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PREFACE 
The California Energy Commission’s (CEC) Energy Research and Development Division 
supports energy research and development programs to spur innovation in energy efficiency, 
renewable energy and advanced clean generation, energy-related environmental protection, 
energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 
Public Utilities Commission to fund public investments in research to create and advance new 
energy solutions, foster regional innovation and bring ideas from the lab to the marketplace. 
The CEC and the state’s three largest investor-owned utilities—Pacific Gas and Electric 
Company, San Diego Gas & Electric Company and Southern California Edison Company—were 
selected to administer the EPIC funds and advance novel technologies, tools, and strategies 
that provide benefits to their electric ratepayers. 

The CEC is committed to ensuring public participation in its research and development 
programs that promote greater reliability, lower costs, and increase safety for the California 
electric ratepayer and include: 

• Providing societal benefits. 
• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost. 
• Supporting California’s loading order to meet energy needs first with energy efficiency 

and demand response, next with renewable energy (distributed generation and utility 
scale), and finally with clean, conventional electricity supply. 

• Supporting low-emission vehicles and transportation. 
• Providing economic development. 
• Using ratepayer funds efficiently. 

Characterization of Snowpack and Snowmelt Runoff in High-Elevation Remote Basins is the 
final report for the Characterization of Snowpack and Snowmelt Runoff in High-Elevation 
Remote Basins project (Contract Number 300-15-006) conducted by the University of 
California, Los Angeles. The information from this project contributes to the Energy Research 
and Development Division’s EPIC Program. 
For more information about the Energy Research and Development Division, please visit the 
CEC’s research website (www.energy.ca.gov/research/) or contact the CEC at 
ERDD@energy.ca.gov.  

http://www.energy.ca.gov/research/
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ABSTRACT 
The Sierra Nevada in California provides not only most of the state’s water supply but also a 
significant portion of its energy supply via hydroelectric power. Existing hydropower systems 
are optimized for historical runoff patterns that are changing under long-term climate 
warming. Snow-dominated basins are particularly susceptible to changes in runoff regime 
(more rainfall versus less snowfall and earlier snowmelt). These effects have the potential to 
drastically change the hydrograph characteristics in river basins that supply hydropower. This 
project focused on developing an improved characterization of snow-dominated basins that 
contribute to water and hydropower supply. The primary objective was to understand the 
accumulation and melt of snow in these watersheds and how they contribute to runoff by 
developing a historical retrospective database (that is, snow reanalysis) over the Landsat 
remote sensing record (1985 – present). A “snow reanalysis” framework was used to 
characterize the climatology and variability of snow water resources over the study domain 
and the remote sensing record. The new database was then used as a mechanism to test new 
frameworks for predicting streamflow from these watersheds, assess climate models that are 
used for forecasting snowpack water resources, assess how runoff from these watersheds may 
evolve under climate change, and develop and test a new real-time algorithm for estimating 
snow accumulation and melt in these remote basins from newly available remote sensing 
products. The project results provide a new database for public use and indicate the potential 
for new tools to improve snow-derived streamflow forecasting from Sierra Nevada watersheds 
at a variety of lead times. Implementing such frameworks will have direct economic benefits 
by allowing for improvements in streamflow predictions and hydroelectric power forecasts and 
management. 

Keywords: snow, remote sensing, runoff, streamflow, hydroelectric power, rain-on-snow, 
climate change 

Please use the following citation for this report: 

Margulis, Steven. 2023. Characterization of Snowpack and Snowmelt Runoff in High-Elevation 
Remote Basins. California Energy Commission. Publication Number: CEC-500-2023-027. 
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EXECUTIVE SUMMARY  
Introduction  
California’s climate is dominated by a strong seasonal cycle in precipitation, in which most of 
the precipitation falls in the winter with strong spatial variations between northern and 
southern portions of the state and between coastal and mountain regions. Much of the 
precipitation that falls in winter is in the form of snow, and a large portion of California’s 
population relies on snowmelt for a majority of its water supply and a significant amount 
(around 19 percent) of energy from hydroelectric power. These snowpack-derived 
water/energy resources are located in remote mountain terrain that, despite having arguably 
the densest monitoring network in the United States, has a relatively sparse in-situ sampling. 
Models based on this in-situ data often rely on underlying assumptions of statistical 
stationarity that are being eroded by climate change. Hence, characterizing these water and 
hydropower energy resources, and how they are changing, requires a paradigm shift away 
from relying solely on scarce in-situ data and moving toward novel remote sensing 
observations and modeling tools.  

