

Transportation Energy Demand Forecast

Demand Analysis Working Group Presentation November 15, 2022

Statewide Light-Duty Vehicle Forecast: Statewide & Regional Vehicles

Aniss Bahrenian

Jesse Gage

- Baseline Forecast Context & Scenario
- Statewide ZEV Forecast Results
- Regional PEV Forecast Results

Key Light Duty Vehicle Demand Forecast Drivers

Fleet Size & New Vehicle Sales

Fleet Composition

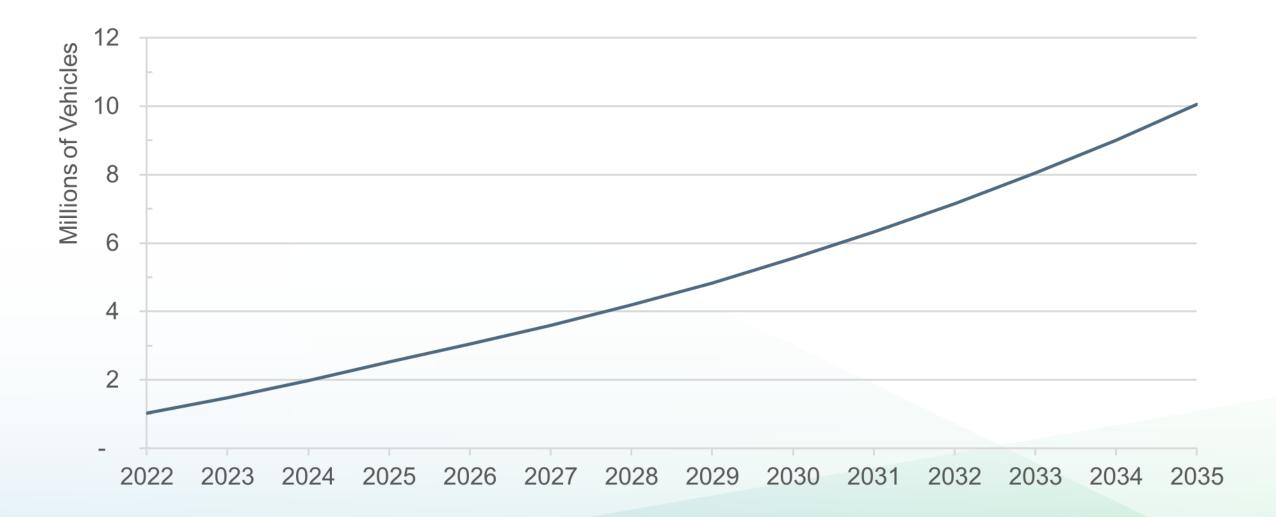
Economic & Demographic Factors

- Vehicle Attributes
- Technology Schedule
- Federal and Statewide Incentives
- Consumer Preferences

Baseline PEV/ZEV Scenario

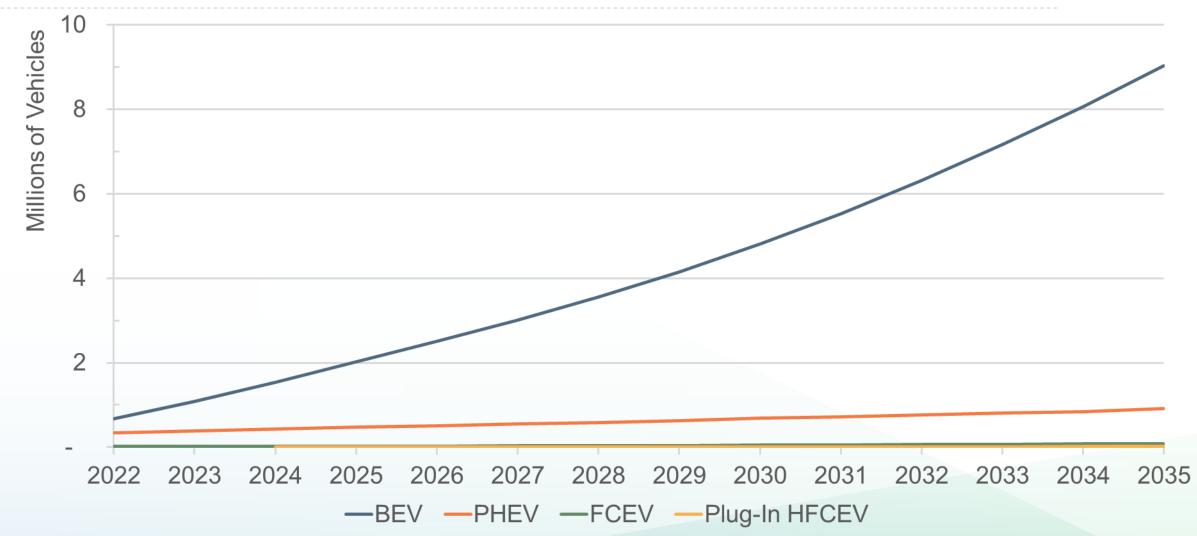
INPUTS/Assumptions	Baseline Mid Case Forecast
Economic and Demographic Data	Baseline Mid
PREFERENCES	
Consumers' PEV Preference	Increase with PEV market growth
INCENTIVES/Regs	
IRA Federal Tax Credit	To 2032
Clean Fuel Rewards	To 2030
State Rebate	To 2025
HOV Lane Access	To 2025
2035 ZEV Regulation Requirement	Reserved for AATE scenarios
ATTRIBUTES	
Availability of PEVs (2035)	PEV models available in 15 of the 15 CEC LDV classes, in Standard and/or luxury
Vehicle / Battery Price (by 2035)	PEV prices based on battery price declining to ~\$71/kWh
Max. Range (2035)	~400 miles for Standard, 500 mile for Luxury
Refuel Time (2035)	15 -21 min
Time to Station (2035)	Same as gasoline
ZEV Population (2035)	~ 10 million

- Consumer Preferences for PEVs
- Price: Actual prices to 2022, ZEV announcements 2023 onward
- MPG: Actual MPGs to 2022, ZEV announcements for 2023 onward
- Range: Based on actual range values to 2022 and projected range for 2023 onward
- Technology Introduction Schedule: Based on DMV data to 2023, and OEM announcements afterward


