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PREFACE 

The California Energy Commission’s (CEC) Energy Research and Development Division 
supports energy research and development programs to spur innovation in energy 
efficiency, renewable energy and advanced clean generation, energy-related 
environmental protection, energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the 
California Public Utilities Commission to fund public investments in research to create 
and advance new energy solutions, foster regional innovation and bring ideas from the 
lab to the marketplace. The CEC and the state’s three largest investor-owned utilities—
Pacific Gas and Electric Company, San Diego Gas & Electric Company and Southern 
California Edison Company—were selected to administer the EPIC funds and advance 
novel technologies, tools, and strategies that provide benefits to their electric 
ratepayers. 

The is committed to ensuring public participation in its research and development 
programs that promote greater reliability, lower costs, and increase safety for the 
California electric ratepayer and include: 

• Providing societal benefits.
• Reducing greenhouse gas emission in the electricity sector at the lowest possible

cost.
• Supporting California’s loading order to meet energy needs first with energy

efficiency and demand response, next with renewable energy (distributed
generation and utility scale), and finally with clean, conventional electricity supply.

• Supporting low-emission vehicles and transportation.
• Providing economic development.
• Using ratepayer funds efficiently.

Integrated Distributed Energy Resources Management System is the final report for the 
Integrated Distributed Energy Resources Management System (iDERMS) project (Contract 
Number EPC-15-090) conducted by The Regents of the University of California (UC 
Riverside). The information from this project contributes to the Energy Research and 
Development Division’s EPIC Program. 

For more information about the Energy Research and Development Division, please visit 
the Energy Commission’s research website (www.energy.ca.gov/research/) or contact 
the CEC at 916-327-1551. 

http://www.energy.ca.gov/research/
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ABSTRACT 

This project developed an Integrated Distributed Energy Management System that 
coordinates a large number of individual distributed energy resources in utility 
electricity-distribution systems. This Integrated Distributed Energy Management System 
report includes three key software modules: three-phase optimal power flow, Volt-VAR 
control, and network reconfiguration. Scalable and efficient three-phase optimal power 
flow modules essentially determined the best-available generation and load dispatch in 
each of the distribution feeders. The data-driven Volt-VAR control module adjusted 
voltage-regulating device settings to both reduce network losses and maintain customer 
voltage within reasonable bounds. The network-reconfiguration algorithm also reduced 
both network losses and outage durations. The performance of all three software 
modules was successfully validated through distribution test feeders using real-world 
smart-meter data. Deliverables from this project can be easily adopted by energy-
industry software vendors and incorporated into advanced distribution-management 
systems. Once this technology is implemented in electricity distribution systems, 
California’s utility ratepayers will benefit from lower electricity bills, higher voltage 
quality, and greater system reliability. 

Keywords: Distributed Energy Resources, Advanced Distribution Management System, 
Data-Driven Control 

Please use the following citation for this report: 
Yu, Nanpeng. 2020. Integrated Distributed Energy Resources Management System 

(iDERMS) . California Energy Commission. Publication Number: CEC-500-2023-
016.
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EXECUTIVE SUMMARY  

Introduction 
Senate Bill (SB) 100, signed into law by Governor Jerry Brown in 2018, mandates that 
renewable energy and zero-carbon resources supply 100 percent of electricity retail 
sales to end-use customers by the end of 2045. California is already experiencing 
significant and growing penetration of distributed energy resources. For example, a 
distribution feeder serving a few thousand customers can have thousands of distributed 
energy resources such as rooftop solar photovoltaic (PV) units, wind turbines, fuel cells, 
battery storage, electric vehicles, and EV chargers. It is, therefore, challenging to 
manage operations of large numbers of independent distributed energy resources in a 
coordinated manner. Current distribution management systems are incapable of 
dispatching thousands of distributed energy resources while maintaining customer 
voltage and minimizing electricity costs, outage frequencies, and their durations. This 
project developed an integrated distributed energy resources management system 
capable of managing higher penetration of the state’s distributed renewable resources 
required to achieve California’s ambitious renewable energy resource goals.  

There are two primary technical barriers to the successful development of distributed 
energy resources management systems. The first is the scalability of existing 
distribution systems: distributed energy resource modeling, monitoring, and control 
algorithms. The computation time of conventional algorithms does not scale well with 
either the number of system connection points (nodes) or the number of distributed 
energy resources. The second barrier is the lack of complete and accurate utility 
distribution system data. A regional utility’s distribution system contains millions of 
connection points. It is extremely time consuming and labor intensive for electric 
utilities to establish an entirely accurate database that documents the connectivity 
between the customers and service transformers. 

Project Purpose 
The main objective of this project is to develop an Integrated Distributed Energy 
Management System capable of expanding and managing high penetration of 
renewable resource generation. The project team sought to advance distributed energy 
resource integration into the state’s electric distribution systems through both the 
project’s large-scale decentralized applications and control algorithms within a data-
driven control framework. This innovative project technology development, if broadly 
adopted, could transform the way utility customers and distributed energy resources 
interact with their electricity distribution systems. Newly decentralized distribution 
system controls and a proactive resource-participation scheme could ultimately replace 
traditional centralized control and current passive customer-demand-response. 
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This project is the first distribution automation system to apply a decentralized control 
concept that coordinates distributed energy resource operations to reduce costs and 
enhance grid reliability and resiliency. The three-fold project goals are to: 

• Address the challenge of consistently coordinating management of large 
numbers of diverse and independent distributed energy resources. 

• Increase renewable-resource penetration by mitigating generation uncertainties 
with innovative methods including decentralized Volt-VAR control and three-
phase optimal power flow.  

• Improve transmission and distribution grid reliability with advanced electric 
distribution system reconfigurations and restoration algorithms.  

The proposed Integrated Distributed Energy Management System overcomes the 
technical barriers to integrating more renewable resources generation into utilities’ 
existing electricity systems. Its technical solutions are extremely scalable. By developing 
a decentralized algorithm, researchers significantly improved the efficiency of existing 
distributed energy resource dispatch algorithms. By taking a data-driven approach to 
controlling the distribution system with distributed energy resources, the technology’s 
implementation is simplified since it does not require complete and accurate distribution 
system models. If implemented, the Integrated Distributed Energy Management System 
RMS could coordinate distributed energy resource operations and increase local 
renewable resource penetration in California utilities’ respective service territories. 
Power-system software vendors like General Electric Company and Siemens AG could 
integrate the three key software modules into their commercial advanced distribution 
management system products. 

Project Approach  
The project team first developed a theoretical model of core algorithms for the three 
Integrated Distributed Energy Management System MS modules. Team researchers 
then developed software simulations to verify proposed algorithms through a 
combination of standard power distribution test feeders and real-world smart-meter 
data. Team members specifically used a comprehensive list of distribution-system test 
feeders, including radial and meshed topology and various connection points. 
Performance of the proposed algorithms was rigorously measured against benchmark 
algorithms, which the power engineering industry considers to be state-of-the-art. 
Lastly, researchers integrated the three modules, the three-phase optimal power flow, 
the Volt-VAR control, and network reconfiguration into the Integrated Distributed 
Energy Management System platform. 

The project team encountered two technical barriers during the project. The first was 
how to develop an efficient and workable solution for the three-phase optimal power 
flow problem for large-scale distribution circuits. To overcome this barrier, researchers 
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combined an advanced algorithm with a decentralized technique to solve the non-
convex optimization problem. The second technical challenge was how to develop a 
safe and data-driven algorithm for Volt-VAR control and network reconfiguration. The 
researchers countered this technical challenge by rigorously modeling the operational 
constraints of the electric distribution system. A technical advisory committee for this 
research project included representatives from Southern California Edison, Siemens AG, 
General Electric, and the California Independent System Operator. The technical 
advisory committee provided feedback and constructive insights, further suggesting that 
the best path for dissemination of the technology and its ultimate commercialization 
would be through close collaboration with software vendors like General Electric and 
Siemens AG since those vendors already develop advanced distribution-management 
and distributed-energy resources management systems for electric utilities.  

Project Results  
All three project goals were met. The project team successfully developed the 
Integrated Distributed Energy Management System, which coordinates operations of 
large-scale distributed-energy resources. The performance of the Integrated Distributed 
Energy Management System was successfully validated through simulations on the 
Institute of Electrical and Electronics Engineers’ standard test feeders with real-world, 
synthetic smart-meter data. The three-phase optimal power-flow module significantly 
improved the scalability and reduced the time required for existing work. The simulation 
results also showed that the proposed Volt-VAR control module can reduce loss 
reductions while maintaining voltages of all connection points within reasonable bounds. 
The proposed Volt-VAR control algorithm outperformed existing algorithms by 
eliminating reliance on complete and accurate distribution system topology. The 
numerical study results demonstrated that the proposed distribution system 
reconfiguration algorithm can produce a more effective and efficient system 
configuration, which also reduces network losses. This technology filled essential 
knowledge gaps needed to significantly increase penetration of distributed energy 
resources into electricity distribution systems. The analysis also identified the need for 
electric utilities to carefully collect and analyze customer electricity consumption and 
voltage data from utility smart meters. 

The software modules and algorithms developed in this project are available on GitHub 
(a software repository hosting site) and the project website. The technologies 
developed in this project outperformed all existing algorithms reported in the literature.  

A major lesson learned is that electric utilities typically do not have reliable distribution 
network topology and parameter data. This restriction limits applicability of model-
based distribution-system control algorithms. The Integrated Distributed Energy 
Management System platform alleviates this issue by using data-driven distribution 
system control algorithms that do not depend upon accurate distribution network 
topology and parameter data. 
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More research is required to further knowledge levels and advance the technology’s 
maturity. The Integrated Distributed Energy Management System requires that all smart 
meters transfer their data to the distribution system control center in real time. 
However, some electric utilities may have limited communication bandwidth for their 
advanced-metering infrastructures. There is, therefore, a need to develop multi-agent 
data-driven distribution-system control algorithms that do not rely upon a centralized 
distribution system.  

Technology/Knowledge Transfer/Market Adoption (Advancing the 
Research to Market) 
The project team shared knowledge gained, and technologies developed in this project 
in three ways. First, the technologies developed in this project are summarized in 
journals and conference papers [16-18] that are disseminated to academia. Second, 
project team members presented the research results in conferences for electric 
utilities. Third, the software modules developed in this project are available on the 
project’s website (https://intra.ece.ucr.edu/~nyu/papers/SoftwareCode).  

Energy industry software vendors like Siemens AG and General Electric have shown 
interest in adopting data-driven control algorithms similar to those developed in this 
project. The target market for this technology is electric utilities. The project team 
anticipates that all electric utilities in California will eventually adopt data-driven 
distribution network control algorithms. 

The reviewers of the conference and journal papers [16-18] that featured this project’s 
results all provided very positive feedback that praised the scalability of the proposed 
approaches. Southern California Edison strongly recommended that the project team 
work collaboratively with General Electric to implement the proposed algorithms for 
advanced distribution-management systems. The project team plans to continue 
commercialization discussions with energy-industry software vendors like General 
Electric and Siemens AG. 

