know what the data they produce means? And how 

can it be related to other relevant data? This would lead to even more powerful systems 

capable of communicating and interoperating with each other seamlessly to create 

more sophisticated services.  

Semantic technologies originated by the very need of automatically understanding the 

data that is produced. These technologies use a bottom-up approach, instead of trying 

to make sense of all the data and coping with errors that probabilistic approaches have 

by nature. Semantic technologies use formal languages to create knowledge models 

that give meaning to heterogeneous raw data. Semantic Applications are built based on 

such knowledge models, which describe the system in a way that the data that is 

produced has a meaning and a context within the system. Moreover, by promoting and 

adopting standardized knowledge models, applications and systems of the same domain 

can interact. Thus, Semantic Technologies create a common understanding among 

users, applications, and platforms, helping users collaborate better with systems, and 

machines, hence those systems and machines communicate, and act autonomously 

without human help that interprets data. 

User Interfaces 
For more than forty years, the classic 2D Graphic User Interfaces (GUI) have been 

dominant in most software. In the early days, programmers realized that the success of 

their software relayed heavily on its ease of interaction, and the appeal of the graphical 

user interfaces. Thus, it was popularized the constant use of windows, icons, menus, 

and pointers for desktop computers. Methods to create these 2D user interfaces have 

evolved with time to simplify users’ efforts. Particularly, the introduction of mobile 

devices had required to come up with different ways to display simplified content in a 
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smaller display, and incorporate other means of interaction, such as taps on 

touchscreens. Nowadays all users are familiarized with a traditional 2D desktop user 

interface. 

Innovative user interfaces have been on development and are becoming more relevant 

as the hardware that supports them becomes more mainstream. Virtual Reality (VR) 

(Whyte, et al. 2000) was proposed as a paradigm for making the access to information 

much more tangible and interactive. VR systems allow users to experience a virtual 

world, in which space is unlimited, laws of physics can be excluded to provide an 

immersive experimentation field to explore properties of objects yet to be build. 

On its side, AR allows to superimpose virtual 2D or 3D objects, graphics or sounds in 

real-world environments, providing users with an immersive experience, and allowing 

them to use a much broader working space than a standard monitor can offer. The 

visual and sound resources available for AR app design can reduce the user’s cognitive 

effort. Moreover, the freedom of movement around a room provides a more intuitive 

user experience. AR provides a 360° immersed into the data and virtual surrounding 

experience, whilst letting these operators to be part of the real-world environment. 

Thus, grid operators are still able to interact with other coworkers, decreasing the risk 

of motion sickness considerably. 
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CHAPTER 2: 
Project Approach 

Semantically Integrated Operational Dashboard 
Architecture 
The semantically integrated operational dashboard developed within this project can be 

seen as the control panel for managing a grid of future secondary substations (FSSNs), 

a FSSN is a secondary distribution substation capable of downloading and installing 

software (FSSN Apps) from a marketplace located in the cloud. The installed software is 

designed to have an effect in the gird, such as fixing an anomaly, monitoring, or 

retrieving information. Since a grid operator is in charge of more than one substation, 

the semantically integrated operational dashboard provides support for managing a set 

of FSSNs in a global way. Hence, the status of the grid is considered as a full, rather 

than individual substations.  

Figure 1: Architecture OverviewFigure 1 shows the software architecture for the 

semantically integrated operational dashboard. Marker A shows the components that 

were created by other Siemens research groups prior this project. Those components 

include the: a) gridlink messaging bus (Faschang, et al. 2017), which is a topic-based 

messaging bus responsible for distributing grid events and data among its participants, 

b) a software container that runs in each FSSN capable of hosting FSSN Apps, and c) 

the cloud-based FSSN Appstore that manages the deployment of Apps to FSSNs and 

their lifecycle for example, configuration and deletion.  

Figure 1: Architecture Overview 

 

Source: Siemens CT 
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Within the scope of this project, a Classification Interface Backend (marker B) and a 

Classification Interface Frontend (marker G) were developed. The former gets data 

from the Gridlink bus and statistically classifies Gridlink data points (for example, it can 

differentiate a data point that contains load profiles from data points that contain 

voltage data). The Classification Interface Backend relies on statistical classifiers, which 

are trained with information provided by the grid operator through the Classification 

Interface Frontend. The classified values are stored in a central operational knowledge 

model via the Open Semantic Framework (OSF) (marker C) (Mayer, et al. 2017), which 

is a Web interface to meaningful data. Additionally, the OSF is in charge of processing, 

and monitoring the incoming data in order to detect grid problems such as voltage 

violations or overload events. Given a problem detected by the OSF, the FSSN Manager 

(marker E) determines the FSSN Apps that should be installed, and their configuration 

parameters. In turn, the Global FSSN Manager (marker F) or App Placement Engine 

computes optimized app placements across multiple FSSNs given installation 

parameters defined by the grid operator (for example, resource consumption 

optimization, or load balancing across the FSSN grid). Finally, the semantically 

integrated operational dashboard (marker D) is the user interface that brings together 

all the backend functionalities in order to support grid operators in the process of 

managing the FSSN grid. 

Grid Knowledge Models 
The fundamental component of this research project is the machine understandable 

representations of the elements involved in the management of a network of Future 

Secondary Substations (FSSNs). Such representations correspond to knowledge models 

(ontologies) that were customized from existing standardized models (such as SSN1 

ontology and QUDT2) and extended during this research work. As mention in Chapter 1, 

the objective of a knowledge model is to describe in a deeper level a specific domain 

(for example, the smart grid) in order to give meaning to the elements involved by 

stating the relationships and logic constraints among such elements.  Knowledge 

modelling is ideal for achieving the level of adaptivity required for modeling complex, 

evolving systems with long lifetimes of individual components, such as the smart grid. 

Using this technology, descriptions of new elements that are not currently into play in 

the smart grid (such as new distributed energy resources) can be incorporated 

seamlessly.  

As stated before, Semantic technologies are a powerful tool to describe a domain of the 

world in a machine understandable way. However, to allow interoperability among 

                                        
1 Semantic Sensor Network Ontology (https://www.w3.org/2005/Incubator/ssn/ssnx/ssn). 

2 QUTD (http://www.qudt.org/). 

 

https://www.w3.org/2005/Incubator/ssn/ssnx/ssn
http://www.qudt.org/
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different systems based on knowledge models, the creation of ad-hoc models should be 

kept to a minimum (Hodges, García and Ray 2017). Thus, this research work combined 

elements from existing ontologies and extended them (when strictly necessary) with 

specialized knowledge models that cover relevant concepts for the FSSNs use cases, 

including Gridlink-specific concepts, possible grid problems (for example, Voltage Band 

Violations), and their corresponding solutions (that is, FSSN apps). As the knowledge 

foundation, the FSSN ontologies build upon concepts from the QUDT ontology (which 

describes quantities, units, dimensions, and types) and from the SSN ontology (that 

describes common concepts in sensor networks). The integration with QUDT is 

particularly powerful since this ontology describes concepts such as voltages and power 

values in detail, allowing the identification and labeling of values with proper units. It 

also describes the properties of values themselves and captures their relationship to 

other values and data types. On its side, the SSN ontology describes most basic 

concepts of sensors and data observation. Thus, concepts from SSN that apply to Smart 

Grids were reused in this work. 

Future Secondary Substation Knowledge Models 
To understand the value of having a rich description of a concept, let us describe the 

DataPoint class. This class allows live data to be processed and stored directly in the 

semantic model. The incoming data is processed by means of SPIN3 rules. SPIN is an 

industry standard to represent logic constraints on Semantic Web models. Specifically, 

the DataPoint class is a subclass of SensingDevices (see ), it has an identifier and it is 

responsible for observing time-stamped data values (TimeSeriesNumericOutput).  

SPIN rules defined within the DataPoint class associate the observed values with their 

corresponding DataPoint instance in the knowledge model.  In addition, instances of the 

DataPoint class are associated with a QuantityRange that represents upper and lower 

acceptable bounds for the values of a specific DataPoint instance. For example, it can 

be state that data points of the type AmericanLineVoltage may fluctuate in the range of 

110V +/- 5% not to trigger a violation. 

Each DataPoint instance can have one of two states: a state in which all its values stay 

within the defined constraints and a state in which at least one of its value violates at 

least one constraint. The goal of the grid operator is to keep DataPoint instances in the 

non-violating state. The states as well as the goal are represented as instances in the 

model for each data point. Data point values that violate any of the constraints 

associated with their DataPoint instance are considered violations. In the knowledge 

model, this is implemented via associations of DataPoint instances with an (ideal, non-

violating) State class (for example, “DataPoint values are in the acceptable range”); 

States in turn are associated with Goals (for example, “DataPoint values must be within 

                                        
3 SPARQL Inference Notation (SPIN) (http://spinrdf.org/). 

 

http://spinrdf.org/
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their acceptable range”). Thus, any violation constitutes a violating state of that goal 

and is a sign of an operating problem in the grid that could escalate into a bigger 

problem such as a blackout. Such a violation should be taken care of, for instance by 

installing an FSSN app that is designed to alleviate operational problems of the type 

that causes the given violation.  

Figure 2: Extensions to the Operational Smart Grid Knowledge Model  

 

Source: Siemens CT 

SPIN rules are the entities verifying the meaning of the data. They make sure that 

incoming values are:  a) properly categorized by associating them with correct 

DataPoint instances, b) correctly pre-processed (for example, by averaging over a given 

time window), and c) validated against the specific constraints associated with their 

DataPoint instances to detect violations and clean up old values. 

