

Medium and Heavy-Duty Vehicle Load Shapes

Noel Crisostomo Fuels & Transportation Division, California Energy Commission Demand Analysis Working Group Meeting – September 14, 2021

MHDVs in Assembly Bill 2127

The <u>AB 2127 Electric Vehicle Charging Infrastructure Assessment</u> quantifies the charging network, electric grid infrastructure, charger technologies, and programs needed to serve California's zero emission vehicle deployment objectives for 2030.

Inaugural findings from the Energy Commission's ongoing analyses to support the emergent medium- and heavy-duty charging sector:

157k chargers needed to support 180,000 BEVs

Standardized Equipment

Grid Integrated

Planning for MHDV Charging Load

We appreciate the collaborative efforts!

8

CALIFORNIA TRUCKING Association

Surve for a living. Safety is our prin

Noel Crisostomo Air Pollution Specialist Fuels and Transportation Division California Energy Commission noel.crisostomo@energy.ca.gov

California Energy Commission

COMMISSION REPORT

Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment

Analyzing Charging Needs to Support Zero-Emission Vehicles in 2030

Gavin Newsom, Governor July 2021 | CEC-600-2021-001-CMR

https://www.energy.ca.gov/programs-and-topics/programs/electricvehicle-charging-infrastructure-assessment-ab-2127 LAWRENCE BERKELEY NATIONAL LABORATORY

Medium- & Heavy-Duty Electric Vehicle Infrastructure Load, Operations and Deployment Tool (HEVI-LOAD)

Methods, Scenarios, and Load Profiles

Bin Wang, Cong Zhang Lawrence Berkeley National Laboratory

HEVI-LOAD Overview

- ◆ AB 2127 calls for the CEC to project charging infrastructure needed to decarbonize trucking and to reduce the impact of diesel air pollution.
- LBNL is developing HEVI-LOAD in collaboration with the CEC, via applied research funds from the Clean Transportation Program.
- HEVI-LOAD will project infrastructure needs for decarbonizing medium and heavy-duty vehicles (GVWR > 10,000 lbs.).
- Within HEVI-LOAD, The LBNL team has been developing multiple assessment scenarios for medium and heavy electric vehicles that are based on both the top-down and the bottom-up approaches.

Outline

- HEVI-LOAD Methodology and Preliminary Results
- Scenario Updates
 - Transportation Energy Demand Forecast High/Low Charging Demand Scenarios
 - Vehicle-specific Charging Power Levels (up to 200 kW)
 - Vehicle-specific Charging Power Quartiles (up to 2 MW)
- Comparison and Discussion of Results
- Ongoing and Future Work

HEVI-LOAD Methodology and Preliminary Results

HEVI-LOAD Framework: Top-Down and Bottom-Up Models

Top-Down Modeling Approach: HEVI-LOAD Metrics

Charging infrastructure need and load profiles for MHDVs

	Chargin			
Region	Type of accessibility	Charger type	Number of chargers/plugs	
Charging infrastructure requirements for <u>each</u> <u>county</u> .	 (1) Public (Shared) (2) Private (Dedicated) (3) Public/Private 	Examples include: (1) 50 kW (DCFC) (2) 125 kW	For each type of chargers used for each type of use application, estimates shall be given as	
Aggregate estimates by: (1) City	(Shared / Dedicated)	(3) 250 kW (4) 350 kW (5) 1 - 4 MW	(1) # of plugs	
 (2) Town (3) Rural area (4) Interstate/state highway 		Charging stations servicing Class 8 heavy-duty trucks should be listed in a separate manner from "normal" charging stations (serving LDVs & MHDVs).	 [Alternative metrics could also be given] (2) # of stations (3) # of plugs per station (4) # of plugs per 1,000 PEVs 	

