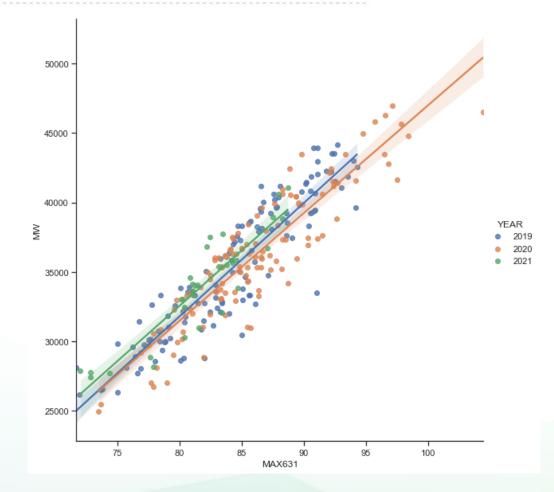


Adjusting for Climate Trends in Normal Peak Loads

September 30, 2021 – Demand Analysis Working Group

Nick Fugate Energy Assessments Division

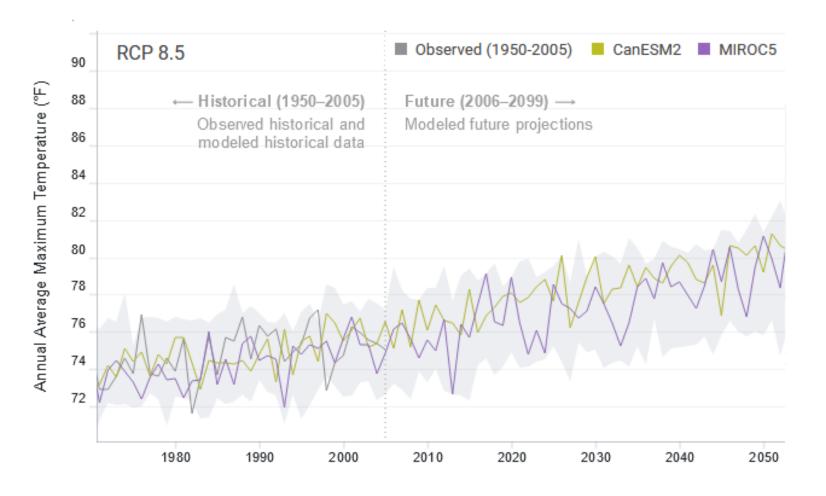

- CEC's demand forecast includes climate change load impacts based on GCM projected temperature trends
- Forecasted impacts are added to model results incrementally over base year loads**
- Base year loads are normalized using historic weather data
- Historic record indicates a warming trend across key temperature statistics

**Implicit in this process is the assumption that normal base-year loads reflect climate change that has occurred to date

Current Normalization Process

Three-step process:

- Estimate daily peak load-response to maximum and minimum temperatures (3 years of data)
- 2. Simulate daily peaks using 30 years of historic temperature data
- 3. Examine distribution of annual peak loads taken from simulated data to determine 1-in-x peak variants, including 1-in-2 "normal"

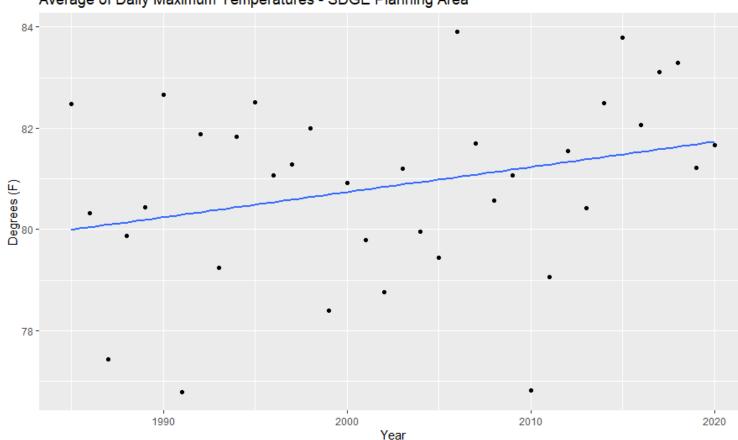

A Non-Stationary Series

Given an increasing linear trend over n years, the most recent year should carry the highest expected value

A typical 30-year normal would likely underestimate present-day expectations

Graphic:

https://cal-adapt.org/


Both are straightforward to implement within our existing normalization process

- 1) Apply heavier "weight" to recent years
 - Intuitive
 - Captures cyclical effects with long periods
- 2) Truncate the window over which historical temperatures are considered
 - Less confidence in 1-in-x events
 - Periodic effects can be mistaken for trends

Illustration - Periodic Effects

Daily max temperatures (SDG&E) show a slight warming trend from 1990-2020

1990-2000 was generally warm-dropping these years would lower the overall average, despite the increasing trend

Average of Daily Maximum Temperatures - SDGE Planning Area

Additional Steps:

- 1) Assign weights to all 30 historical years
- 2) During simulation step, draw historical years such that each year's likelihood of selection is proportional to its weight

For this presentation, weights are consistent across decades:

- 1991-2000 ... weight of 1
- 2001-2010 ... weight of 2
- 2011-2020 ... weight of 3

Other weighting schemes could easily be tested and considered

Additional Steps:

- 1) Define a subset of the historical window representing the most recent n-years
- 2) During simulation step, randomly draw daily max and min temperatures from n-year window (enough to represent a full summer)
- Randomly select a year from the historical window to use as a pattern, assigning temperatures from step (2) to particular days by rank

This presentation examines 10- and 20-year windows, but other selections of n could be considered

Table shows percent increases to 1-in-x peak load relative to unadjusted results

Summary of Results

Weighted method:

- In the vicinity of forecasted climate load impacts (~1 percent over ten years)
- Greatest impact on 1-in-2 peak variant

Truncation method:

- Extreme relative to forecasted 1-in-2 climate change load impacts
- Imply downward adjustments, in some cases

Weighted	1-in-2	1-in-5	1-in-10
PGE	1.1%	1.0%	0.3%
SCE	1.5%	0.2%	0.6%
SDGE	2.0%	1.2%	1.6%
Truncated (20yr)			
PGE	1.2%	1.6%	0.6%
SCE	2.1%	0.0%	1.3%
SDGE	3.3%	-0.6%	-0.1%
Truncated (10yr)			
PGE	1.5%	2.2%	1.2%
SCE	3.7%	1.8%	3.8%
SDGE	5.5%	1.2%	1.7%

Near term...

- Weather normalization analysis begins in October
- Preview and discussion at a November DAWG meeting ahead of December results workshop
- Climate adjusted results will be compared to unadjusted results

Longer term...

- EPIC-funded climate assessments to examine questions of normal and 1-in-x weather events
- Earliest study results could be considered in 2022 / 2023 IEPR cycles

Questions / Discussion