FSSN Applications 
FSSN Applications are the main functional elements of the FSSN system and are 

downloaded from a market place or Appstore, configured, and installed into a FSSN. 

These apps can provide information about the grid, monitor, detect, or remedy grid 

problems, among other functionalities. However, the conception and implementation of 

these apps is beyond the scope of this project; they are created in a joint effort by a 

Siemens Research Group in Corporate Technology in Vienna, Austria, and the Austrian 

Institute of Technology. The relationship between this research work and the FSSN 

Applications and Appstore is established by the extended knowledge models, which are 

“cognitive twins” of deployable applications. Thus, for each application, a subgraph of 

the knowledge model contains a human-readable description as well as machine-

interpretable information about the purpose of the application, its dependencies, and 

suggested configuration. These “cognitive twins” are then linked to grid problems as 
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means to alleviate them. Thus, when the system detects a problem, it decides on a 

proper reaction from the applications related to such a problem. 

Table 1 shows the four categories of applications that the current knowledge models 

consider, namely: a) basic functions, b) voltage monitoring and switching decisions, c) 

topology monitoring, validation and verification, and d) interconnection with building 

management systems.  

Table 1: Applications Considered in the Knowledge Models 

Source: Siemens CT 

Category Description 

Basic Functions 

 
Java Stack: a multi-purpose Java client stack 

Storage/Archiver: it takes streamed data as input and produces a 
time series archive that is stored locally and made available to other 
apps 

GridLink XMPP Stack: enables other apps to communicate via the 
XMPP protocol 

Voltage 
monitoring and 
switching 
decisions 

 

Voltage Guard I (VG1): it requires, as input, the prevalent bus bar 
voltage at the FSSN and produces, as output, tap switching decisions 
for the FSSN it is deployed on 

Voltage Guard II (VG2): a more sophisticated Voltage Guard, it 
requires streamed voltage data from both the bus bar and a data 
point to make a switching decision  

Voltage Guard III (VG3): it considers the streamed voltage data from 
the monitored data point and the bus bar, and time-series data about 
the prevalent bus bar voltage at the FSSN to make tap switching 
decisions 

Topology 
Monitoring, 
Validation, and 
Verification  

 

Grid Representation Module (GRM): it keeps a representation of the 
current state of the low-voltage grid, particularly of its topology and 
supplies that information to other apps that depend on this 
information. It keeps track of both the “static” grid topology (i.e., 
relationships between FSSNs and connected nodes) and the 
“dynamic” grid topology that contains information about the current 
state of switches. 

Topology Verification Module (TOV): it verifies automatically the grid 
topology that is published by the GRM and marked as the currently 
valid dynamic topology. 

Interconnection 
with Building 
Management 
Systems 

 

GridLink Flexop Building Energy Agent (BEA): it enables other apps 
to communicate with buildings 

Building Energy Agent (BEA): it loads data from smart meters in 
buildings that are not natively Gridlink-capable, and stores it using 
the Storage app 

Building Representation Module (BRM): it creates digital twins of all 
buildings that are supplied through a specific FSSN. 

Adaptive Assignment Module (AAM): it supplies information about the 
dynamic position of buildings in the low-voltage grid of an FSSN 
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The core function of each app is captured in the ontologies to enable the automatic 

resolution of smart grid problems, as well as the app dependencies, which correspond 

to other applications that need to run either locally in the same FSSN (for example, a 

JavaStack), or remotely in a neighbor FSSN, and the suggested app configuration 

parameters that could potentially automate the installation of apps in a FSSN. It should 

be noted that thanks to the evolving characteristics of Semantic Technologies, when 

new applications are created, their description, and relationship with potential grid 

problems can be seamlessly integrated to the current knowledge models. 

The Open Semantic Framework 
The software component in charge of the collection, curation, and access to ontologies 

that encapsulate knowledge and experience in a machine-understandable way, is the 

Open Semantic Framework (OSF), a tool created within the Siemens research team in 

charge of this research project. The OSF forms the basis for enabling automated 

reasoning and decision making on top of knowledge models and lets semantic 

applications use domain-specific and general knowledge models. The OSF furthermore 

tackles several major obstacles to the widespread use of integrated semantic models by 

supporting individuals who are not versed with ontologies in understanding and 

extending them, and by making these models more tangible with the help of advanced 

human–interface technologies. 

The following functions are provided by the OSF to facilitate the operational 

management of FSSNs: 

 Knowledge Management: the OSF contains core knowledge models that are 

relevant across domains (for example, models that capture data types, units, 

dimensions, etc.) as well as Knowledge Packs (KPs) that encode more specialized 

(for example, domain-specific) information for usage by specific clients. KPs thus 

enable vertical interoperability within a domain (for example, within FSSNs and 

smart meters) whereas their integration with core ontologies ensures horizontal 

interoperability across domains (for example, between an FSSN and a building 

management system). 

 Knowledge Access: the OSF provides controlled access to stored knowledge both 

in the core ontologies and in KPs through a querying interface inside a REST API. 

This interface is based on prefabricated SPARQL query templates that are 

shipped with a specific KP. Thus, KPs not only determine the knowledge 

applications can access but also exactly how they access it. The purpose of this 

mechanism is to prevent unwanted modifications to the knowledge models and 

to forbid clients to extract all knowledge from the OSF; both aspects are of 

paramount importance for the commercial viability of any semantic framework. 

The OSF’s Semantic API can also be used to insert new information using 

construct or update query templates. Within this project, this is particularly 

useful for integrating semantic models with real-time data streams. 
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 Knowledge Visualization: visualizing knowledge in an easily accessible and 

tangible way is beneficial for several purposes, including the semantic validation 

of ontologies by subject-matter experts and for supporting non-ontologists with 

the extension of vocabularies. The OSF supports knowledge visualization 

applications via a specialized, visualization specific KP with queries that enable 

client applications to explore knowledge models. Existing approaches to visualize 

semantic models often merely display the underlying schemas, and users can 

easily get lost because the complexity of conceptual relationships makes it 

difficult to visualize ontologies on 2D computer screens. Therefore, the usage of 

interfaces that support 3D interaction to produce practically usable visualizations 

of knowledge models is encouraged.  

For this project, the smart grid knowledge models are packaged as a KP together with 

predefined queries (for example, for the insertion and loading of data points, and the 

identification of an app that resolves a given problem) and deployed within OSF. Clients 

of the OSF, for instance the data stream classifier and the Application Placement Engine 

use these queries as their interface to the knowledge models. 

From an operational point of view, the semantic knowledge models of the system that 

are provisioned via OSF are the storage and processing unit of the system, since they 

contain all required information and are able to evaluate and classify data values to 

assess the current state of the grid in real time.  

The Data Stream Classifier 
The automatic classification of smart grid data points represents an essential step to 

enable the application of the smart grid knowledge model to incoming data. The goal of 

this component is to provide an interface that can be used by grid operators to create 

statistical classifiers for data points which origin and purpose are known to them. Once 

created, these classifiers are applied to new or unclassified data points.  

This Data Stream Classifier consists of a back and a frontend. The backend is 

responsible for training a statistical classifier given training examples that are sent via 

the frontend. Moreover, the backend remembers one-to-one associations between data 

points and data point classes and stores trained associations persistently to be used 

across several runs of the system. 

The Data Stream Classifier Backend 
For classifying data points statistically, the backend uses a 3-dimensional KD-tree 

structure that stores a statistical fingerprint of each data point with a known association 

that is based on the ten most recent observations of a data point. The fingerprint 

consists of a 3D vector containing the mean of a data point, its standard deviation, and 

its skewness.  To classify a new data point given its Gridlink identifier, the backend 

loads the most recent observations of such data point from the Gridlink and then runs a 
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nearest neighbor search inside the KD-tree. In addition, it computes a confidence that is 

based on the Euclidean distance between the new data point sample and its nearest 

neighbor and provides the confidence value to the client. 

The REST interface of the backend provides its clients with the options of a) asking for 

a data point class given its Gridlink identifier, b) registering one-to-one mappings given 

a Gridlink identifier and the URI of the target class within the knowledge model,  c)  

uploading new associations between Gridlink data points and a data point class as 

training examples for the statistical classifier, and d) deleting both types of mappings. 

The Data Stream Classifier Frontend 
The Classification Frontend is a graphical user interface (Figure 3) that represents the 

linking pin between the Classifier Backend, the OSF, and the Gridlink message bus. 

Figure 3: The Classification Frontend Display 

 

Available Gridline Data Points (left), Known Data Point Classes (right), and Observed Data Points 

(center) 

Source: Siemens CT 

The Classification Frontend displays all data points that are available on the Gridlink at 

any given time together with their most recent values (left column in Figure 3), the 

frontend interacts with the Classification Backend to apply already trained classifiers to 

the data points and allows operators to categorize new points. To this end, it loads 

available data point categories from the knowledge model via the OSF and visualizes 

them (right column in Figure 3). In case a data point has already been successfully 

classified by the Classification Backend, the frontend displays the data point’s class and 

the confidence of the classification in the left column. An operator can also switch data 

points into “Observation” mode (central panel in Figure 3) which triggers the insertion 
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of newly recorded data points into the knowledge model and their processing via SPIN 

rules inside the OSF. 