Scope of HEVI-LOAD Analysis

Vehicle use	Region	Vehicle application and type	Charging				
pattern			Behavior	Accessibility	Technical design		
Fixed route, fixed time, return-to-base	Urban	(1) Transit bus (2) School bus (3) Refuse truck	Overnight slow charging	Private (i.e. dedicated)	Slow-charging, lower charging power		
Fixed route	Urban	(4) Port drayage trucks	Between trips	Public/Private	Fast-charging, high		
Non-fixed	Urban (5) Last mile delivery (e.g. package delivery trucks) (6) Local-haul trucks (merchandise) (7) Regional-haul trucks (8) Vocational vehicles (e.g. emergency vans/trucks,			(Shared/dedicat ed)	charging power Opportunities to co- support several types of LDV/MHDVs		
route	Rural area	(9) "Rural trucks" (e.g. farm trucks)	Before, during, or after trips.	Public/Private (Shared/dedicat ed)	Heavy-duty accessible, very high charging power (e.g. 1		
	Inter-county	(10) Heavy-duty local-haul trucks		Public	MW)		
	Highways	(11) Heavy-duty long-haul trucks		(shared)			

HEVI-LOAD Technical Workflow

• Battery parameters, etc.

BERKELEY LAB

I. MHDV Projection

Vehicle fleet

- Vehicle population by county and by type (EMFAC)
- Fleet registration locations
- Hourly-based energy consumption profiles
- Projection of e-MHDV Adoption
 - Electrified MHDV population (CARB MSS)
 - South Coast AQMD attainment projections
- Electrified powertrain
 - Energy efficiency w.r.t vehicle type
 - Models of speed, payload, and duty-cycles
 - Regenerative braking, etc.

2. Data-driven Trip Disaggregation

Trip behavior statistics - I

Trip behavior statistics - II

3. Infrastructure Assessment

Analyses Forthcoming

Infrastructure Results August 2020

ENERGY TECHNOLOGIES AREA

BERKELEY LAB

Key notes and assumptions:

- Only 50kW and 350kW chargers are considered
- MHDVs prefer 350 kW charger during daytime and prefer 50 kW during nighttime
- Electrified MHDVs follow similar duty cycles as traditional vehicles
- Electrified MHDVs use night and parking times for charging
- 80% initial SOC for each MHDV simulated
- Geospatial patterns not yet considered
- Results on the following slides will be modified as additional scenarios are run and are subject to change due to the scarcity of datasets on MHDV commercial vehicle operations thus far.

Charger Counts by County and Power Capacity (August 2020)

BERKELEY LAB

County Load Profile Examples (2030)

- MHDV categories are aggregated from EMFAC categories
- Vehicle-specific charging probabilities are based on trip patterns
- Tractor-trailer type includes long-haul trucks (in/out state); Drayage trucks include T7 POLA (Port of Los Angeles) and T7 POAK (Port of Oakland)

Los Angeles

Alameda

Butte

Scenario Update

Transportation Energy Demand Forecast (TEDF) High/Low Charging Demand Scenarios

High/Low Charging Demand Scenario - Definitions December 2020

Scenarios	ZEV Population	Battery capacity (yearly factor)**	GVWR
MSS(HCD*)	Mobile Source Strategy	1.05	Heavier (full load)
TEDF-HIGH(HCD)	Transportation Energy Demand Forecast-High	1.05	Heavier (full load)
TEDF-MID(LCD*)	Transportation Energy Demand Forecast-Mid	1.07	Small (Empty)

* High or Low Charging Demand

** Yearly increasing ratio of battery energy density (kWh/L) or specific energy (kWh/kg).

High/Low Charging Demand Scenario – Vehicle Populations December 2020

Note: New populations according to the CARB State SIP Strategy (SSS) will be incorporated within future runs.

Estimate Trip Energy Request

Vehicle specification module

- Based on the vehicle driving dynamic resistance formula
- Consider the weight, Cd(driving resistance coefficient), Front area, Rolling resistance

Statewide Charging Load Profiles, 2020-2030

Mobile Source Strategy High Charging Demand Scenario December 2020

Statewide Charger Cost Estimate, 2020-2030

Mobile Source Strategy High Charging Demand Scenario December 2020

Level	Туре	Chargers per pedestal	Per-charger cost
Level 1	Non-networked	One	\$813
Level 1	Non-networked	Two	\$596
Level 2	Non-networked	One	\$1,182
Level 2	Non-networked	Two	\$938
Level 2	Networked	One	\$3,127
Level 2	Networked	Two	\$2,793
DC fast	Networked 50 kW	One	\$28,401
DC fast	Networked 150 kW	One	\$75,000
DC fast	Networked 350 kW	One	\$140,000

 Table 2. Per charger public and workplace charger hardware cost.