Benefits to California  
The technology developed through this research can significantly increase penetration 
of distributed energy resources in California, which could reduce greenhouse gas 
emissions and customer utility bills. The Integrated Distributed Energy Management 
System can significantly enhance grid reliability, reduce electricity costs, and improve 
safety. Specifically, the three-phase power flow which has the objective of minimizing 
operational cost, improves energy dispatch efficiency, which in turn can reduce 
customer electricity costs. It also ensures that the distribution system operates within 
appropriate voltage limits. The data-driven Volt-VAR control algorithm reduces peak 
feeder loads and prevents voltage irregularities. The distribution network 
reconfiguration and restoration technology together enhance distribution system 
reliability by anticipating the unfavorable renewable and load dynamics that could cause 
system disturbances and potential outages. 
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This research shows that the proposed three-phase optimal power flow module of the 
Integrated Distributed Energy Management System platform could reduce energy-
dispatch costs by up to 10 percent. The proposed data-driven Volt-VAR control 
algorithm could reduce distribution-system losses and operational costs of voltage-
regulating devices by 10 percent. 

If all electric utilities in California, theoretically, adopted this proposed technology, 
potential annual savings could top $4.28 billion. The technology could also be adopted 
by microgrid operators to coordinate their distributed energy resource operations and 
maintain service voltages. Generation of up to 28,549 gigawatt-hours of electricity could 
be avoided due to reduced network losses. Potential reductions of greenhouse gases 
could be as great as 13,103,991 metric tons, which is calculated based on the 
standardized emission factors for electricity of 0.000283 metric tons/kWh. 

This research has set the groundwork for more extensive capacity analyses on electric-
distribution systems in California. 
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CHAPTER 1:  
Introduction 

This project focuses on three concepts: electric distribution-system optimal power flow, 
Volt-VAR control, and network reconfiguration. 

Distribution System Optimal Power Flow 
Optimal power flow (OPF) is within a class of optimization problems in electric power 
system engineering. OPF seeks to streamline operations of electric power systems 
subject to physical constraints imposed by natural electrical laws and engineering limits. 
For example, a classic OPF problem asks: What is the optimal way (in the sense of 
minimum generation costs) to schedule the output of a set of power generators so that 
all loads are served, and no voltage or current operating limits are violated? The OPF 
problem can be solved as a mathematical programming problem with mathematical 
programming algorithms. The same OPF program is also capable of computing system 
marginal costs. For example, generation costs stemming from bus active-power 
injection changes can be used as nodal prices for pricing transmission services since 
they reflect both transmission loss and congestion components for transferring 
electricity from one point to another [2]. This enables a market approach for 
transmission-congestion management.  

As distributed energy resources (DERs) and smart buildings increasingly penetrate 
existing electric-power distribution systems, the dynamic resource management of 
thousands of DERs becomes difficult. This difficulty can be overcome with a distribution 
system market approach where electric utility customers proactively participate in 
resource dispatch and price formation processes achieved through incorporation of the 
OPF concept into electric distribution systems. This market approach is supported by 
many researchers and policy makers. For example, the New York Public Service 
Commission kicked off a proposal called Reforming the Energy Vision (REV), which 
trains distribution-system operators (DSOs) who coordinate and implement planning 
and operations for DERs and smart buildings [3].  

The mathematical formulation of the OPF problem is a complex, nonlinear programming 
problem. Solution algorithms include: Newton’s method, linear and quadratic 
programming, nonlinear and polynomial programming, interior point methods, semi-
definite programming, and heuristic optimization methods. Theoretical guarantees of 
solution optimality, however, are only available to single-phase and tree networks. 
Electric distribution systems are unbalanced because of unbalanced loads across three 
phases and untransposed feeder lines. This forces distribution-system modeling to be 
three-phase rather than single-phase, exacerbating an already challenging problem.  
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One of the main goals of this project was to develop an efficient and scalable three-
phase OPF algorithm for electric distribution systems capable of identifying global 
solutions. Researchers first revisited the conundrum of solving three-phase OPF 
problems. A counter example of a three-phase network showed that a solution could 
not be guaranteed with the semi-definite programming (SDP) relaxation method. To 
efficiently find a global solution, this project proposed an innovative three-phase OPF 
algorithm by combining the convex-iteration technique with the chordal-based 
conversion algorithm. The researchers also proposed an algorithm to develop a grid-
partitioning scheme to reduce computational complexity. Numerical simulations were 
conducted on the IEEE test feeders to validate the computational efficiency and 
scalability of the proposed algorithm and solutions. The simulation results showed that 
the proposed algorithm can be globally feasible even when the SDP relaxation method 
fails. The partition algorithm effectively identified a chordal conversion that made the 
overall algorithm computationally efficient. Finally, the simulation results from the IEEE 
123-bus and 906-bus test feeders demonstrated the scalability of the proposed 
algorithm. 

Volt-VAR Control 
One of the primary goals of a distribution management system is to maintain system-
wide voltage levels and reactive power flows (though voltage levels can vary by a small 
amount from nominal values depending on the electric resistance and reactance of 
power-system devices as well as current-flow magnitudes). For example, nominal 
system voltages for U.S. residential customers are 120 (phase-to-neural) and 240 volts 
(phase-to-phase). During normal operation, typical Southern California utility customer’s 
daily voltages can vary between 225 and 252 volts. Large-voltage deviations from 
nominal values can damage utility equipment and customer loads, so system voltages 
must be regulated. For example, the American National Standards Institute (ANSI) 
C84.1 voltage ranges require that utilities design electric systems that provide service 
voltages within±5 percent of the nominal values with infrequent excursions, 
and−8.3 percent to +5.8 percent with limited frequency and duration [4].  

In recent years, increasing numbers of DERs have been added to medium- and low-
voltage-level distribution feeders. Due to the uncertain power output of this renewable 
generation, regulating voltages can be problematic. Grid-connected DERs function as 
distributed generation, which boosts voltage levels at nearby locations. Conventional 
control methods therefore face inconsistent control objectives. For instance, when some 
locations have high DER penetration and others do not, raising voltage levels in low-
voltage regions will cause overly high voltage in originally high-voltage regions, and vice 
versa. 

To tackle the issue of managing distribution system-wide voltage levels, Volt-VAR 
control (VVC) was developed and integrated into the distribution management system. 
VVC determines the best set of control actions for all voltage regulations and VAR 
control devices (that is, voltage regulators, on-load tap changers, and switchable 
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capacitor banks), to reduce system losses and equipment operating costs without 
violating operating constraints such as voltage limits.  

Existing VVC algorithms mainly adopt a physical model-based control approach. 
However, the VVC problem is often solved using mathematical programming or trial-
and-error methods. Physical model-based approaches rely on accurate knowledge of 
distribution grid topologies and parameters like line impedances. However, it is difficult 
for regional electric utilities to maintain reliable network models, which often involve 
millions of buses in primary and secondary feeders. To cope with incomplete models, 
VVC actions could be tried out to determine the greatest reward. This project developed 
a novel deep-reinforcement learning (DRL) algorithm named Constrained Soft Actor-
Critic (CSAC) that enables data-driven and model-free implementation of VVC. This 
algorithm determines a near-optimal control policy of devices from operational data 
without relying on complete and accurate distribution network topology and parameter 
information. In contrast to existing DRL-based methods, this algorithm determines a 
control policy that directly selects control actions instead of consulting an action-value 
function. This is particularly useful for VVC problems since it is much simpler to 
approximate control-policy functions than action-value functions. The proposed CSAC 
algorithm also explicitly models physical operation constraints by combining the merits of 
multipliers and a soft actor-critic (SAC) [5] algorithm; the proposed CSAC algorithm can 
better satisfy operation constraints in power-distribution systems. Finally, the algorithm 
is off-policy, meaning it is more sample-efficient than state-of-the-art DRL algorithms 
for constrained Markov decision process problems. By using an ordinal network 
structure to encode the natural ordering between discrete actions of voltage-regulating 
devices and introducing a device-decoupled policy network structure, this algorithm 
demonstrates significant improvements over existing DRL-based methods for sample 
efficiency and scalability. 

Distribution Network Reconfiguration 
Distribution network reconfiguration refers to changing a network’s topology by 
changing the status of remotely controllable switches (RCSs). Such distribution 
automation is traditionally used for service restoration [6] where a portion of the 
distribution network is affected by events such as faults or scheduled maintenance. The 
network reconfiguration isolates the affected region by opening the surrounding 
switches so that the corresponding line segments no longer carry any current. After the 
fault is cleared or the maintenance completed, some switches can be closed to re-
connect the isolated portions to adjacent feeders. Alternatively, distribution network 
reconfiguration (DNR) can also be used to improve service operational criteria other 
than service restoration: for example, loss minimization. In recent years, a growing 
number of DERs have been installed in medium- and low-voltage distribution feeders. 
High penetration of DERs can cause reversed power flow and change the network I2𝑅𝑅 
loss pattern. Distribution network reconfiguration, in this case, is one of the most 
effective operational strategies for loss minimization.  
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DNR can be performed either statically or dynamically. The former concerns 
determining and fixing the best configurations for the entire study period; the latter 
determines a sequence of hourly configurations over time. The mathematical 
formulations of DNR problems are typically mixed-integer-programming (MIP) models, 
where integer variables represent switch status. Formulations for the dynamic DNR are 
further characterized by three elements. First, the number of switching actions needs to 
be constrained to reduce device wear and tear. Second, the problem size is typically 
much larger than the static DNR since multiple time steps need to be worked out 
simultaneously. Third, dynamic DNR requires the modeling of load uncertainties, for 
instance by point estimations or uncertainty sets. 

Most of the existing literature on this dynamic DNR problem adopts a physical model-
based control approach and focuses on solving a mixed-integer program. There remain, 
however, several technical limitations with this approach. First, physical model-based 
formulations can be difficult to adopt in practice due to model uncertainty.  
Uncertainties in real-world systems include not only DER loads but accurate network 
models. In particular, primary and secondary networks’ parameter estimates are 
difficult to maintain by electric utilities. Second, for mixed-integer programming 
techniques and meta-heuristics algorithms the computation time increases substantially 
with the size of the network and the length of the planning horizon; so the algorithm 
may fail to converge within a reasonable time.  

To cope with unreliable distribution network parameters and the long computation time, 
project researchers propose a deep reinforcement learning (RL) framework to learn and 
execute dynamic DNR without using distribution network parameter information. One of 
the major limitations of existing RL algorithms is the low sample efficiency. To address 
this, researchers propose an innovative approach to augment past grid operational 
experiences with synthetic ones. The proposed off-policy RL algorithm is capable of 
performing dynamic DNR with only network topology information and an historical 
operation data set. This operation experience augmentation technique improves the 
performance of the RL algorithm. 
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CHAPTER 2: 
Project Approach 

iDERMs Platform 
The Integrated Distributed Energy Management System (iDERMs) is the intelligent 
distributed energy resources management system that enhances distribution network 
control and coordinates distributed energy resources. It improves the optimality, 
stability, and reliability of distribution system management. The software package was 
developed in MATLAB and Python. 

Functionality 
The software package contains three main modules including the three-phase optimal 
power flow, the network reconfiguration, and the Volt-VAR distribution-system control.  

Three-Phase OPF 
As DERs and smart buildings increasingly penetrate electric distribution systems, 
dynamic resource management on large-scale systems with thousands of DERs 
becomes difficult. This difficulty can be countered with a distribution system market 
approach where electricity customers can proactively participate in the resource 
dispatch and price formation processes. The operation of distribution-system markets 
relies on the three-phase OPF algorithm. This algorithm is used to identify the most 
efficient DER dispatch that also minimizes total generation cost while satisfying 
operational constraints, including voltage and thermal-limit constraints. The proposed 
problem is a rank-constrained SDP problem and was solved with the convex iteration 
algorithm with chordal conversion.  