Operators interact with the frontend mainly by drag-and-dropping the “cards” that 

represent individual data points. The frontend provides three main functions: 

1. Teaching a new association between a data point and a data point class to the 

backend. To this end, an operator drags the representation of the data point and 

drops it on the class that should be associated with it. The operator is then given 

two options on how to proceed:  

o The association can be sent to the backend as a training example. In this 

case, the frontend instructs the backend to fetch from the Gridlink the ten 

most recent values of such data point. These values are then used to train 

a statistical classifier. This classifier is subsequently applied to all other 

available data points. If any data point can now be successfully classified, 

the frontend is updated with this information. 

o The association can be recorded and stored as a one-to-one mapping 

between the data point and the class. The classifier remains oblivious of 

this association and it is thus not used to classify any other data points. 

o An operator would choose the first option whenever data points of the 

given class are similar enough that can be generalized (for example, a line 

voltage). The second option is applicable whenever the given data point 

has unique statistical properties that should not be used for generalization 

(for example, a specific building’s power consumption). 

2. To remove an association between a data point and a class, an operator drags a 

data point card on the “Remove Classification” icon. This triggers a REST request 

to the backend that removes the training example or one-to-one mapping that is 

associated with the given data point. 

3. To place a classified data point in “Observation” mode, an operator drags the 

data point card to the central panel of the frontend. This action triggers several 

REST requests that reconfigure the system to observe that data point: a new 

DataPoint instance is created in the knowledge model to hold this point’s data 

and new values are added to this instance as they become available on the 

Gridlink. Since the knowledge model now has data values that are associated to 

a specific data point class, OSF inferencing subsystem will trigger the SPIN 

functions knowledge model to observe the data point given its class and report 

any violations. If a violation is detected, this is recorded in the knowledge model 

and the frontend visualizes the violation (Figure 3). The operator can access 

details about the violation by clicking on the data point card in the observation 

panel. 
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Application Placement Engine 
As stated before, the knowledge models help describing the problems that could be 

found on the grid as well as their potential solutions in terms of applications to install. 

On its side, the classifier is responsible for categorizing and validating incoming data 

through the usage of knowledge models. However, grid operators oversee not only one, 

but a cluster of substations. 

The Application Placement Engine was created to help operators manage those FSSNs 

globally, this component considers the current state of the FSSN and performance 

metrics defined by the grid operator, which express his interest in different aspects of 

the installation, such as resource consumption or load balancing. Given this information, 

the placement engine computes a feasible installation plan. 

To compute an installation plan, the problem of placing M apps on N nodes was 

formulated as a combinatorial optimization problem. Each node corresponds to a FSSN 

in a peer to peer communication network through the Gridlink bus. Thus, it is assumed 

that any app placed on any node 𝑖 ∈ {1, … , 𝑁}  can communicate with any other app 

placed on node 𝑗 for any 𝑗 ∈ {1, … , 𝑁}; forming a complete graph. 

Each node 𝑖 ∈ {1, … , 𝑁} is equipped with three resource types:  𝑟𝑖,𝑠 the amount of 

available disk storage, 𝑟𝑖,𝑐  the amount of available CPU cycles and 𝑟𝑖,r the amount of 

available RAM.  

Given that the maximum amount of each resource required by each app during runtime 
is known, app 𝑖 ∈ {1, … , 𝑀} consumes at most 𝐶𝑖,𝑠 units of storage 𝐶𝑖,𝑐 CPU cycles and 

𝐶𝑖,𝑟 units of RAM at runtime. 

Given that apps may have dependencies; it can be said that app 𝑗 is a dependency of 

app 𝑖 if app 𝑖 requires access to services provided by app 𝑗 at runtime. Dependencies 

may themselves have dependencies, but it is assumed that a directed graph 

representing all app dependency relationships is acyclic (i.e., it cannot happen that app 

A has a dependency on app B, which in turn has a dependency on app A). 

All app dependency relationships are described in the knowledge models. Such 

dependencies can be local or non-local. Local dependencies must be placed at the same 

node as the app depending on it, whilst non-local dependencies can be placed 

anywhere in the network. 

Let 𝐷𝑙 be the local dependency relation 

𝑑𝑖,𝑗
𝑙 = {

 1, 𝑖𝑓 app  𝑖 has a local dependency on app 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ( 1 ) 

Let 𝐷𝑛𝑙  ∈ {0,1}𝑀×𝑀 be the matrix that encodes all non-local app dependency 

relationships such that its (𝑖, 𝑗)𝑡ℎ entry 

𝑑𝑖,𝑗
𝑛𝑙 = {

1, 𝑖𝑓 app 𝑖 has a non-local dependency on app 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ( 2 ) 
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The grid operator specifies a set of mandatory installation requirements (for example, 

install Voltage Guard I app on Node 1 to solve voltage violation). 

Let 𝑃 ∈  {0,1}𝑀×𝑁 be the matrix that encodes all node-specific app placements (i.e., 

mandatory installation requirements and local dependencies) such that its (𝑖, 𝑗)𝑡ℎ entry 

𝑝𝑖,𝑗 = {
1, 𝑖𝑓 𝑎𝑝𝑝 𝑖 𝑚𝑢𝑠𝑡 𝑏𝑒 𝑝𝑙𝑎𝑐𝑒𝑑 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 3 ) 

Some applications may provide crucial services to others, or there may be multiple 

applications that have the same dependency. The use of “hot standby” replicas of 

crucial dependencies is a common technique used to mitigate downtime associated with 

the failure of nodes hosting crucial applications. It is assumed that a grid operator 

provides a vector 𝐻 ∈ 𝑁𝑀 such that its 𝑗𝑡ℎ element ℎ𝑖 indicates the number of hot 

standby replicas of app 𝑖 that are to be deployed within the network. In addition, a grid 

operator might want to install an app on any node, which is a special case of a “hot 

standby” with one replica. 

Model Formula  
The search space is defined as the set X of all binary matrices 𝑥 ∈  {0,1}𝑀×𝑁 whose 

(𝑖, 𝑗)𝑡ℎ entry 

𝑥𝑖,𝑗 = {
1, 𝑖𝑓 𝑎𝑝𝑝 𝑖𝑠 𝑝𝑙𝑎𝑐𝑒𝑑 𝑜𝑛 𝑛𝑜𝑑𝑒 𝑗 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 ( 4 ) 

Note that such definition precludes the possibility of placing the same app twice on a 

given node. However, it is possible to place the same app on multiple nodes. 

Given 𝐷, 𝑃, 𝐻 , 𝑄𝑟𝑖,𝑐, , 𝑟𝑖,𝑠, , 𝑟𝑖,𝑟 for 𝑖 ∈  {1, … , 𝑁} and 𝑐𝑖,𝑐, 𝑐𝑖,𝑠, 𝑐𝑖,𝑟 for 𝑖 ∈  {1, … , 𝑀} the goal of 

the Application Placement Engine is to find a feasible 𝑥∗ ∈  𝑋 Feasibility is defined by the 

following constraints: 

a) Capacity Constraint:  for each resource type, the total resource usage by all apps 

hosted on a node must not exceed the total amount of resource available on 

such a node (i.e., storage, ram, and cpu): 

 ∑ 𝑥𝑖,𝑗𝑐𝑖,𝑠
𝑀
𝑖=1 ≤ 𝑟𝑗,𝑠, ∀ 𝑗 ∈ {1, … , 𝑁}, ( 5 )  

 ∑ 𝑥𝑖,𝑗𝑐𝑖,𝑟
𝑀
𝑖=1 ≤ 𝑟𝑗,𝑟 , ∀ 𝑗 ∈ {1, … , 𝑁}, ( 6 )  

∑ 𝑥𝑖,𝑗𝑐𝑖,𝑐
𝑀
𝑖=1 ≤ 𝑟𝑗,𝑐, ∀ 𝑗 ∈ {1, … , 𝑁}   ( 7 ) 

b) Installation Requirements Constraint: local app placements encoded by 𝑃 must 

be enforced 

 𝑥𝑖,𝑗 = 1, ∀ (𝑖, 𝑗) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝𝑖,𝑗 = 1 ( 8 )   
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c) Local Dependency Placement Constraint: if there is an app 𝑖 placed on node 𝑗 

that has a local dependency 𝑑, then that dependency must be placed on the 

same node. This contraint is expressed as follows: 

𝑥𝑖,𝑗 = 1 →  𝑥𝑑,𝑗 = 1, ∀ (𝑖, 𝑑) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑𝑖,𝑑
𝑙 = 1, ∀ 𝑗 ∈ {1, … , 𝑁} ( 9 )   

d) Non-local Dependency Placement Constraint: if there is a placed app 𝑖 that has a 

non-local dependency 𝑑 then that dependency must be placed somewhere on 

the network. This constraint is expressed as follows: 

 ∑ 𝑥𝑖,𝑗
𝑁
𝑗=1 ≥ 1 →  ∑ 𝑥𝑑,𝑗

𝑁
𝑗=1 ≥ 1, ∀ (𝑖, 𝑑) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑𝑖,𝑑

𝑛𝑙 = 1, ∀ 𝑗 ∈ {1, … , 𝑁} ( 10 )   

e) Hot Standby Constraint: for each 𝑖 ∈  {1, … , 𝑀} there must be at least ℎ𝑖 replicas 

of app 𝑖 within the network: 

 ∑ 𝑥𝑖,𝑗
𝑁
𝑗=1 ≥ ℎ𝑖  ∀ 𝑖 ∈ {1, … , 𝑀}.   ( 11 ) 

Objective Function Components: Performance Metrics 
The constraints in the prequel do not preclude placements that consume most, if not all 

the available resources in the network. For example, it is possible that a primary app 𝑖 
has dependency 𝑗 and 𝑗 is placed on every node in the network even if no other app 

requires its services. Such a placement, though feasible for some input data, wastes 

resources and undermines resiliency since under node failure conditions, these 

unnecessarily replicated apps consume resources that could otherwise be allocated to 

apps requiring migration from failed nodes. 