Vehicle Application-specific Load Profiles

Scenario Update

Vehicle-specific Charging Power Levels (up to 200 kW)

Vehicle-specific Charging Powers July 2021

- Two charging power levels are defined to meet the driving requirements for recharging at
 - Depots (night time, Level A) and
 - Opportunistic Locations (day time, Level B).
- Level B assumed to be ~2-3x Level A, up to 200 kW

'ehicle type EMFAC)	Battery capacity (kWh)	Charging level A (kW)	Charging level B (kW)
HD2	100	13.5	50
6 Ag	200	19.2	60
6 CAIRP Heavy	250	19.2	60
6 CAIRP Small	200	19.2	60
6 Instate Construction Heavy	250	19.2	60
6 Instate Construction Small	300	19.2	60
6 Instate Heavy	400	50	150
6 Instate Small	300	50	150
6 OOS Heavy	400	50	150
6 OOS Small	400	50	150
6 Public	400	50	150
6 Utility	400	50	150
615	400	50	150
7 Ag	600	100	200
7 CAIRP	1000	100	200
7 CAIRP Construction	1000	100	200
7 NNOOS	1000	100	200
7 NOOS	1000	100	200
7 Other Port	600	100	200
7 РОАК	600	100	200
7 POLA	600	100	200
7 Public	600	100	200
7 Single	600	100	200
7 Single Construction	600	100	200
7 SWCV	300	100	200
7 Tractor	600	100	200
7 Tractor Construction	600	100	200
7 Utility	600	100	200
715	600	100	200
BUS	300	50	150
IBUS	700	50	150
/lotor Coach	700	19.2	60
DBUS	400	50	150
Il Other Buses	400	50	150

Statewide Load Profile (2030)

High Charging Demand Scenario – TEDF High July 2021

Tradeoff between charging energy and time spent (<200 kW)

Charging Energy and Charging Time, by Charger Power (kw)

Inverse relationship between charge power and the time spent receiving energy while dwelling.

Higher power charging can offer greater flexibility when in the future, time-of-use price-based shifting is applied to the load profile.

Scenario Update

Vehicle-specific Charging Power Quartiles (up to 2 MW)

Vehicle-specific Charging Power Quartiles September 2021

- Recent and anticipated Class 3 to Class 8 electric vehicle model specifications were analyzed. To observe the change of one variable, battery capacity (kWh) was held constant.
- GVWR-specific quartiles of charging power were applied to the 34 EMFAC vehicle types

34 vehicle types x 4 quartiles x 2 powers (Level A and Level B)

- Two charging powers are defined for each vehicle type to meet the driving requirements at
 - Depots (night time, Level A) based on the quartile analysis
 - Opportunistic Locations (day time, Level B).
- Level B assumed to be ~3x Level A
 - "Heavy" applications charge faster than "Small" or "Light" counterparts in similar applications.
 - International registration and out-of-state vehicles have faster charging capabilities
 - □ For T6 and T7 vehicles, the Megawatt Charging System is *conservatively* assumed to deliver up to 1.6 MW.
- See appendix slides for detail.

Statewide Energy Consumption while Driving (2030)

High Charging Demand Scenario – TEDF High September 2021

Statewide Load Profile (2030)

High Charging Demand Scenario – TEDF High September 2021

Tradeoff between charging energy and time spent (< 2 MW)

Charging Energy & Charging Time, by Charger Power (kw)

BERKELEY LAE

At chargers rated above 750 kW, MHDVs spend 3% of time charging but receive nearly 30% of all energy dispensed.

At chargers rated 75 kW or below, MHDVs spend 2/3 of all time dwelt while charging and receive about 20% of energy dispensed.

Discussion and Comparison of Results

Statewide Load Profile (2021-2030)

High Charging Demand Scenario – TEDF High

Statewide Load Profile and Diurnal Energy Demand (2030) High Charging Demand Scenario – TEDF High

While further analysis on how MHDV specifications affect load, a higher range and diversity in charging power among the applications allowed more energy to be dispensed at night, slightly reducing the peak demand.

Ongoing Efforts and Future Updates

Bottom-up approach with more granular temporal and geospatial resolutions

1e7

Questions and input sought from DAWG Participants

- Are efforts to further define and diversify charging power reasonable?
 - Like battery capacity, should charge power grow over time for future vehicles?
 - Is it fair to assume all vehicles have faster (e.g. Level B) charging capabilities, or will some well-defined applications entirely charge at their depot?
 - Should a relationship between battery kWh and charge power be set? Should utility price and schedule delays be valued to upsize the charging capability of the vehicle?