Network Reconfiguration 
The dynamic DNR performs hourly dynamic status changes of sectionalizing and tie 
switches to reduce network line losses, minimize load loss, or increase hosting capacity 
for distributed energy resource generation. Deep Q-learning with data augmentation 
addresses the distribution network reconfiguration problem. The algorithm has three 
components: deep Q-learning, radial-configuration discovery, and operational 
experience augmentation. 

Volt-VAR Control 
VVC plays an important role in enhancing energy efficiency, power quality, and 
reliability of electric distribution systems by coordinating the operations of equipment 
such as voltage regulators, on-load tap changers, and capacitor banks. VVC both 
maintains voltage in the distribution system within desired ranges and reduces system 
operation costs, which include network losses and equipment depreciation from wear 
and tear. The data-driven algorithms are adopted to tackle the VVC problem. The VVC 
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is proposed as a constrained Markov decision process (CMDP) and solved with the 
policy-gradient-based algorithms. 

Graphic User Interface 
The graphic iDERMS interface platform was developed in Python. For each module of 
the three main functionalities, different algorithm and test cases can be selected from 
the scroll menu. The environment for MATLAB or Python can be set through the text 
input box. The example panels for the three modules are shown in Figure 1 through 
Figure 3. 

Three-Phase OPF  
The algorithm can be selected from the proposed convex iteration algorithm, sequential 
quadratic programming (SQP), and interior-point method (IPOPT). The test feeders 
contain the IEEE bus-4, bus-10, bus-13, bus-34, bus-37, bus-123, and bus-906 
distribution networks. 

Network Reconfiguration 
The available algorithm includes the DQN and the proposed augmented DQN method. 
The validation is performed on the bus-16 test feeder. 

Volt-VAR Control 
The algorithms, including the proposed constrained SAC, CPO, and DQN, can be 
selected. The experiments can be conducted on the IEEE bus-4, bus-34, and bus-123 
distribution feeders. 

Figure 1: Graphic Interface Panel for OPF Module 
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Figure 2: Graphic Interface Panel for Network Reconfiguration Module 

 
 

Figure 3: Graphic Interface Panel for Volt-VAR Control Module 

 
 

Source: Yuanqi Gao, Jie Shi, Wei Wang and Nanpeng Yu, "Dynamic Distribution Network Reconfiguration 
Using Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 

Three-Phase Optimal Power Flow 
Objective 
The volume and diversity of DERs are growing rapidly, increasing the need to ease their 
penetration into the state’s electric power distribution system. The distribution system 
market is addressing the difficulties of coordinating these DERs, so that utility 
customers can proactively participate in the resource dispatch and price formation 
processes. To establish this distribution system market, the three-phase OPF problem 
needed to be solved. In this project, an efficient and scalable three-phase OPF 
algorithm was developed.  
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Framework 
The overall framework of the three-phase OPF algorithm is shown in Figure 4. The 
framework consists of three main elements:  

• Rank-constrained SDP relaxation. 
• Grid partition. 
• Convex iteration. 

Figure 4: Overall Framework of Three-Phase OPF Algorithm 

 
Source: Yuanqi Gao, Jie Shi, Wei Wang and Nanpeng Yu, "Dynamic Distribution Network Reconfiguration 
Using Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 
 

Rank-Constrained SDP Relaxation 
 

The three-phase OPF problem is basically a non-linear, non-convex optimization 
problem. The linearization technique adopted for a single-phase OPF problem in an 
electric transmission system is no longer sustainable because of distribution line 
resistance and the unbalanced characteristics of a three-phase load. This semi-definite 
programming approach’s tight relaxation is attracting commercial interest. The three-
phase OPF problem can be reformulated into a rank-constrained SDP problem: 

min
X

 𝐶𝐶(𝑋𝑋) 

s. t.  X ∈ B    
X ≽ 0 

rank(X) = 1 

X = VVT, and V is the vector of nodal voltage variables. B is the feasible region of X. 
The last rank constraint is the only non-convex constraint. The existing relaxation 
approaches typically directly drop the rank constraint, which could result in a non-
feasible solution. A bi-linear penalty term is introduced in the approach in the objective 
function to further tighten the relaxation. 

min
X,W

 𝐶𝐶(𝑋𝑋) + 𝜆𝜆𝜆𝜆𝜆𝜆(𝑋𝑋𝑋𝑋) 

λ is the penalty coefficient. W is the direction matrix pointing to the rank-one sub-
space, and I ≽ W ≽ 0. If the rank-one solution of X is achieved, the penalty term will 
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become zero. For a traditional bilinear optimization problem, an iterative linear 
programming method can be applied to find the optimal solution(s). In the context of 
SDP, the convex iteration algorithm is proposed as: 

Step 1: 

 
Step 2: 

 

 
NX is the dimension of X, and the X and W are solved iteratively by using the result of 
W or X from the previous step. The direction matrix W can be initialized as an identity 
matrix. 

Grid Partition and Chordal Conversion 
By directly formulating the three-phase OPF problem into an SDP problem, the number of 
decision variables is N2where N is the number of nodes in the distribution system. 
Therefore, the complexity of solving the problem will increase rapidly with the size of 
the network. However, the distribution system is typically a tree network. The sparsity 
of the voltage variable matrix can be exploited with the chordal conversion.  

Figure 5: Example of Grid Partition 
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Source: Yuanqi Gao, Jie Shi, Wei Wang and Nanpeng Yu, "Dynamic Distribution Network Reconfiguration 
Using Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 
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The semi-definite completion theorem states that a symmetric matrix is positive and 
semi-definite completable if and only if all of the small matrices associated with the 
maximal cliques of the graph derived from the whole matrix are positive and semi-
definite. This property allows the SDP problem to be converted into another form with 
smaller-sized positive semi-definite variables by portioning the whole network into 
extended areas. In this way, the necessary variables can be significantly reduced.  

 

Extra auxiliary variables have to be introduced for the boundary of the connected sub-
networks to enforce the voltage equality of the shared nodes. Xlext is the variable 
associated with the 𝑙𝑙-th extended area. Xl

ext(r) is the variable associated with area of the 
𝑙𝑙-th extended area that intersects the 𝜆𝜆-th extended area. An example of grid partition 
is shown in Figure 5. The whole network is divided into to two sub-areas, where the 
black dots are the shared nodes.  

Chordal Conversion Based Convex Iteration 
By synergistically combining the chordal conversion method and the convex iteration 
technique, a new iterative three-phase OPF solution algorithm is proposed:  

Step 1: 

 

Step 2: 

For each extended area , l = 1,2. . NA: 

min
W

 𝜆𝜆𝜆𝜆(𝑋𝑋𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 𝑋𝑋𝑙𝑙) 

s. t.  I ≽ 𝑋𝑋𝑙𝑙  ≽ 0    
Tr(Wl) = 𝑁𝑁𝑋𝑋𝑙𝑙

𝑒𝑒𝑒𝑒𝑒𝑒 − 1 
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where 𝑋𝑋𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒 is with size 𝑁𝑁𝑋𝑋𝑙𝑙
𝑒𝑒𝑒𝑒𝑒𝑒 ×  𝑁𝑁𝑋𝑋𝑙𝑙

𝑒𝑒𝑒𝑒𝑒𝑒. Wl is the direction matrix for 𝑙𝑙-th extended area, 
which has a closed-form solution for the problem in step 2: 

 
𝑈𝑈𝑗𝑗 is obtained from singular-value decomposing Xlext = 𝑈𝑈𝑗𝑗Λ𝑗𝑗𝑈𝑈𝑗𝑗𝑇𝑇. The algorithm 
repeatedly solves X by fixing W, then solves W until the trace penalty terms converge to 
zero, which means a rank-one global optimal solution X is achieved. 

Data Driven Volt-VAR Control 
Objective 
Voltage profiles highly impact electricity service quality for utility end users. Both over-
voltage and under-voltage conditions could reduce energy efficiency, cause equipment 
malfunctions, and damage customers’ electrical appliances. Equipped with remote 
control and monitoring devices, electric utilities started adopting VVC to maintain 
voltages within an allowable range, manage the power factor, and reduce operation 
costs. These control objectives can be achieved by coordinating the operation of various 
equipment such as voltage regulators, on-load tap changers, switchable capacitor 
banks, and smart inverters. However, the lack of robust distribution network topology 
and parameter information impede wide deployment of existing optimization-based VVC 
approaches. In this project, a model-free deep reinforcement learning-based VCC 
algorithm is proposed. 

Figure 6: Overall Framework of Deep Reinforcement Learning Based VCC 

 
Source: Yuanqi Gao, Jie Shi, Wei Wang and Nanpeng Yu, "Dynamic Distribution Network Reconfiguration 
Using Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 
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Framework 
The overall framework of the deep reinforcement learning-based VCC is shown in Figure 
6. This VCC agent and the distribution grid interact at each of a sequence of discrete 
time steps t = 0,1,2 …. At each time step, the agent receives the system’s state st, and 
selects a control action at. One time step later, the agent receives the reward 
R(𝑠𝑠𝑒𝑒,𝑎𝑎𝑒𝑒, 𝑠𝑠𝑒𝑒+1) and the operational cost 𝑅𝑅𝐶𝐶(𝑠𝑠𝑒𝑒,𝑎𝑎𝑒𝑒, 𝑠𝑠𝑒𝑒+1), and becomes a new state. The 
goal of the agent is to learn a control policy for the VCC problem. 

CMDP Algorithm 
The VCC problem is formulated as a CMDP. The VCC agent attempts to learn a policy 
that maximizes its expected discounted return while restraining its expected discounted 
cost within the limited budget.  

 
 

The reward R is defined as the negative operational cost, including the costs of system 
losses and device switching. The cost RC is defined in terms of the number of voltage 
violations across all the network nodes. The constrained policy optimization algorithm is 
adopted, which statistically guarantees every control policy during learning will satisfy 
operational constraints in the form of expectation. 

Device-Decoupled Policy Function 
In a VVC problem, the network loss is determined by the tap positions of all controllable 
devices together. The number of feasible control actions increases exponentially with the 
number of controllable devices. However, the control action of regulating devices can 
be taken independently. Compared with the action value method with epsilon-greedy 
action choices, the policy gradient method, which directly learns the parameterized policy, 
could be more scalable with the device-decouple policy network proposed in Figure 7. 
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Figure 7: Device-Decoupled Policy Network 

 
Source: Wei Wang, Nanpeng Yu, Jie Shi and Yuanqi Gao, "Volt-VAR Control in Power Distribution 
Systems with Deep Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 

The output layer of the policy network is with size ∑ 𝑛𝑛𝑖𝑖N
i=1 , where N is the total number 

of regulating devices, and ni is the number of tap positions of device i. The probabilities 
πi of i-th device to select different tap positions are obtained by applying a soft-max 
activation function to the i-th subset of the neurons with size ni. The final probability for 
the action combination of all the devices is π =  ∏ 𝜋𝜋𝑖𝑖𝑁𝑁

𝑖𝑖=1 . 