Project Purpose 
This project focused on developing an improved characterization of snow-dominated basins 
that contribute to water and hydropower supply. The primary objective was to understand the 
accumulation and melt of snow in these watersheds and how they contribute to runoff by 
developing a historical retrospective database over the Landsat satellite remote sensing record 
(1985 – present). The snow reanalysis was used to characterize the climatology and variability 
of snow-water resources over the study domain and the remote sensing record. Other key 
objectives of the project involved using the new database as a mechanism to test new 
frameworks for predicting streamflow from these watersheds, assess climate models that are 
used for predicting and/or forecasting snowpack water resources, assess how runoff from 
these watersheds may change under climate change, and develop and test a new real-time 
algorithm for estimating snow accumulation and melt in these remote basins from newly 
available remote sensing products. Based on this work, stakeholders that manage 
hydroelectric power infrastructure, could improve their forecasts to better manage energy 
generation. 

Project Approach  
The project researchers used remote sensing data and numerical snow, hydrology, and climate 
models to analyze Sierra Nevada snow resources and how those resources are evolving and 
expected to vary in the future. The specific approach involved the following key elements: 1) 
developing a novel Sierra Nevada snow reanalysis dataset; 2) testing the effect of improved 
snow estimates from the dataset on runoff forecasts; 3) evaluating climate models’ 
effectiveness in representing Sierra Nevada snowpack estimates and predicting seasonal lead 
times; 4) evaluating the role of rain-on-snow events on snowmelt-driven runoff in the current 
and future climate; and 5) developing and analyzing a new real-time snow estimation method 
based on newly available remotely sensed snow depth. This set of studies provided a 
comprehensive analysis of snow-derived runoff from the Sierra Nevada and how its prediction 
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can be improved. The methods involve computational techniques that will be more robust to 
accommodate for the lack of in-situ data and climate change predictions. 

Project Results  
Project results tied to the key elements described above include: 

1. Development of the new state-of-the-art Sierra Nevada snow reanalysis dataset, which 
is based on the use of retrospective Landsat data and compares favorably to in-situ 
data. The dataset is currently available for public use by any interested stakeholders 
and provides a unique capability for investigating snow processes at a space-time 
resolution, temporal extent, and accuracy not available from other existing datasets. 

2. Demonstration of how streamflow forecast models could benefit significantly from 
realistic snow fields like those in the dataset. Winter-time initialization of such models 
with realistic snow estimates increased the accuracy of operational statistical forecasts 
by 13 percent across all years and by 23 percent in dry years with earlier initialization. 
Such improvements would pay significant dividends on streamflow and, therefore, 
hydropower forecasts. 

3. Evaluation of snow estimation and prediction by two different climate modeling 
frameworks, which found that: a) higher resolution models additionally require 
improved precipitation models to best predict snow distribution in space and time and 
b) the Sierra Nevada is a particularly difficult domain for making long lead-time (that is, 
eight month) predictions due to the narrowness of the mountain range compared to 
some coarse scale climate models. 

4. Evaluation of the current effect of rain-on-snow in generating runoff and streamflow 
that showed the significant impact of such events in the Sierra Nevada, including 
extreme runoff events in spring. Evaluation of rain-on-snow events in a future warmer 
climate highlighted the amplified role of rain-on-snow in local streamflow extremes in 
high‐elevation mountains like the Sierra Nevada. 