For this reason, a performance model that promotes minimal network-wide resource 

consumption and load imbalance is proposed: 

a) Network-wide Resource Consumption: the total network-wide resources 

consumed by a placement 𝑥 is given by 

 𝑅(𝑥) = 𝑤𝑅𝑠
𝑅𝑠(𝑥) + 𝑤𝑅𝑟

𝑅𝑟(𝑥) + 𝑤𝑅𝑐
𝑅𝑐(𝑥), ( 12 ) 

where 𝑤𝑅𝑠
, 𝑤𝑅𝑟, and 𝑤𝑅𝑐

 are tunable weighting parameters, and 

 𝑅𝑠(𝑥) = ∑ ∑ 𝑥𝑖,𝑗
𝑀
𝑖=1

𝑁
𝑗=1 𝑐𝑗,𝑠 ( 13 ) 

 𝑅𝑟(𝑥) = ∑ ∑ 𝑥𝑖,𝑗
𝑀
𝑖=1

𝑁
𝑗=1 𝑐𝑗,𝑟 ( 14 ) 

 𝑅𝑐(𝑥) = ∑ ∑ 𝑥𝑖,𝑗
𝑀
𝑖=1

𝑁
𝑗=1 𝑐𝑗,𝑐 ( 15 ) 

b) Load Balancing: in addition to minimizing overall resource consumption 𝑅(𝑥), for 

maximization of computational resiliency it is desirable to minimize load 

imbalance. If all resource consumption was perfectly balanced within the 

network, each node would supply exactly 

 ∅𝑠(𝑥) =
𝑅𝑠(𝑥)

∑ 𝑟𝑖,𝑠
𝑁
𝑖=1

 ( 16 ) 
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 ∅𝑟(𝑥) =
𝑅𝑟(𝑥)

∑ 𝑟𝑖,𝑟
𝑁
𝑖=1

 ( 17 ) 

 ∅𝑐(𝑥) =
𝑅𝑐(𝑥)

∑ 𝑟𝑖,𝑐
𝑁
𝑖=1

 ( 18 ) 

amount of resource to all apps it hosts, i.e., the total amount of resources 

consumed, divided by the total amount of resources available in the network. 

Perfect balancing may not be possible since the placement problem is binary, 

and apps require different amounts of each resource type. Thus, the network 

imbalance imbalance is minimized, which can be encoded as 

 𝐵(𝑥) = 𝑤𝐵𝑠
𝐵𝑠(𝑥) + 𝑤𝐵𝑟

𝐵𝑟(𝑥)  + 𝑤𝐵𝑐
𝐵𝑐(𝑥) , ( 19 ) 

where 𝑤𝐵𝑠
(𝑥), 𝑤𝐵𝑟

(𝑥) and 𝑤𝐵𝑐
(𝑥) are tunable weighting parameters, 

 𝐵𝑠(𝑥) = ∑ ‖
∑ 𝑥𝑖,𝑗𝑐𝑖,𝑠

𝑀
𝑖=1  

𝑟𝑗,𝑠
− ∅𝑠(𝑥)‖𝑁

𝑗=1  ( 20 ) 

 𝐵𝑟(𝑥) = ∑ ‖
∑ 𝑥𝑖,𝑗𝑐𝑖,𝑟

𝑀
𝑖=1

𝑟𝑗,𝑟
 − ∅𝑟(𝑥)‖𝑁

𝑗=1  ( 21 ) 

 𝐵𝑐(𝑥) = ∑ ‖
∑ 𝑥𝑖,𝑗𝑐𝑖,𝑐

𝑀
𝑖=1

𝑟𝑗,𝑐
 − ∅𝑐(𝑥)‖ ,𝑁

𝑗=1  ( 22 ) 

and ‖∙‖ may stand for either (∙)2 or  |∙|, for example. The ‖∙‖ terms in 

𝐵𝑠(𝑥), 𝐵𝑟(𝑥) and 𝐵𝑐(𝑥) measure the difference between node 𝑗’s actual resource 

consumption, and the ideally balanced resource consumption. 

c) Minimal Movement: the App Placement Engine can be triggered by either a 

human operator, or when a node failure is detected. In either case, it is desirable 

to minimize the number of configuration changes since movement of apps from 

one node to another is costly in terms of time and bandwidth. This objective can 

be expressed as follows: 

 𝑀(𝑥) = ∑ ∑ |�̃�𝑖,𝑗 − 𝑥𝑖,𝑗|𝑁
𝑖=1

𝑀
𝑖=1 , ( 23 ) 

where �̃�𝑖,𝑗 indicates whether app 𝑖 is currently placed on node 𝑗 or not. 

d) Replicated Placement of Frequently Used Dependencies: to improve the 

resiliency of the system, installing the most frequently used apps across the 

network multiple times is considered. 

o The set 𝑖 in equation 𝑆 dentifies all apps that are dependencies of at least 

one of the 𝑀 apps to be placed. For each dependency app 𝑖 ∈ 𝑆, let 𝑛𝑖 be 

the number of apps (either primary or dependency apps) that require 

interaction with 𝑖. Note that  𝑛𝑖 is the i'th column sum of the dependency 

matrix 𝐷.  
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o Maximization of the following term promotes the replicated placement of 

the most frequently used dependencies, in proportion to how many 

deployed apps use them: 

 𝑈(𝑥) = ∑ ∑ 𝑓𝑖𝑥𝑖,𝑗
𝑁
𝑗=1𝑖∈𝑆 , ( 24 ) 

where 

 𝑓𝑖 =
𝑛𝑖

∑ 𝑛𝑘𝑘∈𝑆
 . ( 25 ) 

 

App Placement Program  
Based on the model formulas above, the app placement program is given by 

 𝑚𝑖𝑛
𝑥∈𝑋

  𝐽(𝑥) 

 𝑠. 𝑡.  𝑥 ∈ 𝐶, ( 26 ) 

where 

 𝐽(𝑥) = 𝑤𝑅𝑅(𝑥) + 𝑤𝐵𝐵(𝑥)  + 𝑤𝑀𝑀(𝑥) −  𝑤𝑈𝑈(𝑥) ( 27 ) 

𝑤𝑅 , 𝑤𝐵, 𝑤𝑀, 𝑤𝑈 ∈ 𝑅+ are appropriateley chosen normalization parameters, 

𝑅(𝑥), 𝐵(𝑥) 𝑎𝑛𝑑 𝑀(𝑥) are as in (12), (19),  and (23), and 𝐶 is the subset of 𝑋 whose 

elements 𝑥 satisfy (4), (6), (7), (8), (9), (10), and (11). The term 𝑈(𝑥) is substracted 

since the objective is to maximize it. 

This model is structurally flexible; setting 𝑤𝐵 = 0, for example results in a program that 

does not take balancing into account. 

Global FSSN Manager: Approach   
Following the approach in (Tucker, et al. 2007), also used in (Pradhan, et al. 2017),  

the SMT solver Z3 (Urgaonkar, Arnold L and Prashant 2007) is iteratively applied to 

problem (26). SMT solvers are designed to accept a set of logical or algebraic 

constraints and to either produce a feasible point that satisfies all the constraints, or 

indicate that the constraints are not satisfiable. 

In addition to the algebraic constraints (5), (6), (7), (8), (9), (10) and (11), at the kth 

iterated application of the SMT solver, it is supplied a constraint that imposes a strict 

upper bound bk on the value of the cost function J(x): 

 𝐽(𝑥) < 𝑏𝑘 ( 28 ) 

If the problem is feasible, the SMT solver returns either a feasible app placement 

configuration 

 𝑥𝑘 ∈ 𝐶 ∩ {𝑥 ∈ 𝑋 | 𝐽(𝑥) ≤ 𝑏𝑘}, ( 29 ) 
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or it indicates that the problem is infeasible, i.e. the set in (29) is empty. This process is 

iterated  a maximum of 𝑇 times. Given the feedback from the previous iteration, a 

sequence generator produces a sequence of upper bounds 𝑏𝑘 with the aim of finding 

𝑏∗, the smallest upper bound for which the set 𝐶 ∩ {𝑥 ∈ 𝑋 | 𝐽(𝑥) ≤ 𝑏𝑘} is nonempty. The 

corresponding placement configuration 𝑥∗ is accepted as the optimal app placement 

configuration. 

The Semantically Integrated Operational 
Dashboard 
The semantically integrated operational dashboard is the comprenhensive product of 

the knowledge models, and software components that have been presented in the 

previous sections. The objective of this dashboard is to provide smart grid operators 

with a user interface that allows them managing a set of Future Secondary Substations. 

The managing activities include:   

Showing the status of the FSSNs  

Showing a detected anomaly in the grid 

Computing and showing suggested apps to alleviate the anomaly 

Showing the preferred configuration parameters values for the installation of the app 

Allowing the grid operator to compute a global installation plan 

Resolving app dependencies and informing about their automatic installation, and  

Reflecting the effect that the installation of the app might have caused in the FSSN  

The dashboard is a user interface that relies directly on the semantic backend, which is 

in charge of detecting problems in the grid by monitoring the received data from the 

Data Stream Classifier, suggesting apps to remedy problems in the grid, and resolving 

app dependencies. Moreover, the dashboard is the user interface for the App Placement 

Engine to compute a global installation plan.   

Traditional grid management tools, such as SCADA systems provide grid operators 

sitting in control rooms with data that needs to be correlated and interpreted. Such 

data is displayed in traditional two-dimensional user interfaces such as computer 

screens. Thus, operators are sitting in front of a computer continuously monitoring the 

state of the grid, analyzing the incoming data, and reacting when necessary. 