Reinforcement Learning-Based Distribution Network 
Reconfiguration 
Objective 
Distribution network reconfiguration (DNR) [7] is recognized as one of the most 
effective methods for improving the distribution system’s operational performance 
under increasing penetration by DER generation. Such performance improvements 
include DER hosting capacity, minimizing distributed generation curtailments, and 
minimizing network resistive losses. DNR changes the open/closed statuses of remotely 
controllable switches (RCS) on the primary or secondary feeder to alter the topology 
(configuration) of the distribution network for improving a single or multiple operational 
objectives such as loss minimization. To determine which RCS to open or close to 
achieve the most effective topology, one could solve the corresponding mathematical 
programming problem that models the DNR, using mathematical optimization 
algorithms or other trial-or-error methods. However, implementing these methods 
requires understanding of network parameters (models) such as resistance and 
reactance of each line segment of the network, which can be difficult for regional 
electric utilities to maintain. In this report, researchers describe a reinforcement 
learning framework that performs network reconfigurations without model-based 
calculations; instead, the framework provides effective reconfiguration of the network 
from historical operational data from electric-utility databases. The next subsection 
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formally states the distribution-network reconfiguration (DNR) problem. Following are 
the subsections that describe the reinforcement-learning-based DNR. 

Problem Statement 
This subsection describes details of the dynamic distribution network reconfiguration 
(DDNR) problem. The goal of the dynamic distribution network reconfiguration is to 
minimize network total-resistive loss (I^2R loss) by changing the status of remotely 
controllable switches (RCS). Also, to prevent wear-and-tear of the devices, the number 
of open/closed control actuation of the RCS is regulated as well. As a result, the goal is 
to minimize:  

 

 

(1) 

Where 𝜆𝜆𝑙𝑙 is the resistance of line segment 𝑙𝑙; 𝐼𝐼𝑙𝑙2 is the electric current magnitude 
squared for line segment 𝑙𝑙. 𝛼𝛼𝑙𝑙 = 0 𝑜𝑜𝜆𝜆 1 is a binary variable representing the open/closed 
status of the RCS on line segment 𝑙𝑙 (one switch corresponds to one line segment). The 
term 𝛼𝛼𝑙𝑙0 is the existing status of switch 𝑙𝑙. 𝑤𝑤 is a constant parameter that controls how 
the devices’ wear-and-tear are valued over network loss minimization. 

(1) corresponds to the single-time step-loss minimization. In practice, the current 
flowing on each line segment changes from time to time and the reconfiguration should 
be with respect to a period of time. The researchers consider minimization of loss over 
the time horizon 𝑡𝑡 = 1,2,3, … ,𝜆𝜆, and treat the dynamic distribution network 
reconfiguration problem as a sequential decision-making problem: at each time 𝑡𝑡 in the 
horizon, the algorithm select the optimal configuration with respect to the current and 
future time steps 𝑡𝑡, 𝑡𝑡 + 1, 𝑡𝑡 + 2,  … . The criterion of being optimal is to minimize: 

 

 

(2) 

Note the time-varying variables have been indexed by time 𝑡𝑡.  

In addition, operational constraints such as voltage magnitude must be enforced. The 
researchers consider the voltage magnitude constraint  

  (3) 

Where 𝑣𝑣𝑖𝑖𝑒𝑒 is the voltage magnitude of node 𝑖𝑖 at time 𝑡𝑡; 𝑉𝑉𝑚𝑚𝑚𝑚𝑒𝑒 and 𝑉𝑉𝑚𝑚𝑖𝑖𝑚𝑚 are the 
operational limits. Another operational constraint is the network radiality constraint, 
that is, the network configuration determined by all the open/closed status 𝛼𝛼1𝑒𝑒,𝛼𝛼2𝑒𝑒, … at 
any time must be radial. This constraint is informally written as  

  (4) 
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The problem of dynamic distribution network reconfiguration can be summarized as: 

 

 

 

(5) 

Problem (5) can be solved by mathematical programming algorithms or heuristic methods. 
However, since the network parameters are unknown to most electric utilities, variables 
involved in the problem such as 𝑣𝑣𝑖𝑖𝑒𝑒 and 𝐼𝐼𝑙𝑙𝑒𝑒2  cannot be calculated. Nevertheless, (5) can 
still be (approximately) solved by relying on the distribution network historical 
operational data and machine-learning algorithms. These are described in the next two 
sections. 

Operational Data 
The researchers assumed an operational historical database was available to the electric 
utilities, which stored operational information for a period of time (that is, half a year or 
a year). The database must contain the following fields in order for the machine-
learning algorithm to infer useful patterns for effective reconfiguration. First, the 
demand and DER output shall be available for all time steps. 𝑝𝑝𝑖𝑖𝑒𝑒 and 𝑞𝑞𝑖𝑖𝑒𝑒 are used to 
denote the net real and reactive power injection at node 𝑖𝑖 time 𝑡𝑡, that is, 𝑝𝑝𝑖𝑖𝑒𝑒 + 𝑗𝑗𝑞𝑞𝑖𝑖𝑒𝑒 is 
the DER output subtracted from the demand. The second field is the switch status 𝛼𝛼𝑖𝑖𝑒𝑒 
for a RCS and time steps. The third field is the total injected power from the 
substations. The total network resistive loss information is obtained by summing net 
real power injections at all nodes including the substation: 

 

 

(6) 

Finally, voltage magnitude measurement 𝑣𝑣𝑖𝑖𝑒𝑒 can be included, if available. The notation 
𝑝𝑝𝑒𝑒 = [𝑝𝑝1𝑒𝑒,𝑝𝑝2𝑒𝑒, … ] 𝑞𝑞𝑒𝑒 = [𝑞𝑞1𝑒𝑒, 𝑞𝑞2𝑒𝑒 , … ] 𝛼𝛼𝑒𝑒 = [𝛼𝛼1𝑒𝑒,𝛼𝛼2𝑒𝑒, … ] 𝑣𝑣𝑒𝑒 = [𝑣𝑣1𝑒𝑒, 𝑣𝑣2𝑒𝑒, … ] is used to denote 
the collection of all variables in the network at time 𝑡𝑡. The historical data {𝑝𝑝𝑒𝑒, 𝑞𝑞𝑒𝑒, 𝑝𝑝𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠, 
𝛼𝛼𝑒𝑒, 𝑣𝑣𝑒𝑒} will be formatted and used by the reinforcement learning (RL) algorithm. The 
researchers discuss the RL algorithm in the next two subsections. 

Dynamic Distribution Network Reconfiguration as a Markov 
Decision Process 
In this subsection, the researchers construct the dynamic distribution network 
reconfiguration problem as a Markov decision process (MDP) [8]. MDP is a standard 
mathematical language for defining stochastic sequential decision-making processes 
and describing reinforcement-learning algorithms. An MDP consists of the following 
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elements (𝑆𝑆,𝐴𝐴,𝑃𝑃, 𝜆𝜆, 𝛾𝛾,𝜆𝜆), which consist of a set of states 𝑆𝑆, a set of actions 𝐴𝐴, a state 
transition probability 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎)∀ 𝑠𝑠′,𝑎𝑎 ∈ 𝑆𝑆,𝑎𝑎 ∈ 𝐴𝐴; a reward function 𝜆𝜆(𝑠𝑠,𝑎𝑎): 𝑆𝑆 × 𝐴𝐴 ↦
𝑅𝑅 ∀𝑠𝑠 ∈ 𝑆𝑆, 𝑎𝑎 ∈ 𝐴𝐴, a discount factor 𝛾𝛾 ∈ [0,1], and a time horizon 𝜆𝜆. In an MDP, an agent 
selects an action 𝐴𝐴𝑒𝑒 ∈ 𝐴𝐴 based on the environment’s state 𝑆𝑆𝑒𝑒 ∈ 𝑆𝑆 at each discrete time 
step 𝑡𝑡. After that the agent receives a numerical reward 𝑅𝑅𝑒𝑒+1 = 𝜆𝜆(𝑆𝑆𝑒𝑒,𝐴𝐴𝑒𝑒) and the 
environment’s state will advance to 𝑆𝑆𝑒𝑒+1 according to the state transition probability 
𝑃𝑃(𝑆𝑆𝑒𝑒+1|𝑆𝑆𝑒𝑒,𝐴𝐴𝑒𝑒). The process terminates when 𝑡𝑡 = |𝜆𝜆| and 𝑆𝑆|𝑇𝑇| are a terminal state. 

To describe the dynamic DNR problem in the language of MDP, the project team defined 
the state 𝑠𝑠 ∈ 𝑆𝑆, action 𝑎𝑎 ∈ 𝐴𝐴, and the reward function 𝜆𝜆(𝑠𝑠,𝑎𝑎). The state 𝑆𝑆𝑒𝑒 corresponds 
to the status of the distribution network, which includes the current topology configuration, 
loads, and global times. In the previously established terminologies, this means 𝑆𝑆𝑒𝑒 =
[𝑝𝑝𝑒𝑒, 𝑞𝑞𝑒𝑒,𝛼𝛼𝑒𝑒−1, 𝑡𝑡]. The action 𝐴𝐴𝑒𝑒 is represented by changing the configuration of the 
distribution network in 𝑆𝑆𝑒𝑒. That is, 𝐴𝐴𝑒𝑒:𝛼𝛼𝑒𝑒−1 ↦ 𝛼𝛼𝑒𝑒. The reward 𝑅𝑅𝑒𝑒+1 is a numerical measure 
of how good the reconfiguration action 𝐴𝐴𝑒𝑒 was, in terms of minimizing network loss while 
keeping the number of switching actions small. It is defined as  

 

 of  

(7) 

This finishes the construction of the MDP, though several remarks follow. 

1. The injection-patterns time series 𝑝𝑝𝑒𝑒, 𝑞𝑞𝑒𝑒 might not be strictly Markovian. 
Nevertheless, this definition of 𝑆𝑆𝑒𝑒 will still be used because the algorithms that 
will be discussed remain applicable even if the Markovian property is slightly 
violated in practice.  

2. The action space so defined would include all possible radial configurations of the 
network. However, many of them are infeasible in terms of grid safety 
operations. In this project, researchers reduce the action space 𝑨𝑨 to include only 
those configurations that appeared in the historical data set. This allows the 
agent to avoid selecting unacceptable network configurations, but it also limits 
potential discovery of optimal control policies. 

During the distribution-network reconfiguration process, the nodal voltages must always 
stay within an allowable range. In this project, researchers incorporate a penalty for 
constraint violation as part of the reward function, and use 𝒓𝒓(𝑺𝑺𝒕𝒕,𝑨𝑨𝒕𝒕,𝝀𝝀) as the final reward 
function: 

 
 

(8) 

The summation on the right-hand side of (8) is the amount of voltage violation. 𝜆𝜆 is a 
constant that controls the relative contribution of the constraint violation to the overall 
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reward. The final constructed MDP replaces the reward in (7) with (8). The researchers 
describe the algorithm to solve the constructed MDP representing the dynamic 
distribution-network reconfiguration problem. 

Q Learning 
In this subsection, the researchers describe an off-policy reinforcement learning (RL) 
algorithm, known as deep Q learning [9], to solve the dynamic distribution network 
reconfiguration problem. Off-policy RL algorithms are a class of RL that learns and 
improves its control policy independently of actions taken by the agent. Therefore, they 
are suitable for this project since they can be adapted to learn from historical and 
operational data rather than from simulation. The latter is infeasible if accurate physical 
models are not available. 