		Standard			Luxury						
	Class	E	BEV	PHEV	FCV	PFCV		BEV	PHEV	FCV	PFCV
	Car-Compact		2011	2011				2023	2014		
	Car-Large		2028	2016				2012	2014		
	Car-Midsize		2017	2012				2020	2016	2027	
	Car-Sport		2021					2021	2014		
	Car-Subcompact		2011		2016			2014	2014		
	Pickup-Compact		2025								
	Pickup-Heavy		2028			2024		2023			
	Pickup-Std		2022	2024				2022	2035	2025	
	SUV-Compact		2012	2018	2019			2016	2016		
	SUV-Heavy										
	SUV-Large		2023	2025				2022			2024
	SUV-Midsize		2023	2021				2020	2015		
	SUV-Subcompact		2015	2018				2014	2020		
	Van-Heavy		2023								
	Van-Minivan		2023	2023							
	Van-Std		2023						2017		
Never Introduced			Source: Energy Commission Staff Anal			sion Staff Analys	sis			7	

ICE Technology Termination Schedule

			Stan	dard		Luxury			
	Class	Gasoline	Diesel	Hybrid	FFV	Gasoline [Diesel	Hybrid	FFV
	Car-Compact		2016		2019		2019	2018	2011
	Car-Large		1983	2018	2021		2019	2016	2016
	Car-Midsize		2020		2016		2020		2015
	Car-Sport			2017	2017				2015
	Car-Subcompact	2029	2016	2020			2015		
	Pickup-Compact	2028	2031	2022	2012				
	Pickup-Heavy				2022				
	Pickup-Std		2030			2009			
	SUV-Compact		2020		2020		2020		2014
	SUV-Heavy	2014	2006		2014				
	SUV-Large	2029	2023	2016	2021		2022	2014	2015
	SUV-Midsize		2022		2013		2022		2016
	SUV-Subcompact		2016	2018	2012		1988	2023	2007
	Van-Heavy	2029	2022		2022	2023			2017
	Van-Minivan	2035	1984		2021				
	Van-Std				2017	2022			
Continues	s to 2035+ Never Existed		So	urce: Energy C	ommission Staf	f Analysis		8	



Total Forecasted ZEV Stock Baseline Scenario

Forecasted ZEV Stock by Fuel Baseline Scenario

ENERGY COMMISSION

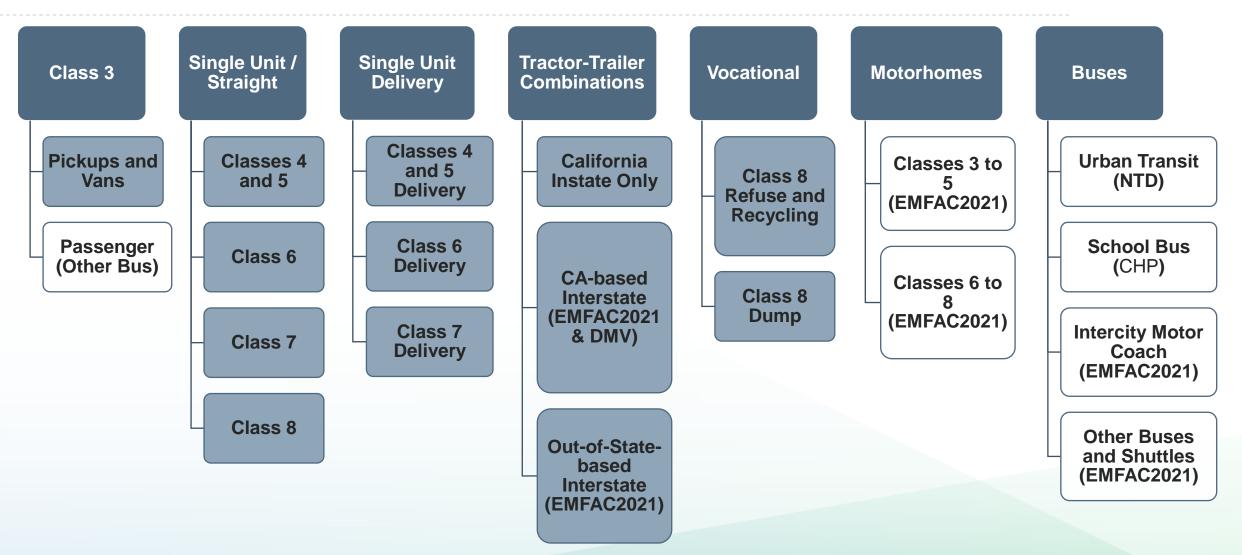
BEV, PHEV and PHFCV Stock by Utility

Baseline Scenario, Thousands of Vehicles

Utility Region	2021	2025	2030	2035
LADWP	81	250	570	1,100
PG&E	330	1,000	2,200	4,000
SCE	290	840	1,800	3,100
SDG&E	83	250	540	950
SMUD	24	69	160	310
Others	18	52	100	170
Total	830	2,500	5,400	9,700

Medium- and Heavy-Duty Truck Forecast Methods

Bob McBride



- MD-HD Vehicle Classes
- Inputs and Assumptions
- Data Sources
- Incentives
- Policy Constraints

Class 1 6,000 lb & less	Small Cargo Van	Compact Pickup	SUV	Minivan	
Class 2 6,001 lb to 10,000 lb	Panel Van	Standard Pickup	Large SUV	Large Passenger Van	
Class 3 10,001 lb to 14,000 lb	Large Panel Van	Heavy-Duty Pickup	Straight Tr	uck	
Class 4 14,001 lb to 16,000 lb	Step Van	Small Dump Truck	Medium Stra	aight Truck	
Class 5 16,001 lb to 19,500 lb	Step Van	Large Maintenance	e Truck Medi	ium Straight Truck	
Class 6 19,501 lb to 26,000 lb	Large Step Van	Medium Schoo	ol Bus Medi	ium Straight Truck	
Class 7 26,001 lb to 33,000 lb	Class 7 School Bus	Transit Bus	Large St	traight Truck 2-Axle Tra	actor
Class 8 33,001 lb & Over	Coach Bus	Large Transit B	us Large Str	raight Truck Tractor	Refuse Truck