In this research project two dashboard approaches were developed. On the one hand, a 

more traditional 2D dashboard was created as a Web application. On the other hand, 

an Augmented Reality (AR) (Mizutani, et al. 2017) (Funk, Kritzler and Michahelles 2017) 

app was concieved to shows how cutting-edge technologies could enhance the 

experience of managing FSSNs. 
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The 2D Dashboard 
The 2D dashboard is a Node.js4 Web application that is connected to the backend 

components through their REST APIs. This dashboard allows a grid operator to visualize 

the FSSNs being managed; they are represented as green nodes placed in the map of 

the corresponding area (Figure 4). When selecting one of the FSSN, the detailed status 

of the FSSN is presented in the left of the screen (Figure 4 left side). Moreover, the grid 

operator has access to the application store by clicking on the three lines button. Then, 

he can drag and drop the app to be installed (Figure 4 right side).  

Figure 4: The 2D Dashboard 

 

Source: Siemens CT 

The Augmented Reality App  
The design and development of the AR app for the Smart Management of Smart Grid 

project followed six phases: 

1. User Research and Benchmarking. A questionnaire was sent to colleagues in the 

Siemens Energy Management division in France in order to obtain information 

about how current grid operators work. From this questionnaire, it was learned 

that grid operators are situated in monitoring rooms with open spaces, dedicated 

tables, and work stations. Such rooms are not very noisy, since the amount of 

people in them is regulated. Moreover, grid operators are constantly reading 

manuals with instruction on how to react when events appeared in the grid.   

o Based on the spacious grid operator work conditions and the low level of 

noise, it was decided to develop an AR app for a head mounted display 

                                        
4 Node.js® (https://nodejs.org/en). 

https://nodejs.org/en
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(for example a Microsoft HoloLens5). The head mounted display provides 

users with the freedom of movement, has voice command capabilities, 

and allows users to use their hands freely and to consult external manuals 

or talk to coworkers in case it is necessary without needing to leave the 

user interface. 

2. Ideation and Storyboarding. Given that a 2D dashboard for a desktop application 

was also built, the user story was clear up to the point in which a grid operator 

wants to manage not just one individual substation, but the whole cluster of 

substations he is in charge of. This corresponds to the functionality provided by 

the Application Placement Engine. Incorporating this functionality did not 

represent a huge effort on the traditional 2D dashboard. Only some widgets and 

a few buttons were added to the interface. However, for the AR app, scenes 

needed to be constructed to guide grid operators through the grid management 

process. Thus, sketching and story boarding were essential to decide which 

elements needed to be presented in the 3D space (Figure 5). These methods 

also helped to consider the possible workflows when managing substations.  

Figure 5: Storyboard Example for Apps in Substation to Alleviate Anomaly 

 

Source: Siemens CT 

3. Initial Prototyping. After sketching, and talking to the team members, the scenes 

sequence, were decided, and started to build a prototype in Unity6. which is 

commonly used for the implementation for HoloLens applications. The objective 

                                        
5 Hololens 2 (https://www.microsoft.com/en-us/hololens). 

 

6 https://unity3d.com/ 

https://www.microsoft.com/en-us/hololens
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was to create a quick prototype to get a preview of how the designs will look in 

3D. Figure 6 shows two early prototypes of the app, in which substations are 

depicted as 3D cubes, and the app information panels are all copies of the same 

app. The early prototyping helped us to identify the limits of the HoloLens and 

sparked more ideas on how to display the components in more user-friendly 

manner. 

Figure 6. Prototyping the Augmented Reality App 

 

Source: Siemens CT 

Figure 7: Augmented Reality App Appearance During the User Tests 

 

Source: Siemens CT 

4. User Testing. To polish, confirm, or rework the design assumptions made during 

the implementation of the AR app, six short user tests were conducted with 

Siemens colleagues. The feedback obtained from the user tests guided the last 

phase of development of the app. Figure 7 shows the general appearance of the 

AR app at the time the user tests were conducted. 

5. Prototype Polishing and Futureproofing. Given the feedback obtained from the 

user testing, more time on the development of the AR app was spent to address 

some of the shortcomings that had been over looked during the first 

development period.  

6. Providing Functionality to the Prototype. The following natural step was to 

connect all the backend components (i.e., OSF, and App Placement Engine) to 

the AR application. 
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CHAPTER 3: 
Project Results 

Data Streams Classifier 
To verify that the classification backend can successfully classify data points that are 

relevant to the context of the operational smart grid dashboard, a sequence of tests 

was performed using data from several field measurements. The data sources used are: 

1. A data set from a Siemens SICAM P855 Multifunctional Device that is deployed in 

the low voltage grid in central Europe: 

a. Data Points: RMS Voltage (3 phases); RMS Current (3 phases); System 

Frequency; Total Active Power; Active Power (3 phases); Total Reactive 

Power; Reactive Power (3 phases); Active Power Factor (3 phases) 

b. Time Frame: The data point values were obtained over a timeframe of 

~16.5h, from midnight until 16:25pm; 1433596 individual data point 

values were recorded across all data points. The time interval between 

two data point values varies between ~4s (for example, Total Active 

Power) and ~40s (for example, Current on 3rd phase) 

2. A data set of 1500 random Binary Switching Decisions was generated as this kind 

of data was not available from the in-field deployment and can easily be 

generated. 

3. Voltage Total Harmonic Distortion (THD) and Instantaneous Flicker data from a 

deployment at Lawrence Berkeley National Lab7 was obtained. Data recorded 

throughout one day in 1s-intervals was used for the tests presented in the 

following. 

Testing Method 
One thousand iterations of the following test setup were performed to verify the 

accuracy of the classifier. ASAMPLE_LENGTH parameter, corresponding to the sample 

size, was set between 3 and 103 (in increments of five): 

 Training: for each data point, select, at random, an index in the time series and 

train the classifier using the data point values at that index and the following 

SAMPLE_LENGTH indices. 

 Classification: for each data point, select, at random, an index in the time series 

and classify the data point using the data point value at that index and the 

                                        
7 maps.pqube.com 
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following SAMPLE_LENGTH indices. Record an error every time the category 

given by the classifier is different from the true category 

Test Results 
The method previously described was implemented for all data points. However, for 

some data one-to-one mappings are more appropriate (for example, power 

measurements should be considered unique to a specific deployment and should not be 

used for training a generic “Power” data point classifier). The developed classifier 

delivered very good results (Figure 8) and behaves as expected when the training and 

or classification sample size is increased. At a sample size of three data point values 

(i.e., the minimum sample size for the setup, since the classifier needs to compute the 

skewness of the data sample), the recorded error rate was of 8.78 percent; when the 

sample size was increased to 103 samples, the error rate decreased to 1.66 percent. 

Figure 8: Classification Errors for Settings of SAMPLE_LENGTH Parameter  

 

Source: Source: Siemens CT 

When the data points that should be mapped using a one-to-one classifier were 

excluded, the error rates dropped to 0 percent for all sample lengths. This is due to the 

very nature of the implemented classifier, since it should not have trouble distinguishing 

between defined values, such as Voltages, that hover around a nominal value for 

example, 230V or 110V and Frequencies (that do also remain in close to a defined 

value). All errors in the tests indeed stem from pairs that the classifier is not expected 

to distinguish successfully, such as Active Power being classified as Reactive Power and 

vice versa. 

It was also verified that the Classification Backend can successfully de-classify sample 

data points, i.e. that the data point - class associations can be removed by the 

operator, by creating a test case that checks whether its classification result stays the 

same after adding classifiers and removing them again. 

The results obtained from this test prove that the developed classifier can detect and 

flag Under and Overvoltage, and Unbalance-related conditions.  
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Classifier Performance  
The classifier was exposed to simulated data, and its response to automated queries 

was timed. The acceptable response time was <10s which is value based on commonly 

accepted time limits for human perceptual abilities.8 The following test cases were 

verified: 

Classification Response Time: the time required for training and classifying 19 random 

data point samples (over 1000 iterations) using the setup described in the Testing 

Method, and with a SAMPLE_LENGTH parameter of 10 is 5ms per sample. 

Server Response Time: the time required for classification is dominated by the 

communication overhead between the backend and the frontend. The overhead was 

tested by simulating 20 interacting users over a 1min period and a 1s period between 

two interactions by the same user. All users interacted with a server on the same 

machine. On average, the Classification Interface responded after 14ms. 

Network Latency: In a distributed real-world deployment, both response times would be 

dominated by the network latency with a remote server. This latency would be of 10ms 

to 50ms.9 In addition, adding TLS-based security in a real-world deployment could add 

up to 500ms per request (Naylor, et al. 2014). 

Summary: Overall, the response time of the Classification Backend is expected to stay 

well below 1s even for secured, real-world deployments. 

Application Placement Engine 
To validate the Application Placement Engine, three types of experiments were 

conducted: 

1. Correctness: to verify that the Placement Engine produces correct placements, 

several examples were used, and the fulfillment of the set requirements was 

verified  

2. Parameter Effectiveness: to test the effectiveness of the weight parameters, they 

were varied, and the resulting placements were compared 

3. Time vs. Quality tradeoff: given the complexity of the problem, the 𝑡𝑚𝑎𝑥  

parameter was introduced, which enables a tradeoff between quality of the 

placement and time needed to compute it. This tradeoff is illustrated by varying 

the 𝑡𝑚𝑎𝑥 parameter for the same scenarios.  

The Placement Engine was implemented as a python module that can be either run on 

the command line or used in a larger project as a library. It uses Z3 (De Moura and 

                                        
8 Nielsen Norman Group (https://www.nngroup.com/articles/response-times-3-important-limits/). 

9 3Scale (http://tech.3scale.net/2013/08/19/performance-variance- between-aws-zones). 