Standard tabular Q-learning algorithms update the action-value function iteratively: 

 
 

(9) 

𝑄𝑄(𝑆𝑆𝑒𝑒+1,𝑎𝑎) = 0 if 𝑆𝑆𝑒𝑒+1 is a terminal state. The update (9) converges to the optimal 
action-value function 𝑄𝑄∗ under the condition that all state-action pairs (𝑠𝑠, 𝑎𝑎) continue to 
be updated. Once the optimal action-value functions are learned, the optimal control 
policy can be found by: 

 

 

(10) 

However, it is infeasible to directly apply Q-learning to the dynamic DNR problem 
because of the high dimensional and continuous nature of the state space. To deal with 
this state space, researchers parameterized and approximated the Q table (action value 
function) by a neural network 𝑄𝑄(𝑠𝑠,𝑎𝑎, 𝜃𝜃) [9], where 𝜃𝜃 are the neural network 
parameters. The action value function approximation is then with respect to the finite 
dimensional parameter 𝜃𝜃 instead of the original infinite dimensional Q table. 
Nonetheless, the neural network approximation brings an instability or even divergence 
problem to the learning process [9]. One cause of this divergence is the high 
correlations between the action values 𝑄𝑄(𝑆𝑆𝑒𝑒,𝐴𝐴𝑒𝑒) and the target values 𝑅𝑅𝑒𝑒+1 +
𝛾𝛾max

𝑚𝑚
𝑄𝑄(𝑆𝑆𝑒𝑒+1,𝑎𝑎). To stabilize the learning process, the researchers adopted a target 

network architecture [10] where the target values were computed by a separate neural 
network 𝑄𝑄(𝑠𝑠,𝑎𝑎,𝜃𝜃−), where 𝜃𝜃− are the target Q network parameters, which are only 
updated every 𝐶𝐶 steps by 𝜃𝜃− ← 𝜃𝜃. In addition to the target network architecture, the 
researchers also adopted the memory replay mechanism [9]. That is, the researchers 
stored past operational data (experiences) 𝑒𝑒𝑒𝑒 = (𝑆𝑆𝑒𝑒,𝐴𝐴𝑒𝑒,𝑅𝑅𝑒𝑒+1, 𝑆𝑆𝑒𝑒+1) in a memory data set 
𝐷𝐷𝐻𝐻 = {𝑒𝑒1,⋯ , 𝑒𝑒𝐻𝐻}, and randomly sampled a subset of (non-consecutive) experiences 𝐵𝐵 =
{𝑒𝑒𝑒𝑒, … } ⊂ 𝐷𝐷𝐻𝐻 to update the neural network parameters.  
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In the dynamic network reconfiguration problem, the memory data set 𝐷𝐷𝐻𝐻 was initially 
set to the network historical operational data, as described in the previous subsection; 
during the online application, the data set 𝐷𝐷𝐻𝐻 will be continuously updated by the new 
data. As a result, the Q learning with function approximation minimizes the loss function 
𝐿𝐿(𝜃𝜃) with respect to the parameters 𝜃𝜃 over all stored experiences: 

 

 

(11) 

with 𝑄𝑄(𝑠𝑠′,𝑎𝑎′,𝜃𝜃−) = 0 if 𝑠𝑠′ is a terminal state. Once the parameters 𝜃𝜃 are learned, the 
network reconfiguration control policy will be given by: 

 
 

(12) 

However, existing deep-reinforcement learning algorithms are typically sample-
inefficient. That is, they require many samples to develop a good control policy. This 
means that the historical data 𝐷𝐷𝐻𝐻 had to be large enough for an RL agent to learn a 
good value function (11). To improve the performance of the deep reinforcement 
learning algorithm for the dynamic-distribution network-reconfiguration problem, the 
researchers proposed an innovative technique that generates reliable, synthetic 
operational experience data from historical and operational data sets. This is described 
in the next subsection. 

Operational Data Augmentation 
This subsection describes the synthetic operational-experience generation (operational 
data augmentation) process. The researchers proposed a three-step algorithm to create 
a set of synthetic operational experiences where 

 and . The 
steps are (1) synthesizing the injection time series  (2), generating the network 
configuration  at each time step, and (3), and estimating the corresponding reward 
values �̃�𝜆(�̃�𝑆𝑒𝑒, �̃�𝐴𝑒𝑒, 𝜆𝜆) for the data created in steps 1 and 2. Step 1 takes the historical-load 
time series and outputs a new one. For example, direct-historical injection data or a 
load-time series model using historical data can be used. In step 2, the researchers 
generate a sample path  from a stochastic process defined on the sample space 𝐴𝐴. 
In step 3, �̃�𝜆(�̃�𝑆𝑒𝑒, �̃�𝐴𝑒𝑒, 𝜆𝜆) was estimated for each time step. The algorithms for estimating 
the network losses and voltage magnitudes are described here.  

Two sets of regression models are trained on the historical data to estimate total 
network loss and nodal voltage magnitudes, respectively. For both sets of regression 
models, the input variables are the injection patterns and the network configurations. 
After the training, the reward �̃�𝜆(�̃�𝑆𝑒𝑒, �̃�𝐴𝑒𝑒, 𝜆𝜆) can then be calculated based on the out-of-



 

20 

sample prediction of the regression models applied to the synthesized data points �̃�𝑆𝑒𝑒, �̃�𝐴𝑒𝑒. 
Inaccurate rewards in training data can hurt the learning process. Therefore, the 
researchers determined that if the estimated rewards were reliable they discarded the 
ones with high uncertainty. In this project, the Gaussian process (GP) [11] was used as 
the regression model to learn both the estimated values and their uncertainties. The 
theory of GP is summarized here.   

Gaussian Process 
In the GP setting, the target 𝑦𝑦 and the input vector 𝑥𝑥 are modeled by the relationship 
𝑦𝑦 = 𝑓𝑓(𝑥𝑥) + 𝜖𝜖 where 𝜖𝜖 represents the observation noise and is typically a zero mean 
Gaussian with variance 𝜎𝜎𝜖𝜖2; 𝑓𝑓 is a Gaussian process 𝑓𝑓(𝑥𝑥) ∼ 𝐺𝐺𝑃𝑃(𝑚𝑚(𝑥𝑥),𝑘𝑘(𝑥𝑥, 𝑥𝑥′)). If the 
mean function 𝑚𝑚(𝑥𝑥) covariance function 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) and 𝜎𝜎𝜖𝜖2 are known, then the probability 
distribution of any data 𝑃𝑃(𝑦𝑦|𝑥𝑥) can be evaluated and the uncertainty represented by the 
variance of 𝑃𝑃(𝑦𝑦|𝑥𝑥). Typically, the mean and covariance functions are in some 
parametric families. For example, the constant-zero mean function and the squared-
exponential-covariance function are given by: 

 

ty  

(13) 

In this example, 𝜃𝜃𝑀𝑀 = ∅ and 𝜃𝜃𝐾𝐾 = {𝐴𝐴, ℓ}. The researchers used the above-zero constant 
mean function and the squared-exponential-covariance function in this project. The 
parameters can be estimated by marginalizing the Gaussian process onto the training 
data points before performing maximum likelihood estimations of the parameters on 
this marginal distribution. Let the estimated parameters be  the 
posterior distribution of a testing instance 𝑥𝑥∗ is again Gaussian, with the conditional 
mean and variance: 

 

 

(14) 

Now, 𝜇𝜇(𝑦𝑦∗|𝑥𝑥∗) and 𝜎𝜎2(𝑦𝑦∗|𝑥𝑥∗) represent the estimated target and its uncertainty. In the 
dynamic-distribution network reconfiguration problem, each 𝑥𝑥 represents an injection 
pattern and a radial configuration and each 𝑦𝑦 represents the corresponding network 
loss or a voltage magnitude. If the uncertainty of the target estimate 𝜎𝜎2(𝑦𝑦∗|𝑥𝑥∗) is larger 
than some threshold, then the synthetic data (𝑥𝑥∗, 𝜇𝜇(𝑦𝑦∗|𝑥𝑥∗)) will be discarded. In this 
project, the threshold is heuristically set to three times the standard deviation of all 
testing data points.  
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CHAPTER 3: 
Project Results 

Key Findings for Three-Phase Optimal Power Flow 
The proposed chordal-based convex iteration algorithm with greedy grid partition 
scheme is implemented in MATLAB script. Simulations are conducted on the IEEE 4-bus, 
10-bus, 13-bus, 34-bus, 37-bus, 123-bus, and 906-bus three-phase test feeders. The 
simulation results demonstrate that the proposed algorithm achieves better performance 
in terms of optimality, feasibility, and scalability. 

Optimality and Feasibility 
To illustrate the optimality and feasibility of solutions under the proposed algorithm, a 
comparison of the solutions obtained from traditional methods, including the Powell, 
interior-point, and the proposed convex-iteration method appears in Table 1. 

As shown in Table 1, the proposed convex-iteration approach achieves lower objective 
values on 11 out of 14 test scenarios. Traditional methods arrive at the same solution 
as the proposed convex iteration method on the other three test scenarios. As the size 
of the test feeder increases, it becomes more difficult for traditional methods to match 
the performance of the proposed convex-iteration algorithm. 

To illustrate the global optimality and feasibility of the proposed algorithm, another 
comparison of solutions derived from the SDP relaxation method and the proposed 
convex-iteration method with the default setting is shown in Table 2.  

It can be seen in Table 2 that the SDP relaxation method does not yield a rank-one 
solution by directly removing the rank constraint. The star symbol, ∗, represents the 
highest rank among all partitioned areas. The high-rank solutions do not have any 
physical meaning. In most cases, the solution of the SDP relaxation method provides a 
lower bound of the original non-convex optimization problem. On the other hand, the 
proposed chordal-conversion-based convex iteration algorithm always produces a rank-
1 solution, which is the global optimum. 
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Table 1: Comparison of Traditional Methods and the Convex Iteration With 
Different Prices for DERs 

Test System Prices of Three 
Phases ($/KWh) 

Objective Value ($/hour) 
Powell Interior 

Point 
Convex 

Iteration 
4-bus 
test feeder 

1/0.5/0.2 
0.9/0.45/0.18 

3121.9 3091.9 3121.9 
3091.9 

3121.9 
3086.9 

10-bus 
test feeder 

1/0.3/0.6 
0.8/0.24/0.48 

1229.2 
1191.4 

1229.2 
1191.4 

1229.1 
1191.3 

13-bus 
test feeder 

0.6/0.3/1 
0.48/0.24/0.8 

2345.4 
2290.2 

2345.4 
2290.2 

2345.4 
2290.2 

34-bus 
test feeder 

1/0.9/0.8 
0.9/0.81/0.72 

832.7 
816.5 

832.7 
816.5 

830.8 
815.4 

37-bus 
test feeder 

0.6/0.3/1 
0.54/0.27/0.9 

1740.3 
1675.9 

1740.3 
1675.9 

1739.5 
1675.4 

123-bus 
test feeder 

1/0.3/0.6 
0.8/0.24/0.48 

2414.6 
2205.6 

2414.5 
2205.6 

2413.6 
2205.0 

906-bus  
test feeder 

0.6/0.7/0.5 
0.54/0.63/0.45 

38.4 
37.9 

38.3 
37.9 

38.2 
37.7 

kWh = kilowatt-hours 
Source: Wei Wang and Nanpeng Yu, "Chordal Conversion based Convex Iteration Algorithm for Three-
phase Optimal Power Flow," IEEE Transactions on Power Systems, vol. 33, no. 2, March 2018. 