Source: California Energy Commission staff

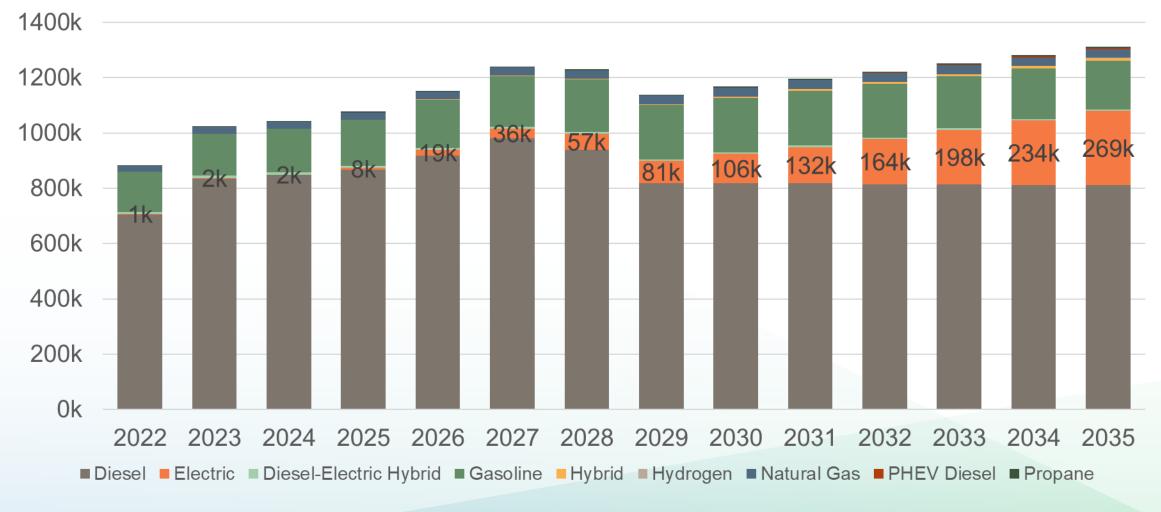
MDHD Vehicle Classes

	Baseline
CARB Regulations	Advanced Clean Trucks (ACT), other existing rules
Regional Regulations	SCAQMD Truck and Bus rules
HVIP (all years)	Voucher amounts scaled to incremental truck price
Inflation Reduction Act	\$7,500 for Class 3 and \$40,000 for Classes 6 and 7
Hydrogen Price	NREL mid price
Electricity Rates	Commercial Rates, Mid
BEV Truck Prices given battery pack price in 2035	BEV prices based on battery price \$488/kWh in 2021, declines to \$73/kWh in 2035
Miles Per Gallon (conventional / alternative)	Same as Mid for IEPR 2021, based on ICF(2021) and KGD(2019)

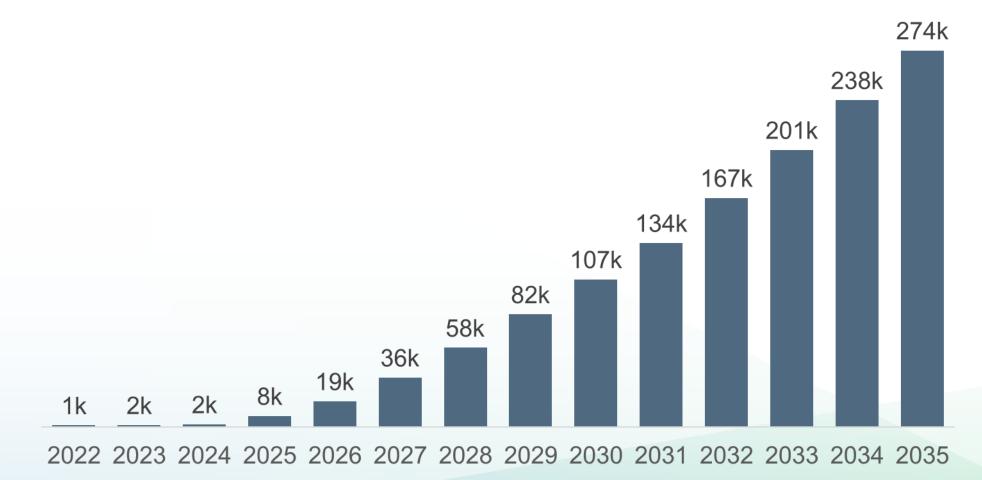
- In-state truck stock based on analysis of DMV data
- Interstate truck stock based on EMFAC2021
- Commodity movement based on Freight Analysis Framework 5.3
- Allocation of commodities to trucks based on CSF2TDM and CA-VIUS
- Truck prices, fuel efficiency and infrastructure cost from ICF 2021 contract
- Battery pack prices from 2022 to 2026 reflect higher lithium price due to production shortage due to high demand
- Choice model calibrated so that ICE and electric truck purchase share aligns to CY2021 actual DMV and HVIP values
- Share calibration performed as adjustment of initial preference factor

- CARB Hybrid and Zero-Emission Truck and Bus Voucher Incentive Project (HVIP) MDHD Truck Vouchers
 - Flat rates by weight class for vehicle purchase vouchers
 - > Zero-emission truck (ZET) drayage truck voucher at \$150,000, others lower
 - Buses and trucks in same weight class receive same amount
- Inflation Reduction Act (IRA) Federal Incentive
 - For Class 3, incentives for ZET and plug-in hybrid electric vehicle (PHEV) capped at \$7,500
 - ➢ For Classes 6 and 7, capped at \$40,000
- Assumptions
 - IRA incentives run from 2023 to 2031
 - HVIP and IRA incentives can be stacked
 - HVIP voucher is scaled to incremental truck price, and adjusted to achieve Advanced Clean Truck regulation compliance