 

https://www.nngroup.com/articles/response-times-3-important-limits/
file:///C:/Users/Crobinso/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/USHJCZFJ/tech.3scale.net/2013/08/19
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Nikolaj 2008), a SMT solver, to compute the placements. All tests were conducted on a 

Microsoft Surface Book running Windows 10 1803. The machine features an Intel Core 

i7-6600U CPU and 8 GB of RAM. The Python version used was 3.6.5 and the version of 

Z3 used was 4.7.1. 

Testing Scenarios 
Three scenarios were considered to validate the Application Placement Engine. Scenario 

1 corresponds to a toy example consisting of three FSSN nodes, and four applications. 

However, due to its simplicity, the results are not significant, hence they are not 

presented in this report. Table 2: Scenario 2 shows the app descriptions for Scenario 2, 

and its variances. Such descriptions include the apps non-local and local dependencies, 

and resource consumption. This table makes us aware that when choosing to install an 

app, the dependencies need to be installed as well. 

 

Table 2: Scenario 2, App Description 

App 
Local 

Dependencies 
Non-Local Dependencies Resource Consumption 

App1 - App3, App8, App9 CPU: 2 RAM: 1 Storage: 1 

App2 - App3, App8 CPU: 1 RAM: 1 Storage: 1 

App3 - App8 CPU: 5 RAM: 3 Storage: 1 

App4 - App8 CPU: 1 RAM: 2 Storage: 2 

App5 - App4, App8 CPU: 1 RAM: 1 Storage: 2 

App6 - App4, App8 CPU: 1 RAM: 1 Storage: 1 

App7 - App8 CPU: 3 RAM: 1 Storage: 1 

App8 - - CPU: 1 RAM: 1 Storage: 2 

App9 - App8 CPU: 2 RAM: 1 Storage: 2 

Source: Source: Siemens CT 

Following, the variations of Scenario 2 are listed, including required apps to install, and 

the initial app placement. 

 Scenario 2 

o Required to install: 

- App6 on Node2 

- App7 on Node4 

- App7 on Node5 

o Network wide installations: 

- App2 with 1 replica 

o Initial Placement: 

- Node1: None 
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- Node2: None  

- Node3: None 

- Node4: None 

- Node5: None  

 Scenario 2.1 

o Required to install:   

- App9 on Node2 

o Network wide installations:  

- App1 with 1 replica 

- App6 with 1 replica 

o Initial Placement: 

- Node1: App3 

- Node2: None - 

- Node3: App1, App4, App6, App8, App9 

- Node4: None 

- Node5: None  

 Scenario 2.2 

o Required to install:   

- App6 on Node2 

- App7 on Node4 

- App7 on Node5 

o Network wide installations:  

- App2 with 1 replica 

- App4 with 3 replicas 

o Initial Placement: 

- Node1: None 

- Node2: None 

- Node3: None 

- Node4: None 

- Node5: None 
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Table 3 shows the app descriptions for Scenario 3. Such descriptions include the apps 

non-local and local dependencies, and resource consumption. 

Table 3: Scenario 3 App Descriptions 

App 
Local 

dependencies 

Non-local 

dependencies 
Resource Consumption 

App1 - App3 CPU: 2 RAM: 1 Storage: 1 

App2 - App3, App8 CPU: 1 RAM: 1 Storage: 1 

App3 - App7, App8 CPU: 5 RAM: 3 Storage: 1 

App4 App10 App1,  App3 CPU: 1 RAM: 2 Storage: 2 

App5 - App9 CPU: 1 RAM: 1 Storage: 2 

App6 App10 App9 CPU: 1 RAM: 1 Storage: 1 

App7 App10 App8 CPU: 3 RAM: 1 Storage: 1 

App8 App10 - CPU: 1 RAM: 1 Storage: 2 

App9 App10 - CPU: 2 RAM: 1 Storage: 2 

App10 - - CPU: 1 RAM: 1 Storage: 4 

App11 - App3 CPU: 3 RAM: 2 Storage: 3 

Source: Source: Siemens CT 

 

 Scenario 3 

o Required to install: 

- App1 on Node5 

- App2 on Node3 

- App4 on Node7  

o Network wide installations: 

- App11 with 1 replica 

Correctness 
A placement is correct if the following requirements are fulfilled: 

 All apps for which an installation requirement exists are placed on the respective 
FSSN 

 All apps for which a network wide installation requirement exists are installed on 
(at least) as many FSSNs as needed 

 All local dependencies for a given app are installed on the same FSSN 
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 All non-local dependencies for a given app are installed somewhere in the 
network 

 The available resources are not exceeded for any of the FSSNs 

The parameters were set to 1 𝑤𝑅 =  𝑤𝐵 =  𝑤𝑀 =  𝑤𝑈 = 1 and optimal placements were 

computed for the scenarios presented before. However, it was not possible to get the 

optimal placement for Scenario 3, since after more than 14 hours of computation it was 

decided to abort. 

The placement for Scenario 2 is shown in Figure 9: Placement for Scenario 2Figure 9. 

Looking at the placement, it is possible to verify its correctness, since: 

 App6 is installed on Node2 and App7 is installed on Node4 and Node5. Thus, the 
installation requirements are fulfilled 

 There is one copy of App2 installed on Node4, so the network wide installation 

requirements are fulfilled 

 None of the apps have local dependencies so the requirement is trivially fulfilled. 

 The non-local dependencies (i.e., App3, App4 and App8) are all placed, fulfilling 
the non-local dependency requirement 

 The figure also shows that none of the FSSNs resources are exceeded 

The placement for Scenario 2.1 is shown in Figure 10. It was verified whether all 

requirements are fulfilled: 

 App9 is installed on Node2 

 There is one copy of App1and one of App6. 

 There are not non-local dependencies 

 The non-local dependencies (i.e., App3, App4, App8, and App9) are placed at 
least once as required. 

 The available resources are not exceeded 

Figure 9: Placement for Scenario 2 

 

Source: Siemens CT 
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Figure 10: Placement for Scenario 2.1 

 

Source: Siemens CT 

The difference between Scenario 2 and Scenario 2.2 is that the latter requires at least 3 

copies of App4. Figure 11, shows that the requirements for Scenario 2 are fulfilled and 

that App4 is placed on Node1, Node4 and Node5. Thus, the replication requirement is 

also met. 

Figure 12 shows Scenario 3 placements, in which all the requirements are also fulfilled:  

 App1 is installed on Node5, App2 is installed on Node3 and App4 is installed on 

Node7. 

 App11 is placed once on Node2. 

 App4, App7 and App8 have a local dependency on App10. These apps are installed 

on Node5 and Node7 which both also have App10 installed. 

 The non-local dependencies (i.e., App3, App7 and App8) are placed at least once 

as required. 

 No resources are exceeded. 
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Figure 11: Placement for Scenario 2.2 

 

Source: Siemens CT 

Figure 12: Placement for Scenario 3 

 

Source: Siemens CT 

Parameter Effectiveness 
The proposed objective function offers two tradeoffs: 

 Network wide resource conservation vs. replication of frequently used apps 

 Load balancing between FSSNs vs. minimal movement of apps during 

reconfiguration 

For both tradeoffs two experiments were conducted to show the effect of the model 

parameters. 

Resource Conservation vs Replication 
To explore the tradeoff between resource conservation vs replication of apps, Scenario 

2 was used, which requires installing App6 on Node 2, App7 on Node 4, App7 on Node 

5, and App2 should be placed at least once in the network. 
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To clearly see this tradeoff, the balancing and movement parameters were set to 0, i.e., 

𝑤𝐵 = 𝑤𝑀 = 0, and two optimal placements were computed. For the placement shown in 

Figure 12 𝑤𝑅 = 10 and 𝑤𝑈 = 1 were set. For the placement shown in Figure 14, the 

replication was prioritized instead of resource consumption hence 𝑤𝑅 = 1 and 𝑤𝑈 = 10. 

As Figure 13 shows, when emphasizing low resource consumption, the Placement 

Engine only places the apps that are strictly required, keeping the amount of available 

resources as high as possible. In case the weight for the replication term in the 

objective function is higher, the engine replicates the two most frequently used apps 

(App4 and App8) across all FSSNs, as shown in Figure 14. 

Figure 13: Placement Emphasizing Resource Conservation 

 

Source: Siemens CT 

Figure 14: Placement Emphasizing Replication of Frequently Used Apps 

 

Source: Siemens CT 

Load Balancing versus Minimal App Movement 
To explore the tradeoff between load balancing and minimal app movement, Scenario 

2.1 was used, which requires installing App9 in Node 2 and App1 and App6 should be 
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placed at least once in the network. Figure 15 shows the initial placement of this 

scenario. 

Figure 15: Initial Placement for Load Balancing vs Minimal Movement  

 

Source: Siemens CT 

Similar to the resource conservation vs resource replication tradeoff, two optimal 

placements were computed, one with 𝑤𝐵 = 20, 𝑤𝑀 = 1 and another one with 𝑤𝐵 =
1, 𝑤𝑀 = 20. The other two weights were set to 𝑤𝑅 = 50 and 𝑤𝑈 = 0 for both runs. The 

high value for the resource conservation term is there to ensure that the engine does 

not place additional apps that help the load balancing, instead of distributing the 

necessary apps fairly across FSSNs. 