Battery energy capacity

- Is the 5% annual growth factor in energy density reasonable? How should the growth in energy density affect the GVWR of the vehicle?
- Should battery kWh be set into quartiles for each vehicle type?
- What other information about driver patterns can be incorporated into the behavioral logic model?

Medium- and Heavy-Duty Base Load Shapes For IEPR Forecast

Alex Lonsdale Energy Assessments Division, California Energy Commission Demand Analysis Working Group Meeting – September 14, 2021

- The following load shapes are preliminary and subject to change based on feedback provided at today's meeting.
- 2020 IEPR base load shapes originate from ADM's medium- and heavy-duty charge profile analysis.
- Preliminary 2021 IEPR base load shapes derived from HEVI-LOAD modelling results (With charging power quartiles).
- As a reminder, base load shapes serve as input to the EV Infrastructure Load Model.
 - Please note, effects of TOU rates are not included in the following comparisons.

Appendix

Charging Power Quartiles, I of 2 (September 2021)

	Battery capacity	Charging level	Charging level	Charging level	Charging level				
Vehicle type (EMFAC)	(kWh)	Q1A (kW)	Q1B (kW)	Q2A (kW)	Q2B (kW)	Q3A (kW)	Q3B (kW)	Q4A (kW)	Q4B (kW)
LHD2	100	19	50	19	50	50	150	75	225
T6 Ag	200	19	50	50	150	100	300	150	450
T6 CAIRP Heavy	250	25	1000	150	1200	150	1400	300	1600
T6 CAIRP Small	200	19	1000	50	1200	100	1400	150	1600
T6 Instate Construction Heavy	250	25	75	50	150	150	450	300	900
T6 Instate Construction Small	300	19	50	50	150	100	300	150	450
T6 Instate Heavy	400	100	300	150	450	150	450	300	900
T6 Instate Small	300	19	50	50	150	100	300	150	450
T6 OOS Heavy	400	100	1600	150	1600	150	1600	300	1600
T6 OOS Small	400	19	1600	50	1600	100	1600	150	1600
T6 Public	400	19	50	50	150	100	300	150	450
T6 Utility	400	19	50	50	150	100	300	150	450
тбтѕ	400	19	50	50	150	100	300	150	450

Charging Power Quartiles, 2 of 2 (September 2021)

	Battery	Charging level Q1A	Charging level Q1B	Charging level Q2A	Charging level Q4B				
Vehicle type (EMFAC)	capacity (kWh)	(kW)	(kW)	(kW)	Q2B (kW)	Q3A (kW)	Q3B (kW)	Q4A (kW)	(kW)
T7 Ag	600	100	300	150	450	250	750	350	1600
T7 CAIRP	1000	100	1000	150	1200	250	1400	350	1600
T7 CAIRP Construction	1000	100	1000	150	1200	250	1400	350	1600
T7 NNOOS	1000	100	1000	150	1200	250	1400	350	1600
T7 NOOS	1000	100	1000	150	1200	250	1400	350	1600
T7 Other Port	600	100	300	150	450	250	750	350	1600
Т7 РОАК	600	100	300	150	450	250	750	350	1600
T7 POLA	600	100	300	150	450	250	750	350	1600
T7 Public	600	100	300	150	450	250	750	350	1600
T7 Single	600	100	300	150	450	250	750	350	1600
T7 Single Construction	600	100	300	150	450	250	750	350	1600
T7 SWCV	300	100	300	150	450	250	750	350	1600
T7 Tractor	600	100	300	150	450	250	750	350	1600
T7 Tractor Construction	600	100	300	150	450	250	750	350	1600
T7 Utility	600	100	300	150	450	250	750	350	1600
T7IS	600	100	300	150	450	250	750	350	1600
SBUS	300	19	50	50	150	75	225	100	300
UBUS	700	50	150	100	300	150	450	300	1000
Motor Coach	700	100	300	150	450	350	1050	500	1600
OBUS	400	19	150	50	300	75	450	300	900
All Other Buses	400	19	150	50	300	75	450	300	900