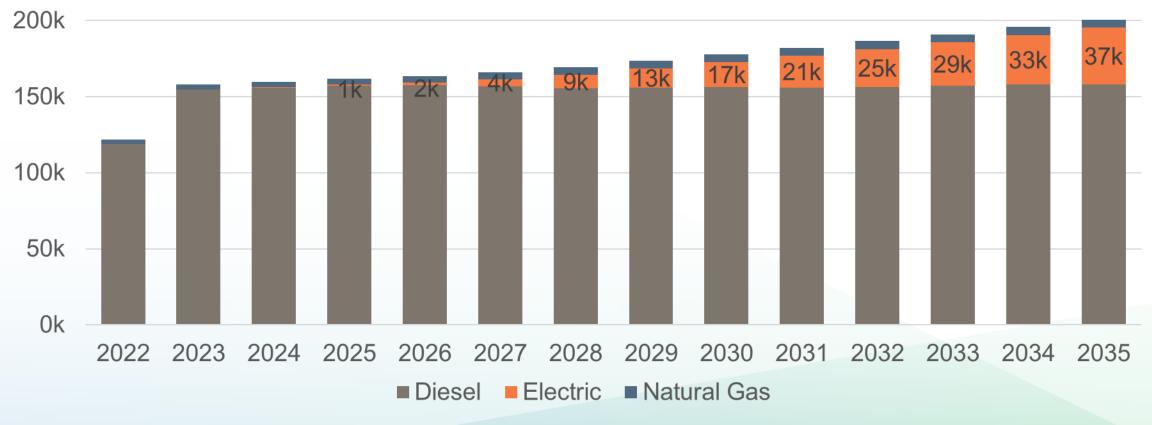
- Statewide Truck Rules
- SCAQMD Regional Rules
 - > 'Alternative fuel' required for transit buses, refuse and public fleets
- Advanced Clean Truck regulation
 - Sets percent ZEV required for compliance and weights by truck class
 - > Included in Truck Choice & Freight model as a compliance calculator
- Advanced Clean Fleets regulation (AATE 3 only)
 - Data from CARB for ACF plus ACT scenario
 - Assume the maximum of ZEV share each forecast year, from CARB ACF data or CEC truck choice shares


Medium- and Heavy-Duty Truck Forecast Results

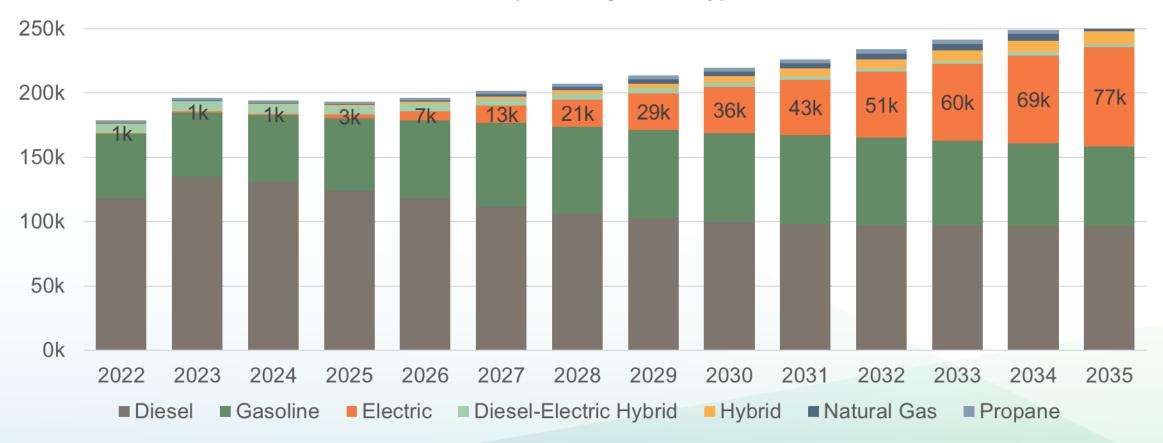
Maggie Deng


IEPR 2022 Baseline Truck Stock Forecast

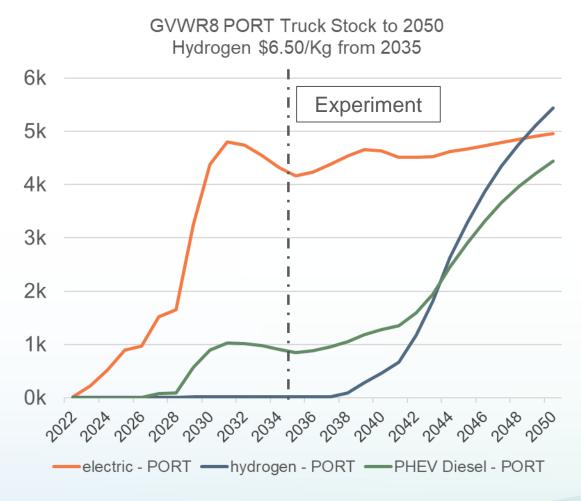
Source: California Energy Commission staff analysis


IEPR 2022 Baseline Zero-Emission Truck Stock Forecast

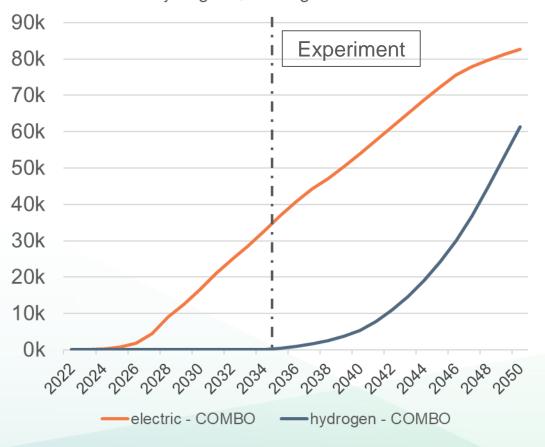
Source: California Energy Commission staff analysis