Figure 16 shows that when load balancing is emphasized, the Placement Engine 

distributes the use of resources fairly across all the FSSNs moving previously installed 

apps to different nodes if necessary. Figure 17 shows that when minimal movement is 

emphasized, the engine tries to keep all apps where they are. Thus, the only movement 

made is the one needed to fulfill the requirements of installing App9 on Node2 instead 

of Node3. 
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Figure 16: Placement Emphasizing  Load Balancing 

 

Source: Siemens CT 

Figure 17: Placement Emphasizing Minimal App Movement 

 

Source: Siemens CT 

Time versus Quality Tradeoff 
An important requirement when managing the smart grid is to have short execution 

times, as the Placement Engine should be able to compute a new network configuration 

in emergency situations, such as complete failure of a FSSN. However, using non-linear 

terms for the load balancing and minimal app movement objectives makes the 

optimization problem computationally hard, leading to high execution times. Table 4 

lists the time it took to compute each placement described in the Testing Scenarios. 
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Table 4: Execution Times 

Scenario Execution Time Note 

Scenario 2 40.571s Optimal 

Scenario 2.1 796.089s Optimal 

Scenario 2.2 95.711s Optimal 

Scenario 3 51964.510s Aborted 

Source: Siemens CT 

Clearly, some of these times are not practical. A grid operator might have just seconds 

to react to a problem. Thus, in an emergency, a suboptimal placement might be good 

enough to resolve the issue; the network could still be reconfigured later to increase 

efficiency.  As mentioned before, finding an optimal placement for Scenario 3 takes 

more than 14 hours. However, a first placement is found after just a fraction of a 

second. By adding the 𝑡𝑚𝑎𝑥 parameter it was possible to get best effort placements in 

the available time. To demonstrate how the engine computes better and better 

placements over time, Scenarios 2 and 3 from were executed with different 𝑡𝑚𝑎𝑥 values. 

The evolution of the placements can be seen in Figure 18.  

Figure 18 shows the placements obtained for Scenario 2 when stopped after 1, 5, 10, 

and 15 seconds. While the placement after 15 seconds is already optimal, the engine 

needs another 25 seconds to verify that indeed there is no better placement. 

Scenario 3 is significantly larger than Scenario 2, since it comprises 8 nodes and 11 

apps.  When performing the testing, its execution had to be aborted after 14h, but 

interesting results were obtained. Figure 19 shows the placements obtained after 1, 5, 

10, 30 seconds, 30min and 14h, it can be seen that, even after one second, the 

Placement Engine already computes a solution that fulfills the installation requirements. 

Assuming that a grid operator might be able to wait for a placement up to 30s in case 

of an emergency. However, in case the operator decides to make changes after, the 

placement can be re-computed for longer to obtain a better result. 
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Figure 18: Placements for Scenario 2  

 

After 1, 5, 10 and 15 Seconds (from top left to bottom right) 

Source: Siemens CT 
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Figure 19: Placements for Scenario 3  

 

After 1, 5, 10, 30 Seconds, 30 Minutes and 14 Hours (from top left to bottom right) 

Source: Siemens CT 
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The Semantically Integrated Operational 
Dashboard 
It was verified that the dashboard, on its AR version, as well as on the FSSN 2D 

dashboard is capable of supporting a grid operator on the management of FSSNs. To 

this end, five core functionalities were tested:   

1. Allowing a grid operator to install apps when the status of the grid is normal: As 

shown in Figure 20, a grid operator is able to install an application on a FSSN 

under normal conditions. Figure 20a shows a view of the map in which four 

FSSNs are located. Those correspond to the cluster the grid operator is in charge 

of managing. When getting closer to a substation, gazing, and air tapping into 

the “Manage apps” button (Figure 20b), a menu with cards describing the apps 

available is shown (Figure 20c). Each card shows the name, and resource 

consumption of the app.  A user can choose to see more information, or to install 

the app. When the installation of the app is selected, the user is presented with 

the configuration parameters, he is able to enter the values he decides, or he 

can choose to use the system suggested values (Figure 20d). 

Figure 20. Installing an App Under Normal Conditions 

 

Source: Siemens CT 

After confirming the parameters, the AR app allows the user to review the 

changes on the FSSN (Figure 21a). When the user confirms the installation, they 

can gaze at the substation and thus confirm that the app has been installed 

(Figure 21b). 
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Figure 21: Review and Confirmation of the Installation of an App 

 

Source: Siemens CT 

A grid operator using the 2D dashboard is able to install apps on the selected 

FSSN by dragging the corresponding app into the selected FSSN. Figure 22 

shows the installation process of the Adaptative Assignment Module app. The 

system suggests the parameters values (Figure 23a). A user can confirm the 

installation, and the app dependencies are also computed, and installed as 

shown in Figure 22 (left side). 

Figure 22: Installation of the Adaptative Assignment Module App  

 

Source: Siemens CT 

Moreover, the dashboard allows grid operators to install an app in all FSSNs at 

the same time. Figure 23 shows the installation of the Gridlink XMPP Stack onto 

the four FSSNs available in the Alameda cluster. 
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Figure 23: Installation of Gridlink XMPP Stack On Available Substations 

Source: Siemens CT 

2. Making the grid operator aware of potential anomalies in the grid: When an 

anomaly is detected the user is made aware of it by two visual indicators: a) the 

main panel that shows the FSSNs status highlights the substation that presents a 

problem (Figure 24). In Figure 24a, a voltage band violation is presented in the 

North Berkeley FSSN; and b) a visual element draws the user’s attention to the 

FSSN in the map as shown in Figure 24b. 

Figure 24: Voltage Violation in North Berkeley 

 

Source: Siemens CT 

On the 2D dashboard, a problem in a FSSN is shown with an animation over the 

circle representing the FSSN presenting a problem as shown in Figure 25. 
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Figure 25: Dashboard Shows a Problem in a Substation 

 

Source: Siemens CT 

3. Showing suggested solutions to an encountered anomaly: Figure 26 shows the 

suggested apps to solve the voltage violation. Figure 26a shows three versions of 

a Voltage guard. However, once the Voltage Guard I app has been installed in the 

North Berkeley FSSN, if a new violation occurs the system only suggests installing 

either the Voltage Guard II or the Voltage Guard III app as shown in Figure 26b. 

Figure 26. Apps Suggested to Fix a Voltage Violation 

 

Source: Siemens CT 

4. Allowing a grid operator to use the app placement engine to compute a global 

installation plan: Figure 27 shows the installation of the Gridlink XMPP stack app 

in the Berkeley Hills FSSN. In the step shown in Figure 27a, the grid operator 

selects the values of the RBMU parameters (i.e., resource consumption, load 

balancing, minimal movement or apps, and replication of apps) that the App 

Placement Engine uses to compute a global installation plan. In Figure 27b, the 

user reviews the changes that the installation will cause in the FSSNs. In this 

case, the stack is installed not only in the Berkeley Hills FSSN, but also in the 

Berkeley Cal one. This is due to the higher value on the maximize parameter 

corresponding to the replication of frequently used apps. 
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Figure 27: Using App Placement Engine to Compute Global Installation Plan 

 

Source: Siemens CT 

In the 2D Dashboard, the app placement engine is activated by ticking the box 

“Use AI” when installing an application as shown in Figure 28. 

Figure 28: Using App Placement Engine to Compute a Installation Plan 

 

Source: Siemens CT 
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5. Showing that the installation of apps has been completed: Figure 29 shows the 

AR and 2D dashboards once the installation of an app has been completed. The 

operator can gaze at the FSSN to see its details (AR app) or click on the FSSN 

(2D dashboard). 

Figure 29: Installation of an App Completed 

 

Source: Siemens CT 
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CHAPTER 4: 
Technology/Knowledge Transfer Activities 

In order to raise awareness and demonstrate the benefits that adopting cutting-edge 

technologies such as Semantic Technologies could bring in real Smart Grid settings, 

several meetings with Siemens stakeholders from the Energy Management Business 

Unit were held. Moreover, different versions of the developed dashboard were 

presented in internal Siemens conferences.  External to Siemens, the developed work 

was presented to members of the California Institute for Energy and Environment 

(CIEE), and a research group from the Lawrence Livermore National Laboratory. 

Following is a non-exhaustive list of activities done along the duration of this project:  

 Held meeting with Omnetric-Siemens looking for partners to apply for pilot 

project (5 people). 

 Held meeting with California Institute for Energy and Environment (CIEE) to 

introduce them to this research work (3 people). 

 Held meetings with Siemens stakeholders from Energy Management Business 

Unit (15 people). 

 Held meeting with Lawrence Livermore National Laboratory (LLNL) research 

group, looking for pilot partners (6 people). 

 Presented the project at Siemens ConneCTs 2017 Siemens CT in Princeton, New 

Jersey (50 people). 

 Distributed brochures at the EPIC symposium 2018 in Sacramento, California (30 

people). 

 Presented HoloLens prototype at Siemens DAAI (Data Analytics & Artificial 

Intelligence) in Nuremberg, Germany (100 people). 

The feedback collected from the different events where this research project was 

presented was positive. Specifically, the AR dashboard was well received in the DAAI 

conference, which is an internal Siemens conference on Data Analytics and Artificial 

Intelligence. In this event colleagues from various Siemens locations were able to try 

themselves the AR dashboard. Such presentation led us to fruitful discussions with 

stake holders from other research groups, and from the Siemens Energy Management 

Business Unit.  

The visit made to the Lawrence Livermore National Lab as well as the meetings the 

team had with the CIEE made them aware of other projects that both institutions have 

regarding smart grids and open channels for collaboration in future projects.  