Table 2: Comparison of the SDP Relaxation Method and the Convex Iteration 
Method With Different Prices for Three Phases 

Test System Method 
Rank of  
Solution 

Objective Value 
($/hour) 

4-bus 
test feeder 

SDP relaxation 3 3085.6 
Convex iteration 1 3121.9 

10-bus 
test feeder 

SDP relaxation 7 1216.3 
Convex iteration 1 1229.1 

13-bus 
test feeder 

SDP relaxation 3 2319.5 
Convex iteration 1 2345.4 

34-bus 
test feeder 

SDP relaxation   6* 831.8 
Convex iteration 1 830.8 

37-bus 
test feeder 

SDP relaxation 1 1739.5 
Convex iteration 1 1739.5 
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Test System Method 
Rank of  
Solution 

Objective Value 
($/hour) 

123-bus 
test feeder 

SDP relaxation   6* 2413.6 
Convex iteration 1 2413.6 

906-bus 
test feeder 

SDP relaxation   6* 38.2 
Convex iteration 1 38.2 

Source: Wei Wang and Nanpeng Yu, "Chordal Conversion based Convex Iteration Algorithm for Three-
phase Optimal Power Flow," IEEE Transactions on Power Systems, vol. 33, no. 2, March 2018. 

Table 3: Comparison of the Penalized SDP Method and the Convex-Iteration 
Method With Different Prices for Three Phases 

Test System Method Eig2/Eig1 
Power injection 

error (kW) 
4-bus 
test feeder 

Penalized SDP 9.1 × 10−9 5.6 × 10−3 
Convex iteration 2.6 × 10−9 3.9 × 10−3 

10-bus 
test feeder 

Penalized SDP 7.7 × 10−7 5.2 × 10−3 
Convex iteration 2.2 × 10−9 6.8 × 10−3 

13-bus 
test feeder 

Penalized SDP 3.8 × 10−7 0.2208 
Convex iteration 3.2 × 10−9 0.0629 

34-bus 
test feeder 

Penalized SDP 1.2 × 10−5 3.24 
Convex iteration 6.0 × 10−8 2.41 

37-bus 
test feeder 

Penalized SDP 3.0 × 10−6 1.54 
Convex iteration 3.0 × 10−6 1.54 

123-bus 
test feeder 

Penalized SDP 2.8 × 10−5 13.21 
Convex iteration 12.× 10−8 1.21 

906-bus 
test feeder 

Penalized SDP 5.1 × 10−5 6.7 
Convex iteration 6.0 × 10−8 2.3 

Source: Wei Wang and Nanpeng Yu, "Chordal Conversion based Convex Iteration Algorithm for Three-
phase Optimal Power Flow," IEEE Transactions on Power Systems, vol. 33, no. 2, March 2018. 

At last, a comprehensive comparison between the penalized SDP method and the 
proposed convex-iteration algorithm was conducted. The comparison results are shown 
in Table 3: Comparison of the Penalized SDP Method and the Convex-Iteration Method 
With Different Prices for Three Phase Table 3. For the IEEE 4-bus, 10-bus, and 13-bus 
test feeders, the comparison is performed without graph partition. Although the 
penalized SDP method did obtain a rank-one solution, the ratio of the second-largest 
eigenvalue of matrix X to its largest eigenvalue is much larger than that of the proposed 
convex-iteration method. Moreover, as shown in Table 4, the power-injection error 
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obtained from SVD of the rank-one solution of the penalized SDP method is much larger 
than that of the proposed convex-iteration method. For IEEE 34-bus, 123-bus, and 906-
bus test feeders, the penalized SDP method fails to find a rank-one solution. The 
power-injection error under the penalized SDP method is also much larger than that of 
the proposed convex-iteration method. 

Scalability 
As shown in Table 4, computation times of the three-phase OPF problems on all seven 
IEEE test feeders are within two minutes using the entry level Dell workstation. The 
combination of the chordal-based conversion technique and the greedy grid partition 
scheme made the proposed algorithm computationally efficient. 

Table 4: Scalability of the Proposed Algorithm 

Test System Computation  
time (s) 

Number of 
Iteration 

Number of 
Non-zero 
Elements 

Rank of 
Solution 

4-bus 0.373 4 2.95 × 104 1 
10-bus  12.127 29 2.53 × 104 1 
13-bus  8.714 16 3.61 × 105 1 
34-bus  4.161 3 1.25 × 106 1 
37-bus  3.261 1 2.06 × 106 1 
123-bus  27.182 3 4.93 × 106 1 
906-bus  79.799 3 1.32 × 106 1 

Source: Wei Wang and Nanpeng Yu, "Chordal Conversion based Convex Iteration Algorithm for Three-
phase Optimal Power Flow," IEEE Transactions on Power Systems, vol. 33, no. 2, March 2018. 

Key Findings for Data-Driven Volt-VAR Control 
The performance of the proposed method and the benchmarking algorithms was  
validated with the IEEE 4-bus and 13-bus test feeders. The results showed that the 
constrained-policy optimization algorithm can achieve near-optimal solutions with 
negligible voltage violations. Compared with the conventional optimization-based 
approach, the proposed reinforcement-learning algorithm is better suited for online VVC 
tasks where accurate and complete distribution-network models are not available. 

Optimality and Constraint Satisfaction 
The model predictive control (MPC) based optimization algorithm was chosen as the 
first benchmark. The control horizon was 24 hours. The ARIMA model was used to 
forecast the load during the control horizon. At each rolling step of MPC, a mixed-
integer conic programming problem was solved. Two optimization packages, MOSEK 
and GUROBI were used to solve the mixed-integer conic programming problem. The 
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second benchmark was set up by replacing the load forecast with actual load data in 
the MPC framework. The third benchmark represents the baseline where all switching 
devices were kept at their initial positions. The trust region policy optimization (TRPO) 
algorithm, which is a reinforcement-learning algorithm for MDP problems, was also 
implemented for comparison purposes. To be applicable for the VCC problem, the 
voltage violation was treated as a penalty term in the reward function. 

The total operation cost (OC), the number of tap changes (# of TC), the number of 
voltage violations (# of VV), and the accumulated per-unit voltage violation (AVV) over 
the test week are recorded in Table 5 for all the reinforcement algorithms and the 
benchmark algorithms. The operation cost includes the costs associated with line losses 
and tap changes. The accumulated per-unit voltage violation was calculated as the sum 
of voltage magnitude deviation across all the network nodes when the nodal voltage 
was out of operational limits.  

Table 5: Performance Comparison of VVC Algorithms 
 

Algorithms OC ($) # of  
TC 

# of VV AMV  
(per unit) 

Bus 4 
Test Case 

Baseline 150.13 0 91 2.748 
MPC(Actual) 111.44 18 0 0 
MPC (Forecast) 111.89 20 0 0 
CPO 115.01 9 5 0.044 
TRPO 120.05 3 16 0.286 

Bus 13 
Test Case 

Baseline 77.88 0 268 2.673 
MPC(Actual) 58.05 6 0 0 
MPC (Forecast) 58.44 6 0 0 
CPO 58.92 6 0 0 
TRPO 61.29 3 2 0.0004 

Source: Wei Wang, Nanpeng Yu, Jie Shi and Yuanqi Gao, "Volt-VAR Control in Power Distribution 
Systems with Deep Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 
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Figure 8: Comparison of Voltage Profiles on the 4-Bus Test Feeder 

 
Source: Wei Wang, Nanpeng Yu, Jie Shi and Yuanqi Gao, "Volt-VAR Control in Power Distribution Systems 
with Deep Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 

As shown in Table 5, the CPO algorithm is capable of achieving a near-optimal operational 
cost and is nearly constraint-satisfying. The CPO algorithm yields a lower operation cost 
compared with the TRPO algorithm. The per-unit voltages at node 3 and 4 of the 4-bus 
test feeder are shown in Figure 8. The voltage solutions at node 3 of the MPC-based 
approach with forecasted load hit the upper bound a few times. This is common for 
optimization approaches as the optimal solutions are likely to be boundary points. By 
following the CPO algorithm, the voltage profile sat node 4 stayed in bounds nearly all 
the time except for five minor violations. The CPO algorithm outperformed the TRPO 
algorithm by approximately satisfying voltage constraints all the time. 
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Table 6: Computation Times for VCC Algorithms 
 

Algorithms Average Time (s) Maximum Time (s) 
Bus 4 
Test Case 

MPC (GUROBI) 10.43 90.28 
MPC (MOSEK) 346.80 3904.22 
TRPO/CPO <10-3 <10-3 

Bus 13  
Test Case 

MPC (GUROBI) 4.69 8.57 
MPC (MOSEK) 53.83 328.98 
TRPO/CPO <10-3 <10-3 

Source: Wei Wang, Nanpeng Yu, Jie Shi and Yuanqi Gao, "Volt-VAR Control in Power Distribution 
Systems with Deep Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 

The average and the maximum computation times of the MPC-based algorithms with 
different solvers and policy gradient methods to determine the tap positions at each 
hour are provided in Table 6. Without parallel computing (MOSEK), the computation 
time of the MPC-based algorithm could exceed one hour in the worst case on an entry 
level DELL desktop. On the other hand, once trained, reinforcement-learning methods 
have a much faster execution speed that makes them suitable for online applications. 
Moreover, the MPC-based algorithms require accurate and complete topology model 
and parameters of the distribution network, which are not often available. 

Key Findings for Reinforcement-Learning-Based Distribution 
Network Reconfiguration 
For reinforcement-learning-based distribution network reconfigurations, key findings are 
summarized.  

1. Operational experience augmentation can help improve reinforcement-learning 
algorithm performance. Specifically, the Gaussian-process model provides 
accurate and reliable reward value estimates. 

2. The proposed reinforcement-learning algorithm for distribution-network 
reconfiguration reduces network resistive loss. The algorithm does not require 
accurate network parameter information to perform this reconfiguration, but 
instead learns a useful control policy from network historical data sets. 

3. The proposed algorithm achieves relatively consistent results without extensive 
tuning of hyperparameters. 

Researchers will discuss each of the findings in detail in the next subsections, though 
the experimental setup will be presented first. 
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Experiment Set-Up 
Simulation Environment 
To validate various concepts in this project, the 16-bus distribution test feeder [12] was 
used as the distribution network. The line impedances, remotely controllable switches, 
reference voltages, and the complex power base (MVA) were unchanged. The historical 
data were obtained in stages. First, the loads/DGs data were taken from the hourly 
smart meter data of a group of residential and commercial utility customers served by a 
12 kV distribution feeder in Southern California. The length of the data was 26 weeks. 
Each nodal injection was set to be the aggregated consumption of a group of randomly 
selected customers. The researchers assumed a constant power factor for each node. 
Next, 83 medium-to-low line loss configurations were selected from all the radial 
configurations as the action space; a sample path of 26 weeks with hourly granularity 
was then generated from a Markov chain defined on those 83 configurations with 
transition probability 𝑝𝑝𝑖𝑖𝑖𝑖 = 0.9 and 𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑖𝑖𝑖𝑖. Finally, the power-flow solution was found 
in the simulation environment for all hours and total line losses as well as the voltage 
magnitude measurements at bus 7, 12, and 16 of the network were recorded to form 
the historical operational data set. 