IEPR 2022 Baseline GVWR8 Combo Truck Stock Forecast

Source: California Energy Commission staff

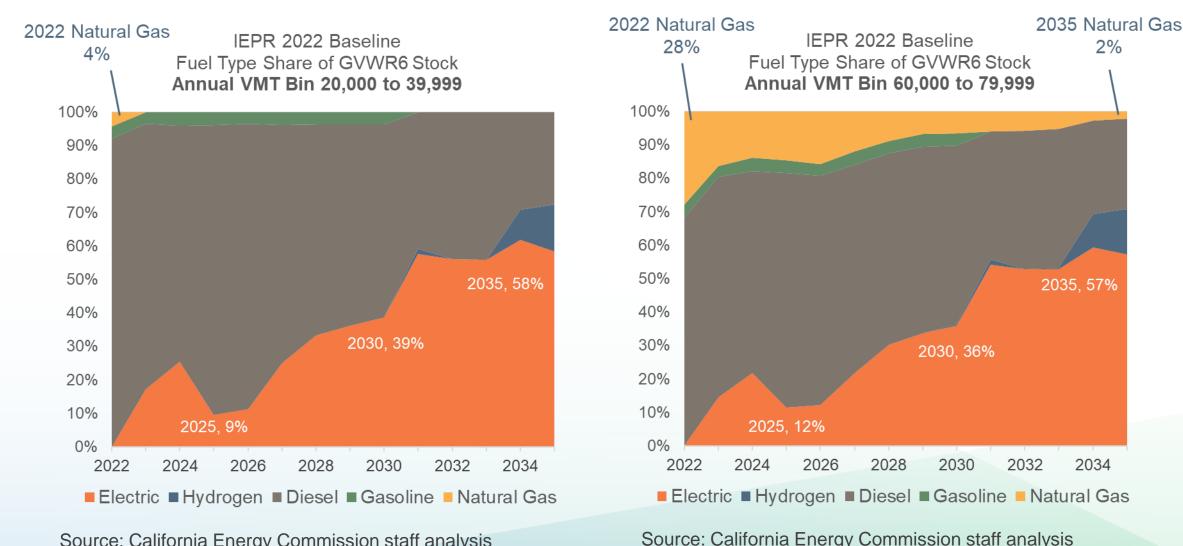

Baseline GVWR4and5 Truck Stock

IEPR 2022 Baseline GVWR4and5 Truck Stock Forecast (Including Delivery)



Source: California Energy Commission staff analysis

With Hydrogen Fuel Price Experiment Using \$6.50/Kg H2 Price from 2035


GVWR8 COMBO Truck Stock to 2050 Hydrogen \$6.50/Kg from 2035

Source: California Energy Commission staff analysis

Source: California Energy Commission staff analysis

Relationship of Annual VMT to Fuel Type Share

Source: California Energy Commission staff analysis

Additional Achievable Transportation Electrification (AATE)

Rationale, Method, and Results

Quentin Gee

Additional Achievable Transportation Electrification (AATE): Synopsis

- AATE enables the expansion of the original IEPR forecasting approach used for transportation.
- Managed forecasts above the baseline are used for integration of supplyside policies that existing demand-side models cannot readily account for.
- AATE 2 and AATE 3 are managed forecasts that post-process some vehicle fuel types to align with sales proportions or population proportions stipulated by Advanced Clean Cars II and Advanced Clean Trucks.
- Because AATE 3 is the recommended scenario for planning and the baseline ZEV forecast is already high, staff do not anticipate significant impacts from removing AATE 1.

Light-Duty AATE Scenarios 2 and 3

- Preferences for body style (e.g., increasing consumer interest in SUVs or Pickups) are maintained, which allows for modeling energy consequences of such preferences under high ZEV policy scenarios.
- Total vehicle population across Baseline, AATE 2, and AATE 3 are the same only fuel types of new vehicle sales change.

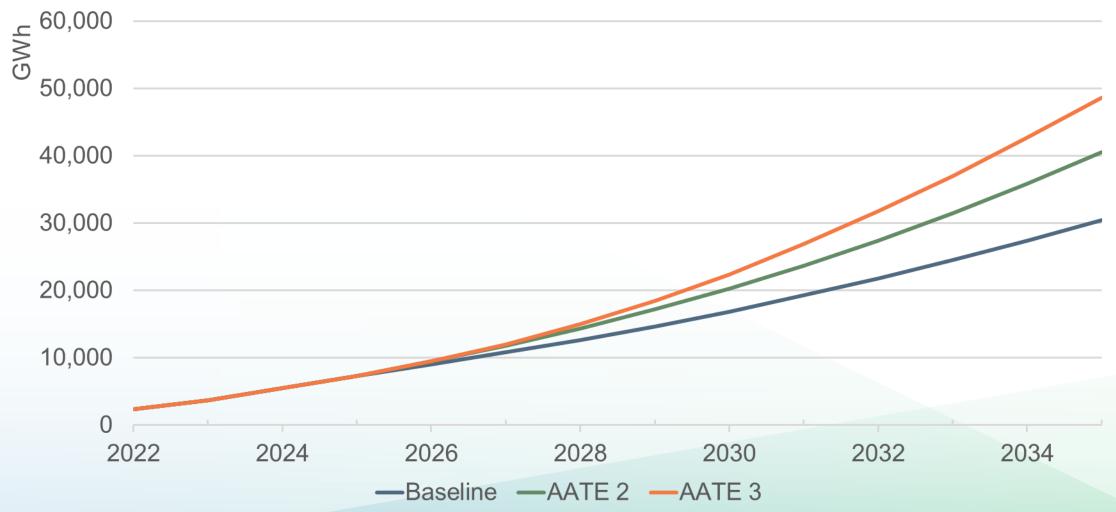
Electricity Consequences for PEVs

- Lower per vehicle electricity consumption from 2021 IEPR.
- Increased population-weighted PEV fuel economy.
- Improvements to VMT forecast.
- PHEV energy consumption improvements.

Baseline Scenario	Quantity	AATE Scenario 3	Quantity
Total LD Vehicle Population	34,000,000	Total LD Vehicle Population	34,000,000
New LD Vehicle Sales	2,400,000	New LD Vehicle Sales	2,400,000
ZEV Sales Requirement	59%	ZEV Sales Requirement	59%
Standard Mid Size Sales	400,000	Standard Mid Size Sales	400,000
Gasoline*	265,328	Gasoline*	164,000
Electric*	134,672	Electric*	236,000

In the post-processing approach, the distribution of ZEVs will change, but the vehicle population, new vehicle sales, and classes of new vehicles will remain constant. ZEV populations within a class may not align precisely to the sales, but the total ZEV sales will align.

*there are four major ZEV fuel types, and many combustion fuel types. This example is simplified for illustration.



Managed Forecast Results for Light-Duty ZEVs

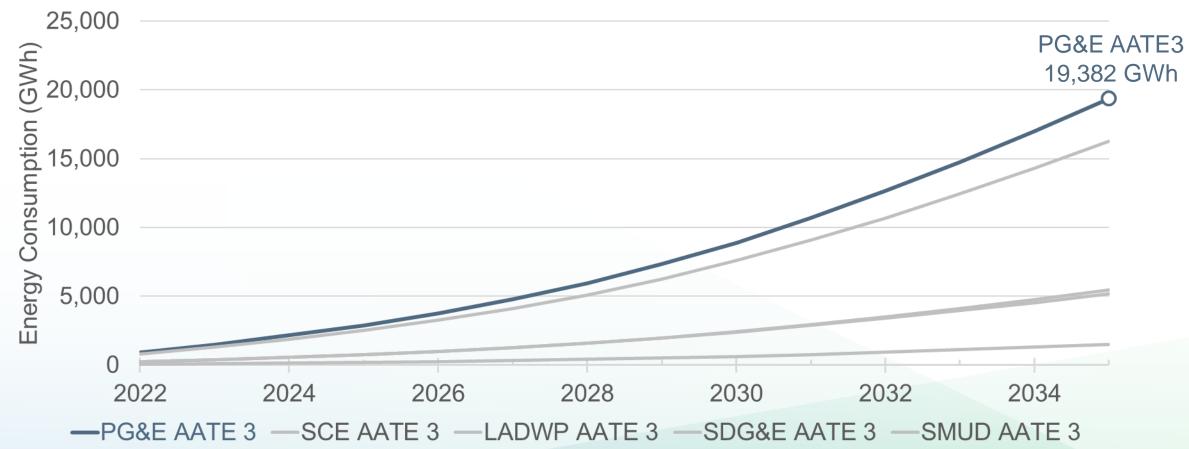
Light-Duty Electricity Demand: Scenario Comparisons