The technical advisory meeting was formed by academics from the Lawrence Berkeley 

National Laboratory, and stakeholders from the Siemens Energy Management Business 
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Unit. The first meeting was conducted in September 2017, the results presented in this 

meeting included the knowledge models, the data classifier, and the mechanism for 

automatically finding applications to solve detected problems. The comments received 

were positive on the innovation of the approach, and feedback was received about 

alternative hardware that can be used in an actual smart grid setting to acquire grid 

data, which could improve the accuracy of the data classifier.  

As part of the technology transfer activities, the following scientific papers were 

published: 

 Hodges, Jack, Kimberly García, and Steven Ray. 2017. Semantic Development 
and Integration of Standards for Adoption and Interoperability. Computer 50, no. 

11 (2017): 26-36.   

o 271 full text views from IEEE Xplore, and 3 citations source Google 

Scholar 

 Mayer, Simon, Jack Hodges, Dan Yu, Mareike Kritzler, and Florian Michahelles. 

2017. An open semantic framework for the industrial Internet of Things. IEEE 

Intelligent Systems 32, no. 1 (2017): 96-101.  

o 1166 full text views from IEEE Xplore, and 24 citations source Google 

Scholar 

 Diwold, Konrad, Simon Mayer, Jack Hodges, et. al. 2018, Grid Watch Dog: A 
Stream Reasoning Approach for Lightweight SCADA Functionality in Low-Voltage 
Grids. Proceedings of the 8th International Conference on the Internet of Things, 

IoT 2018, CA, USA. 

o 17 downloads from ACM and 1 citation source Google Scholar  

During the latest steps of this research project, several efforts were made to show the 

developed demonstrator to critical stakeholders within Siemens to bring this research 

project forward. However, to set this project in a real scenario, it is necessary to get 

access to modern hardware which is not highly available in the current United States 

grid. Thus, the Siemens Corporate Technology team in charge of this research work is 

actively looking for partners within Siemens and the utilities in California to run a pilot 

project that involves modern hardware such as the Future Secondary Substations, and 

that allows to conduct user studies of the developed 2D and AR dashboards with grid 

operators.  
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CHAPTER 5: 
Conclusions 

The semantically integrated operational dashboard supports grid operators in managing 

a set of FSSNs. This can allow faster reaction to anomalies detected within the grid, 

which in consequence provides greater resiliency within the grid. The semantically 

integrated operational dashboard corresponds to the comprehensive user interface that 

brings together the software components developed in this research project. 

Technically, this Operational Dashboard can be divided into four main components, 

namely: Knowledge Models, Data Classifier, Application Placement Engine, and the 

semantically integrated operational dashboard in its 2D and AR versions. Each of those 

components were tested separately at the time they were implemented, and final tests 

were conducted to the semantically integrated operational dashboard. 

The Knowledge Models that were extended within this research project are the 

foundation for increasing the degree of local automation of FSSNs, which has 

advantages with respect to the cost of operation of the smart grid and its resiliency, 

since decisions can be made at a much higher pace. To be able to evaluate the state of 

the grid, all data point values need to be evaluated, irregularities need to be flagged, 

and the grid operator needs to be informed to act accordingly to prevent escalation. 

The Smart Grid Knowledge Models within the developed system allow the validation and 

monitoring of arbitrary data points, including, for instance, voltages of sensors on 

distribution substations. Labeled data streams are monitored by feeding the data into 

the Knowledge Models. On every inferencing iteration, the semantic backend checks the 

values by comparing them to their associated range boundaries and generates 

violations. Possible solutions for violations, such as the installation of FSSN apps are 

also described in the Knowledge Models, as well as possible dependencies that such 

FSSN apps have. 

The Data Classifier is a system component that allows a grid operator to classify single 

data points and to generalize classifications to new data points using a statistical 

classifier that is based on a 3-dimensional KD-tree. Such a classifier enables the 

accurate classification and labeling of data points within the knowledge model, which is 

a prerequisite for the semantic validation and monitoring of data points. This 

component increases the degree of local automation of FSSNs, which has advantages 

with respect to the cost of operation of the smart grid and its resiliency, since decisions 

can be made at a much higher pace and, potentially, even automatically. 

The app placement engine provides a global view of the grid, since it considers the 

general state of the grid, instead of just one FSSN. The Global FSSN Manager takes as 

input the current state of each stations (for example, load, current resource 

consumption), as well as, the app description (for example, required resources, 
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dependencies), and grid operator preferences that reflects the interest in the four 

proposed performance metrics (i.e., network wide resource consumption, load 

balancing, minimal movement, and replicated placement of dependencies). The 

objective of the Application Placement Engine is to produce a feasible app placement 

that maximizes fault tolerance and satisfies all app dependencies. The approach 

presented in this research project were tested with different scenarios, producing 

satisfactory results. However, when testing with a larger scenario, the system took too 

long to compute the optimal placement. To cope with this limitation, and still offer a 

feasible placement, it was introduced a time stopping criterion, a grid operator could 

stop the placement engine even after just 1 second, or he can decide to run the system 

for longer to improve the response.  

The semantically integrated dashboard corresponds to the user interface that allows the 

management of FSSs. Two versions of the dashboard were developed: the traditional 

2D dashboard, which corresponds to a user interface running in a browser in a 

computer and an AR app, which not only demonstrates the capabilities of the backend 

components, it also provides an immersive user experience to grid operators. Grid 

operators can perform the same operations as in the traditional 2D dashboard, but their 

interaction with the system is much richer, dynamic and user friendly. 

As mentioned, the ideal path of this research project is to find the right partners within 

Siemens, and a California utility to run a pilot project that allows to see the system 

working in an actual environment, and that permits quantifying the effectiveness of the 

developed dashboards in reducing the cognitive overload of grid operators. 
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CHAPTER 6: 
Benefits to Ratepayers 

The implementation of this project could help utilities improve their operations, enhance 

their outages management, and reduce electrical losses through faster control 

decisions. Moreover, it can allow utilities to take better advantages of asset utilization 

derived from reduction in manual grid operation efforts and could improve grid 

monitoring capabilities to enable better planning. These benefits can directly affect 

private, commercial, and industrial consumers who can profit from more reliable 

services and reduced business losses due to improved grid resiliency as well as potential 

bill savings thanks to a higher degree of automation which also implies a lower grid cost 

operation. A higher degree of automation within the Smart Grid also implies benefits for 

society as a whole, since this can enable a higher percentage of renewable energy 

resources, to reduce environmental emissions, improve the security of electricity 

delivery, and reduce the import of crude oil through transportation electrification. 

The sample calculation shows an estimation of a possible reduction in the System 

Average Interruption Duration Index (SAIDI) value, as a result of the deployment of the 

prototypes developed within the project in the Pacific Gas & Electric Company (PG&E) 

distribution grid (Table 5). According to PG&E's 2017 annual reliability report, the SAIDI 

for PG&E in 2017 was of 357.7 hours, of which 90 hours are due to distribution system 

outages excluding major events (Pacific Gas & Electric Company 2017). Such an index 

is higher than the 2016 one, which was of 83 hours. Considering only PG&E's customers 

(4.6 million residential and 700,000 commercial, industrial and others), a SAIDI of 90h 

translates to a total load not served of about 1138.7 GWh. Assuming a value of service 

of $2.5/$10/$25 per kWh for residential/commercial/industrial customers (numbers 

from (Vicenzo and Steven 2012)), this implies an economic cost to PG&E customers due 

to sustained outages to the distribution system (excluding major events) in 2017 of an 

estimated $10.3 billion (Pacific Gas & Electric Company 2017), (Pacific Gas & Electric 

Company_b 2017), and (Vicenzo and Steven 2012). 
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Table 5. Estimate of Reduction in Costs in PG&E Distribution Grid 

 Number of 
PG&E accounts 
in 2017 

Load not 
served due to 
PG&E 
distribution 
grid outages 
in 2017, 
excluding 
major events 

Estimated 
Value of 
Service. 
Estimates 
from (Vicenzo 
and Steven 
2012) 

Estimated 
economic cost 
of sustained 
outages, PG&E 
customers and 
distribution grid 
outages only, 
excluding major 
events 

Residential 4.6M 538.2 GWh $2.5 / kWh $1,345,500,000 

Commercial 0.5M 400.5 GWh $10 / kWh $4,005,000,000 

Industrial 0.2M 200 GWh $25 / kWh $5,000,000,000 

Total  1138.7 GWh - $10,350,500,000 

Source: Siemens CT 

The adoption of the technologies developed in this project could have the potential to 

yield a reduction of the distribution grid SAIDI (excluding major events) of about 10 

percent (nine hours per year), which would translate to cost savings of more than $1 

billion per year to PG&E customers. This would imply more than $134 million per year 

to PG&E residential customers. However, even using a more conservative estimate of 5 

percent (a SAIDI reduction of 4.5 hours per year), the potential yearly economic benefit 

of the developed project would be upwards of $67 million, considering only California 

residential customers. Moreover, a higher degree of automation in grid control rooms 

would also allow available staff to focus on services and locations of the grid, in which 

the highly automated proposed system cannot recover on its own.  
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LIST OF ACRONYMS  

Term/Acronym  Definition 

AC Alternating Current 

AR Augmented Reality 

ADR Automatic Demand Response 

API Application Programming Interface 

App Application 

FSSN Future Secondary Substation 

KP Knowledge Pack 

OSF Open Semantic Framework 

QUDT Quantities, Units, Dimensions, Types 

RDF Resource Description Framework 

REST Representational State Transfer 

SPARQL SPARQL Protocol and RDF Query Language 

SPIN SPARQL Inference Notation 

SSN Semantic Sensor Network 

URI Uniform Resource Identifier 

VR Virtual Reality 

2D Two-dimensional  

3D Three-dimensional 
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