Set-Up of Implementation 
This subsection supplements some details on the implementation of the algorithms 
described in the previous subsections. The neural network was feed forward with the 
feature encoded input 𝜙𝜙(𝑆𝑆𝑒𝑒) = 𝜙𝜙(𝑝𝑝𝑒𝑒,𝑞𝑞𝑒𝑒,𝛼𝛼𝑒𝑒−1, 𝑡𝑡). The encoding of the nodal-injection 
vector was the same as per-unit values; the encoding of the network configuration 𝛼𝛼𝑒𝑒−1 
is a sequence of on-value/off-value numbers. If the branch was closed, the number at 
the position corresponding to that branch was set to on-value; it was otherwise set to 
off-value. 0.2 for on-value and 0.0 for off-value were used in this project. The time 
index t in the state definition was encoded by a linearly spaced single number ranging 
from 0 to 1, with 0 representing the initial hour of a week and 1 representing the final 
hour of the week. The number of neural network output was equal to the number of 
elements in the action space, each corresponding to an action. The value of each of the 
outputs was the Q value of that action and the input state encoding so that the reward 
value and neural network initial weight could be in compatible ranges. The original per-
unit reward value was multiplied by a factor of 50. 

Researchers used the same encoding of feature and target variables for both 
reinforcement learning algorithms and the Gaussian process used in the data-
augmentation method.  

In the Gaussian process model, the covariance matrix was inverted to perform the 
inference. However, the matrix was not guaranteed to be numerically invertible. In this 
project, a small constant (1 × 10−6) was added to the diagonal of the covariance before 
inversion. This helped to improve the numerical stability without overly affecting the 
results. 
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Operational Experience Augmentation 
This subsection validates the quality of the synthetic operational experience data 
generated by the proposed Gaussian-process-based model. Researchers first 
demonstrated that the Gaussian process is more accurate than another popular nonlinear 
regression model: the Monte Carlo dropout neural network [13].  

Of the 26 weeks of historical data, the first 25 weeks were chosen as training data and 
the last week’s data were chosen as testing data. Researchers then created a 25-week 
synthetic operational data set  as follows. First, the researchers generated a 25-week 
sample path of network configurations from a Markov chain, defined on configurations 
that appeared in the training data set, with transition probability 𝑝𝑝𝑖𝑖𝑖𝑖 = 0.8 and 𝑝𝑝𝑖𝑖𝑗𝑗 = 𝑝𝑝𝑖𝑖𝑖𝑖. 
Researchers then estimated network losses for this new sequence of configurations 
under the injection patterns of the first 25 weeks of historical data. For network loss 
estimates, the researchers compared the Gaussian-process model with the Monte Carlo 
dropout neural network. Both the Gaussian-process model and the Monte Carlo dropout 
model were trained with the first 25 weeks of historical operational data. The 
researchers applied the trained model to the 1-week testing data set and the 25-week 
synthetic operation experience data set shows the performance of network loss 
predictions for the two models under 50 samples of the testing and synthetic data sets. 
As shown in Figure 9, compared with the MC dropout model the GP model more 
accurately predicted network losses. 

Figure 9: Performance of Out-of-Sample Predictions for Network Losses 

 
Source: Wei Wang, Nanpeng Yu, Jie Shi and Yuanqi Gao, "Volt-VAR Control in Power Distribution Systems 
with Deep Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 

Although GP models produce fairly accurate predictions, they occasionally lead to large 
errors for some network configurations and injection patterns, as shown by the orange 
curve in Figure 10. Fortunately, the uncertainty estimates of the GP model represented 
by the blue curve correlate very well with the estimation error. This suggests that the 
proposed strategy of removing the samples with large uncertainty estimates improves 
the quality of augmented operational data.  
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Figure 10: Regression Errors Versus Uncertainty Estimates of the GP Model 
 

 

Source: Wei Wang, Nanpeng Yu, Jie Shi and Yuanqi Gao, "Volt-VAR Control in Power Distribution Systems 
with Deep Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 

Performance of Deep Q-Learning Algorithms 
In this subsection, researchers compared the performance of three deep Q-learning 
algorithms with two benchmarks. In the first benchmark, a global optimal solution of 
the dynamic distribution network reconfiguration problem was obtained through 
dynamic programming with perfect knowledge of the network parameters and future 
injection patterns. The second benchmark simply used historical network configurations 
in the data set. The first Q-learning algorithm was trained using only historical data. 
The second Q-learning algorithm was trained with both historical and synthetic 
experiences, and network losses were estimated based on the GP model. The third 
deep Q-learning algorithm was trained with both historical and synthetic operational 
experiences where the network losses were obtained from power-flow studies that 
assumed perfect knowledge of network parameters. The researchers divided the 26-
week historical data set into a 25-week training data set and a 1-week testing data set. 
The 25-week synthetic operational experience data set was generated in the same way 
described in the previous subsection. During the training iterations, researchers 
periodically saved the parameters of the neural network and tested its performance on 
the testing data set. Some hyperparameters were given as follows: the neural network 
was a feed-forward, 2-layer net with 600 hidden neurons and 83 outputs; the activation 
function was ReLu; the optimization algorithm was chosen as Adam; the mini-batch size 
used in the stochastic gradient descent was 64; the discount factor was chosen as 0.95; 
and the update step C was set to 30. The performance of the three Q-learning 
algorithms and two benchmarks is shown in Figure 11. 
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Figure 11: Performance of Q-Learning 

 
Source: Wei Wang, Nanpeng Yu, Jie Shi and Yuanqi Gao, "Volt-VAR Control in Power Distribution Systems 
with Deep Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 

 

The left subfigure shows the minimum-voltage magnitude over all metered nodes and 
all hours. The right subfigure shows the total operational cost. For the three deep Q-
learning algorithms, the average, the 10th, and the 90th percentiles of the results from 
10 independent runs are shown. Compared with network configurations in the testing 
week of the historical data, the deep Q-learning algorithm quickly learned how to 
reduce operational cost in a dynamic distribution-network reconfiguration problem. 
When the historical operational experiences were augmented with synthetic operational 
data, the operational cost of the deep Q-learning algorithm was further reduced, and 
the minimum-voltage magnitudes got even closer to nominal voltage values. As the 
learning process proceeded, the performance of the deep Q-learning algorithms with 
augmented operational experiences approached that of the global optimal solution. 
Note that the Q-learning agents achieved these results without knowing actual network 
parameters or future power-injection patterns. The orange curve almost coincides with 
the green curve, suggesting that the network losses estimated by the proposed 
Gaussian process model are almost as good as the power-flow solutions with perfect 
network parameter information. 

The consistency of the Q-learning performance is discussed next. The researchers 
demonstrated that similar results can be obtained without extensively tuning 
hyperparameters, which is crucial for practical applications. Researchers demonstrated 
this by showing that the performance of the Q-learning algorithm is relatively consistent 
under different hyperparameter settings. The following combinations of hyperparameters 
were tested: batch size B ∈ {32,64,128,256}, number of hidden layers L ∈ {1,2}, 
number of hidden neurons H ∈ {300,400,500,600}, and number of steps the target Q 
network’s parameters were updated C ∈ {30,60,90,120}. The researchers generated a 
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Taguchi’s orthogonal array for these hyperparameter combinations and reported the 
results in Table 6.  

Each calculated cost represents the average of five independent runs for Q-learning 
with operational-data augmentation. Compared with historical operational cost and  
optimal cost, the operational cost of the Q-learning algorithm under different 
hyperparameter settings is quite consistent. 

Table 7: Operational Costs With Various Hyperparameters 

Original cost: $ 8066.7 Optimal cost: $ 5128.8 
B H C L QL cost ($) B H C L QL cost ($) 
32 300 30 1 5752.9 128 300 90 1 5490.6 
32 400 60 1 5686.2 128 400 120 1 5647.4 
32 500 90 2 5608.8 128 500 30 2 5441.0 
32 600 120 2 5464.3 128 600 60 2 5396.7 
64 300 30 2 5523.9 256 300 120 2 5480.4 
64 400 60 2 5456.8 256 400 90 2 5487.8 
64 500 90 1 5579.3 256 500 60 1 5652.2 
64 500 90 1 5579.3 256 500 60 1 5652.2 

Source: Yuanqi Gao, Jie Shi, Wei Wang and Nanpeng Yu, "Dynamic Distribution Network Reconfiguration 
Using Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019. 
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CHAPTER 4: 
Technology/Knowledge/Market Transfer 
Activities 

Knowledge Transfer Activities 
Knowledge gained in this project has been shared with the industry and academia 
through three channels. First, the project team disseminated research results via 
conferences and journal papers. Second, project team members delivered presentations 
through conferences for both researchers in academia and practitioners in the utility 
industry. Third, project team members visited Southern California Edison, Lawrence 
Livermore National Laboratory, and Pacific Northwest National Laboratory to describe 
and share knowledge learned in this project. 

In total, the research project has so far resulted in 10 international conferences and 
journal papers. These publications appeared in power-industry top venues such as IEEE 
Transactions on Smart Grid, IEEE Transactions on Power Systems, Applied Energy, and 
IEEE SmartGridComm. 

The Principle Investigator also delivered over a dozen presentations at conferences 
such as IEEE SmartGridComm, IEEE Power and Energy Society General Meeting, and 
IEEE PES T&D Conference and Exposition. 

In particular, the PI met with the principal manager, senior managers, and engineers of 
Southern California Edison’s advanced technology laboratory and presented the iDERMs. 
The SCE team strongly recommended that the research team reach out to leading 
software vendors such as General Electric and Siemens AG to incorporate key software 
modules of iDERMS into the vendors’ advanced distribution management systems. 

The PI also visited Lawrence Livermore National Laboratory and Pacific Northwest 
National Laboratory to deliver seminars. Research staff at the two national laboratories 
showed great interest in the iDERMS software modules.  

Technology Transfer Activities 
Technologies developed in this project will be shared with the utility industry through 
two venues. First, the open-source software modules developed in this project have 
been shared with the public through the project’s official website. Second, the project 
team has been actively communicating with energy-industry software vendors such as 
General Electric and Siemens AG about integrating the software developed in this 
project into their commercial products for advanced distribution-management systems. 
One pathway to commercializing iDERMS is for the research team to collaborate with 
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software vendors to advance large-scale demonstration and implementation 
opportunities with electric utilities.  
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CHAPTER 5: 
Conclusions/Recommendations 

Conclusions 
The project team successfully developed an iDERMS and achieved all three project 
goals. First, researchers developed a three-phase optimal power flow algorithm that 
coordinated operations of a large number of distributed energy resources in electricity 
distribution systems. Second, the researchers developed a decentralized Volt-VAR control 
algorithm that reduced network losses and maintained customer voltages. Third, the 
researchers developed a data-driven distribution network reconfiguration algorithm that 
reduced both network losses and outage durations and frequency. 

The technologies developed in this project have drawn great interest from various 
stakeholders such as microgrid operators, electric utilities, and software vendors. Broad 
adoption of the proposed algorithms and software modules could lead to significant 
energy savings, reductions in greenhouse gas emissions, and greater electric system 
reliability. 

Recommendations 
To further improve applicability of the proposed technology in communication-
constrained systems, further research and field tests are required to develop data-
driven distribution-system control algorithms. More specifically, the proposed single-
agent reinforcement learning algorithms should be extended to multi-agent 
reinforcement learning algorithms. This broader approach will reduce the need for 
frequent communication between customer distributed-energy resources and 
distribution-system operators. A field demonstration of iDERMS on existing distribution 
systems would be very valuable. This demonstration would require close collaboration 
with an electric utility that operates with remote-controlled devices and some sensors 
from SCADA and other advanced metering infrastructures. 