AATE Managed Forecast Results for Light-Duty Electricity Demand

Regional Light-Duty PEV Population Forecast (AATE3)

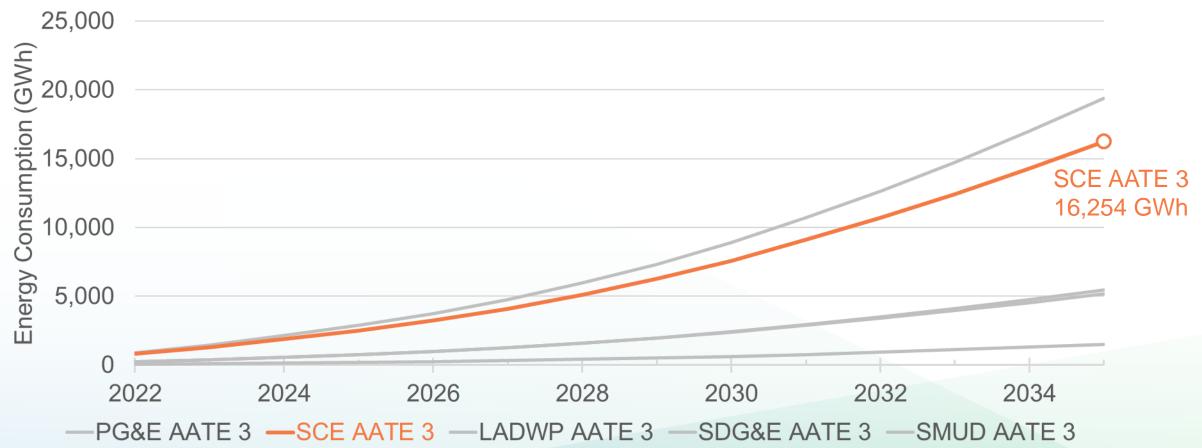
Liz Pham

BEV, PHEV and PHFCV Stock by Utility AATE 3 Scenario, Thousands of Vehicles


Utility Region	2021	2025	2030	2035
LADWP	81	250	750	1,700
PG&E	330	1,000	2,900	6,300
SCE	290	840	2,300	4,900
SDG&E	83	250	710	1,500
SMUD	24	69	210	500
Others	18	52	130	270
Total	830	2,500	7,000	15,000

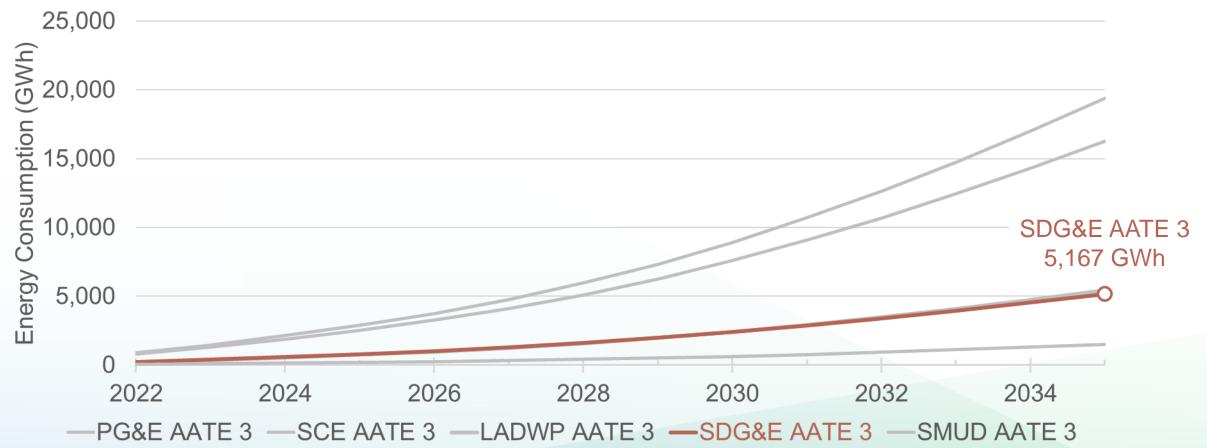
Regional Light-Duty PEV Energy Forecast (AATE3)

Light-Duty PEV Energy Forecast: Pacific Gas & Electric


Pacific Gas & Electric Plug-in Electric Vehicle Energy Consumption

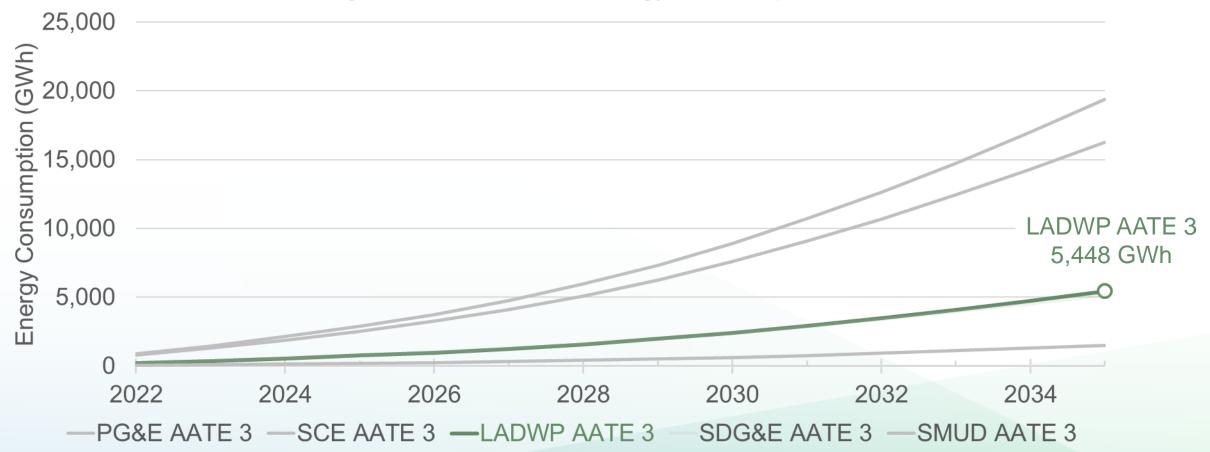
Source: Energy Commission Staff Analysis

Light-Duty PEV Energy Forecast: Southern California Edison


Southern California Edison Plug-in Electric Vehicle Energy Consumption

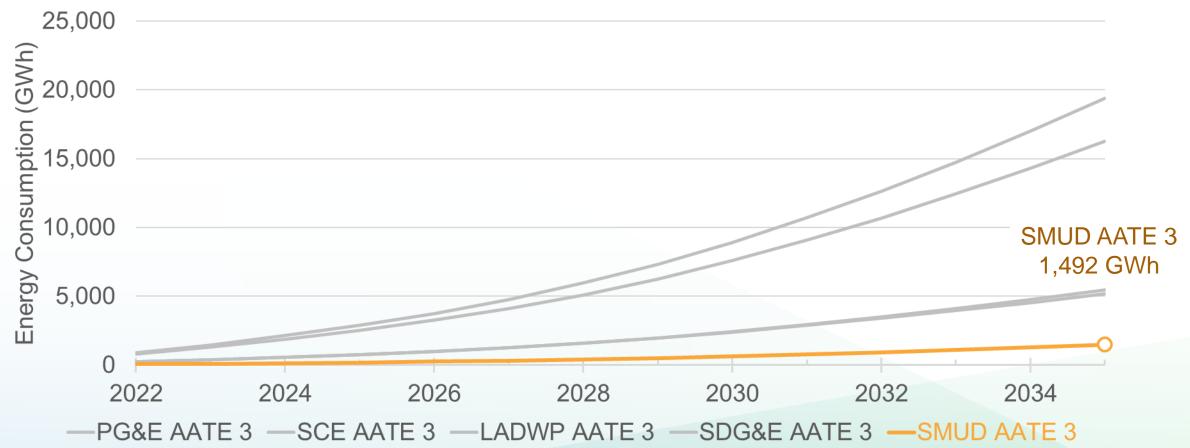
Source: Energy Commission Staff Analysis

Light-Duty PEV Energy Forecast: San Diego Gas & Electric


San Diego Gas & Electric Plug-in Electric Vehicle Energy Consumption

Source: Energy Commission Staff Analysis

Light-Duty PEV Energy Forecast: Los Angeles Department of Water & Power


Los Angeles Department of Water & Power Plug-in Electric Vehicle Energy Consumption

Source: Energy Commission Staff Analysis

Light-Duty PEV Energy Forecast: Sacramento Municipal Utility District

Sacramento Municipal Utility District Plug-in Electric Vehicle Energy Consumption

Source: Energy Commission Staff Analysis

Medium- and Heavy-Duty AATE

Bob McBride Maggie Deng

AATE and Baseline Zero-Emission Truck Inputs and Assumptions

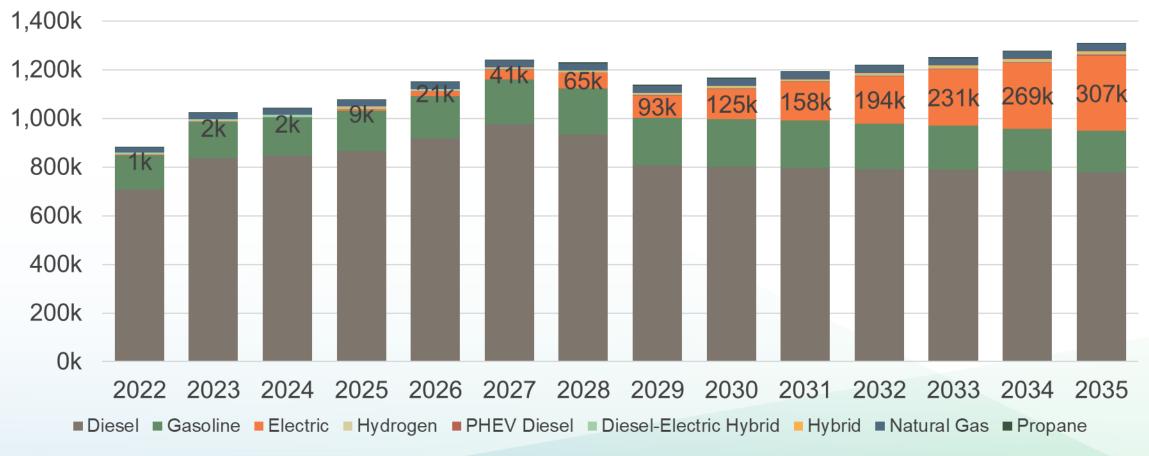
Input/Assumption	Baseline	AATE 2	AATE 3		
CARB Regulations	Advanced Clean Trucks (ACT), other existing rules	Advanced Clean Trucks, other existing rules	Advanced Clean Fleets, ACT, and other existing rules		
Regional Regulations	SCAQMD Truck and Bus rules	Implicit for refuse trucks and urban transit buses	Same as MID Case		
HVIP (all years)	Voucher amounts scaled to incremental truck price	Same as Baseline	Same as Baseline		
Inflation Reduction Act	\$7,500 for Class 3 and \$40,000 for Classes 6 and 7	Same as Baseline	Same as Baseline		
Hydrogen Price	NREL mid price	NREL mid price	NREL mid price		
Electricity Rates	Commercial Rates, Mid	Commercial Rates, Mid	Commercial Rates, Mid		
BEV Truck Prices given battery pack price in 2035	BEV prices based on battery price \$488/kWh in 2021, declines to \$73/kWh in 2035	Baseline truck prices plus 5%	Same as Baseline		
Miles Per Gallon (conventional / alternative)	Same as Mid for IEPR 2021, based on ICF(2021) and KGD(2019)	Same as Baseline	Same as Baseline		