Lessons Learned 
Three critical lessons were learned through this research project. First, pushing new 
technology into the electric utility industry will require targeted training and education 
for utility workforces and buy-in from regulatory agencies. In particular, the electric 
utility workforce is not very familiar with machine-learning techniques. The acceptance 
of data-driven control modules requires that distribution-system operators have a 
reasonable understanding of the basics of machine-learning algorithms. Second, it is 
extremely important to work side-by-side with electricity utility companies when 
developing advanced control algorithms and software in distribution networks. Holding 
face-to-face meetings with utilities early in the process helped steer this project in the 
right direction. Feedback from the electric utilities clarified the real-world utility 
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challenges of incorporating large amounts of distributed-energy resources into 
established distribution and transmission systems.  
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CHAPTER 6: 
Benefits to Ratepayers 

Overview 
Three decentralized control algorithms in the distribution network worked together to 
enhance grid reliability, lower consumer electricity costs, and improve safety. Specifically, 
the decentralized three-phase optimal power flow optimized distribution-system energy 
dispatch to reduce electricity costs. It also ensured that the system operated in security 
regions. The decentralized Volt-VAR control algorithm reduced peak feeder loads and 
prevented voltage excursions. The distribution network reconfiguration and restoration 
technology also enhanced distribution network reliability by anticipating unfavorable 
renewable and load dynamics that could cause system disturbances. 

Quantitative Estimates of Potential Benefits 
The proposed three-phase optimal-power-flow module on the iDERMS platform could 
reduce energy dispatch costs in power-distribution systems by up to 10 percent. The 
proposed data-driven Volt-VAR control algorithm could also reduce the distribution 
network losses and operational costs of voltage-regulating devices by 10 percent. A 
more detailed analysis of energy and cost savings appears in the project’s publication 
[14] [15] [16] [17]. The total electric load consumed by California residents in 2018 
was 285,488 gigawatt-hours (GWh). The average price paid by electric utility customers 
of SCE, PG&E, and SDG&E were $0.149/kWh, $0.183/kWh, $0.205/kWh in 2016. If all 
electric utilities adopted the proposed technologies, the potential economic savings of 
the proposed technology can be calculated as 10% × 285,488 GWh × $0.150/kWh = 
$4.282 billion. Up to 285,488 GWh × 10% = 28,549 GWh of energy could be saved. 
The equivalent reduction in greenhouse gas emissions is up to 13,103,991 metric tons. 
The technology can also be adopted by microgrid operators. A similar percentage of 
savings can be achieved with this proposed technology. This research has set the 
groundwork for greater hosting capacity analyses on electric-distribution circuits in 
California. 
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GLOSSARY AND LIST OF ACRONYMS 

Term Definition 
DMS Distribution Management System 
iDERMS Integrated Distributed Energy Resources Management System 
Feeder A component of the power distribution network, which enables 

power to flow from the distribution substation to each customer. 
Node Any point on a power system where the terminals of two or 

more circuit elements meet. 
Voltage Excursion Voltage magnitude exceeding normal operating range 
Radial Network A radial network is arranged like a tree. 
Meshed Network A network with loop(s). 
Multi-agent System A system with multiple agents. 
Network 
Reconfiguration 

Change the topology of the power distribution network. 

Convex Iteration An optimization framework with iterative convex optimization 
modules  

DERs Distributed Energy Resources 
ADMS Advanced Distribution Management System 
VVC Volt-VAR Control 
OPF Optimal Power Flow 
DSO Distribution System Operator 
DRL Deep Reinforcement Learning 
CSAC Constrained Soft Actor-Critic 
DNR Distribution Network Reconfiguration 
RCSs Remotely Controllable Switches 
MIP Mixed-Integer Programming 
RL Reinforcement Learning 
SDP Semi-definite Programing 
SQP Sequential Quadratic Programming 
CMDP Constrained Markov Decision Process 
MDP Markov Decision Process 
CPO Constrained Policy Optimization 

 



 

39 

REFERENCES 

 [1]  R. 16-02-007, "Decision Adopting Preferred System Portfolio and Plan for 2017-
2018 Integrated Resource Plan Cycle," http://docs.cpuc.ca.gov/PublishedDocs/
Published/G000/M284/K786/284786020.PDF, 2019. 

[2]  S. Frank and S. Rebennack, "An introduction to optimal power flow: Theory, 
formulation, and examples," IIE Transactions, vol. 48, pp. 1172--1197, 2016.  

[3]  B. F. Wollenberg, Power System Operation and Control, 2001.  

[4]  W. Wang and N. Yu, Chordal Conversion Based Convex Iteration Algorithm for 
Three-Phase Optimal Power Flow Problems, vol. 33, IEEE Transactions on Power 
Systems, 2018, pp. 1603-1613. 

[5]  T. A. Short, Electric Power Distribution Handbook, Taylor & Francis, 2014.  

[6]  T. Haarnoja, A. Zhou, P. Abbeel and S. Levine, "Soft actor-critic: Off-policy 
maximum entropy deep reinforcement learning with a stochastic actor," arXiv 
preprint arXiv:1801.01290, 2018.  

[7]  D. Shirmohammadi, "Service restoration in distribution networks via network 
reconfiguration," IEEE Transactions on Power Delivery, vol. 7, pp. 952-958, 
1992.  

[8]  R. A. Jabr, R. Singh and B. C. Pal, "Minimum Loss Network Reconfiguration Using 
Mixed-Integer Convex Programming," IEEE Transactions on Power Systems, 
vol. 27, pp. 1106-1115, May 2012.  

[9]  R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, MIT press, 
2018.  

[10]  V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. 
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski and others, "Human-level 
control through deep reinforcement learning," Nature, vol. 518, p. 529, 2015.  

[11]  A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V. 
Panneershelvam, M. Suleyman, C. Beattie, S. Petersen and others, "Massively 
parallel methods for deep reinforcement learning," arXiv preprint 
arXiv:1507.04296, 2015.  

[12]  C. E. Rasmussen, Gaussian processes in machine learning, Springer, 2003.  

[13]  C.-T. Su and C.-S. Lee, "Network reconfiguration of distribution systems using 
improved mixed-integer hybrid differential evolution," IEEE Transactions on 
Power Delivery, vol. 18, pp. 1022-1027, July 2003.  

http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M284/K786/284786020.PDF
http://docs.cpuc.ca.gov/PublishedDocs/Published/G000/M284/K786/284786020.PDF


 

40 

[14]  Y. Gal and Z. Ghahramani, "Dropout as a bayesian approximation: Representing 
model uncertainty in deep learning," in International Conference on Machine 
Learning, 2016.  

[15]  Y. Liu, N. Yu, W. Wang, X. Guan, Z. Xu, B. Dong and T. Liu, "Coordinating the 
Operations of Smart Buildings in Smart Grids," Applied Energy, vol. 228, pp. 
2510-2525, 2018.  

[16]  W. Wang, N. Yu, Y. Gao and J. Shi, "Safe Off-Policy Deep Reinforcement 
Learning Algorithm for Volt-VAR Control Problems in Power Distribution 
Systems," IEEE Transactions on Smart Grid, 2020.  

[17]  W. Wang, N. Yu, J. Shi and Y. Gao, "Volt-VAR Control in Power Distribution 
Systems with Deep Reinforcement Learning," in IEEE SmartGridComm, 2019.  

[18]  Y. Gao, J. Shi, W. Wang and N. Yu, "Dynamic Distribution Network 
Reconfiguration Using Reinforcement Learning," in IEEE SmartGridComm, 2019. 


	COVER
	ACKNOWLEDGEMENTS
	PREFACE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	EXECUTIVE SUMMARY
	Introduction
	Project Purpose
	Project Approach
	Project Results
	Technology/Knowledge Transfer/Market Adoption (Advancing the Research to Market)
	Benefits to California

	CHAPTER 1:  Introduction
	Distribution System Optimal Power Flow
	Volt-VAR Control
	Distribution Network Reconfiguration

	CHAPTER 2: Project Approach
	iDERMs Platform
	Functionality
	Three-Phase OPF
	Network Reconfiguration
	Volt-VAR Control

	Graphic User Interface
	Three-Phase OPF
	Network Reconfiguration
	Volt-VAR Control
	Figure 1: Graphic Interface Panel for OPF Module
	Figure 2: Graphic Interface Panel for Network Reconfiguration Module
	Figure 3: Graphic Interface Panel for Volt-VAR Control Module



	Three-Phase Optimal Power Flow
	Objective
	Framework
	Figure 4: Overall Framework of Three-Phase OPF Algorithm

	Rank-Constrained SDP Relaxation
	Grid Partition and Chordal Conversion
	Figure 5: Example of Grid Partition

	Chordal Conversion Based Convex Iteration

	Data Driven Volt-VAR Control
	Objective
	Figure 6: Overall Framework of Deep Reinforcement Learning Based VCC

	Framework
	CMDP Algorithm
	Device-Decoupled Policy Function
	Figure 7: Device-Decoupled Policy Network


	Reinforcement Learning-Based Distribution Network Reconfiguration
	Objective
	Problem Statement
	Operational Data
	Dynamic Distribution Network Reconfiguration as a Markov Decision Process
	Q Learning
	Operational Data Augmentation
	Gaussian Process



	CHAPTER 3: Project Results
	Key Findings for Three-Phase Optimal Power Flow
	Optimality and Feasibility
	Table 1: Comparison of Traditional Methods and the Convex Iteration With Different Prices for DERs
	Table 2: Comparison of the SDP Relaxation Method and the Convex Iteration Method With Different Prices for Three Phases
	Table 3: Comparison of the Penalized SDP Method and the Convex-Iteration Method With Different Prices for Three Phases

	Scalability
	Table 4: Scalability of the Proposed Algorithm


	Key Findings for Data-Driven Volt-VAR Control
	Optimality and Constraint Satisfaction
	Table 5: Performance Comparison of VVC Algorithms
	Figure 8: Comparison of Voltage Profiles on the 4-Bus Test Feeder
	Table 6: Computation Times for VCC Algorithms


	Key Findings for Reinforcement-Learning-Based Distribution Network Reconfiguration
	Experiment Set-Up
	Simulation Environment
	Set-Up of Implementation

	Operational Experience Augmentation
	Figure 9: Performance of Out-of-Sample Predictions for Network Losses
	Figure 10: Regression Errors Versus Uncertainty Estimates of the GP Model

	Source: Wei Wang, Nanpeng Yu, Jie Shi and Yuanqi Gao, "Volt-VAR Control in Power Distribution Systems with Deep Reinforcement Learning," IEEE SmartGridComm, pp. 1-7, 2019.
	Performance of Deep Q-Learning Algorithms
	Figure 11: Performance of Q-Learning
	Table 7: Operational Costs With Various Hyperparameters



	CHAPTER 4: Technology/Knowledge/Market Transfer Activities
	Knowledge Transfer Activities
	Technology Transfer Activities

	CHAPTER 5: Conclusions/Recommendations
	Conclusions
	Recommendations
	Lessons Learned

	CHAPTER 6: Benefits to Ratepayers
	Overview
	Quantitative Estimates of Potential Benefits

	GLOSSARY AND LIST OF ACRONYMS
	REFERENCES