Additional Achievable Transportation Electrification: Medium- and Heavy-Duty Trucks

<u>AATE 2</u>

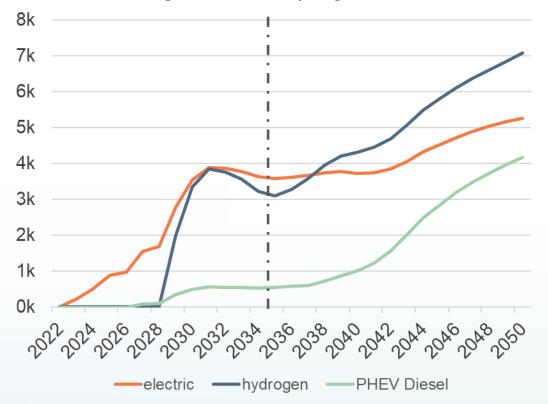
Based on baseline scenario with:

- High case truck prices
- Truck survival rate calculated from CARB ACF data


<u>AATE 3</u>

Based on CARB ACF scenario (ACT and ACF) with:

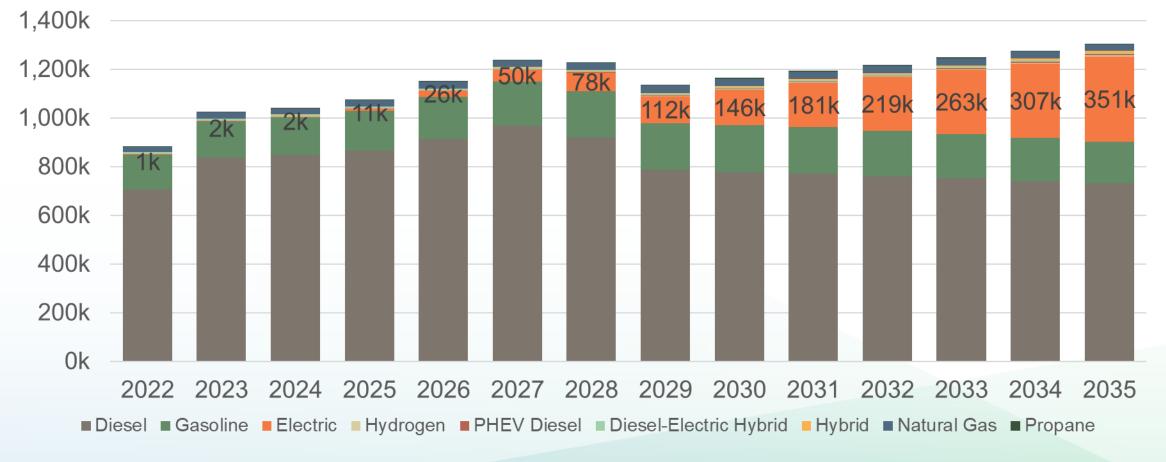
- CARB ACF ZEV percentage outcome
 - AATE 3 applies maximum ZEV share between CARB ACF scenario and CEC's Truck Choice and Freight Model
- CARB data disaggregated to CEC fuel type shares using baseline forecast
- Truck survival rate calculated from CARB ACF data


IEPR 2022 AATE 2 Truck Stock Forecast

Source: California Energy Commission staff

AATE 2 Fuel Price Experiment Using IEPR 2021 High Case Hydrogen Price

GVWR8 PORT Truck Stock to 2050 High Case 2021 Hydrogen Price


Source: California Energy Commission staff analysis

GVWR8 COMBO Truck Stock to 2050

Source: California Energy Commission staff analysis

IEPR 2022 AATE 3 Truck Stock Forecast

Source: California Energy Commission staff

45

Forecast and CARB ACF Scenario

Comparison of MDHD GVWR3 to GVWR8 Truck Stock Forecasts

Calendar Year	CARB ACT + ACF Total ZETS	CEC Baseline Total ZETs	AATE 2 Total ZETs	AATE 3 Total ZETs
2024	13,892	2,032	2,104	2,030
2025	25,376	8,146	9,025	10,688
2026	40,466	18,783	21,533	26,776
2027	62,188	36,031	41,433	51,565
2028	84,526	57,684	65,890	79,464
2029	113,341	81,965	94,651	115,888
2030	146,820	107,421	126,872	151,570
2031	185,461	133,810	160,640	186,954
2032	225,802	166,597	196,917	226,175
2033	265,821	201,380	234,369	270,758
2034	311,533	237,572	273,525	314,892
2035	360,109	273,702	313,039	360,342

Source: California Air Resources Board staff and California Energy Commission staff

Transportation Energy Forecasting Team Aniss Bahrenian Maggie Deng Jesse Gage Elena Giyenko Bob McBride Liz Pham Quentin Gee (Supervisor)

Thank You!

Questions Via Email

quentin.gee@energy.ca.gov

IEPR 2022 Baseline Truck Stock Forecast

Fuel Type	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Diesel	706,120	835,921	847,678	866,419	919,484	980,561	939,992	819,033	818,291	817,625	814,509	813,552	811,359	810,814
Diesel-Electric Hybrid	7,754	8,942	8,555	7,781	6,994	6,300	5,749	5,392	5,203	5,067	5,063	5,139	5,297	5,518
Electric	1,315	1,509	2,032	8,120	18,679	35,748	57,264	80,947	105,888	131,887	164,234	198,418	233,878	269,015
Gasoline	144,774	151,445	156,295	165,236	175,007	184,115	190,658	195,063	197,571	198,388	193,882	188,075	182,262	176,370
Hybrid	344	368	552	926	1,520	2,210	2,974	3,853	4,825	5,867	6,916	7,925	8,850	9,754
Hydrogen	0	0	0	0	0	0	0	0	58	157	185	190	254	412
Natural Gas	20,565	24,532	25,540	26,247	27,471	29,000	30,015	30,896	31,520	31,956	32,157	32,256	32,116	31,787
PHEV Diesel	0	0	0	26	104	283	420	1,018	1,475	1,766	2,178	2,772	3,440	4,275
Propane	2,422	2,444	2,445	2,454	2,604	2,884	3,109	3,272	3,396	3,495	3,559	3,602	3,595	3,569
Total Stock	883,294	1,025,162	1,043,096	1,077,209	1,151,864	1,241,100	1,230,180	1,139,474	1,168,227	1,196,209	1,222,683	1,251,931	1,281,051	1,311,513