5. Development of a new framework for real-time snow-water equivalent and snowmelt-
driven runoff from remotely sensed snow depth measurements. In particular, the 
research team found that even a single measurement of snow depth around April 1 can 
provide useful estimates of snow-water equivalent and snowmelt during the rest of the 
melt season, suggesting the cost of such new measurement systems could accrue 
significant benefits. 

Technology/Knowledge Transfer/Market Adoption (Advancing the 
Research to Market) 
In this project, the research team developed a new snow dataset to analyze snow-derived 
water resources in California’s Sierra Nevada. The researchers used the new dataset in 
conjunction with modeling studies to characterize how snow-water equivalent, and therefore 
snow-derived runoff, can be improved. The dataset and model results are available and were 
provided to stakeholders to provide a better understanding of the historical and future 
availability of these resources. This project was part of a larger United States Department of 
Energy Clean Energy Research Center for Water-Energy Technologies project (https://cerc-
wet.berkeley.edu/). As part of that larger effort, the research team participated in regular 

https://cerc-wet.berkeley.edu/
https://cerc-wet.berkeley.edu/
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industry and stakeholder outreach (see https://cerc-wet.berkeley.edu/events) that presented 
results to a wide audience including relevant stakeholders. The analysis provides valuable 
information for policy makers and stakeholders in preparing future climate adaptation plans 
about how changes in snow-derived runoff may affect changes in hydropower production and 
optimal management. The researchers will continue to work with the California Energy 
Commission and other hydroelectric power stakeholders to provide information based on the 
analysis in this report. 

Benefits to California  
This project has benefitted ratepayers by developing new datasets, analyses, and tools needed 
to better characterize Sierra Nevada snowpack and thereby improve streamflow forecasts for 
hydropower at various lead times, and how those forecasts are likely to change under long-
term climate warming. Using the conclusions and recommendations in this project, California 
can be better equipped to optimally manage snow-derived water and energy resources in the 
future. Developing and implementing such frameworks will have direct economic benefits by 
allowing for improvements in streamflow predictions and hydroelectric power forecasts and 
management. 
 

https://cerc-wet.berkeley.edu/events
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CHAPTER 1:  
Introduction 

California’s climate is dominated by a strong seasonal cycle in precipitation, in which most of 
the precipitation falls in the winter with strong spatial variations between northern and 
southern portions of the state and between coastal and mountain regions (Figure 1). Much of 
the precipitation that falls in winter does so in the form of snow, and a large portion of 
California’s population relies on snowmelt for a majority of its water supply and a significant 
amount (about 19 percent) of energy from hydroelectric power (Figure 1). These snowpack-
derived water/energy resources are located in remote mountain terrain that, despite having 
the densest monitoring network in the United States, has a relatively sparse in-situ sampling. 
For example, the Sierra Nevada has a snow pillow network that samples less than 1 percent of 
the snow-dominated area (Guan et al., 2013), much of which is concentrated at middle 
elevations, leaving most high-elevation regions completely unsampled. Moreover, models 
based on this in-situ data often rely on underlying assumptions of statistical stationarity that 
are being eroded by climate change (Milly et al., 2008). Characterizing these water and 
hydropower energy resources, and how they are changing, requires a paradigm shift away 
from relying solely on scarce in-situ data.  

Figure 1: California’s Precipitation and Hydropower Distribution 

 
Distribution of precipitation in California (left), showing significant portion as snowfall over the Sierra 
Nevada along with the large number of hydropower plants (right) that use streamflow from these 
headwater basins. 

Source: PRISM (Oregon State University) and California Energy Commission 
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While the effect of climate change on precipitation is complex and poorly understood, models 
are in agreement that temperature will continue increasing in the future with a multitude of 
effects on California and its resources (Bedsworth et al., 2018). This temperature signal makes 
snow-dominated basins particularly susceptible to changes in runoff regime: Some fraction of 
precipitation that traditionally fell as snow will instead fall as rain. Warmer temperatures will 
also drive earlier snowmelt. These two effects have the potential to drastically change the 
hydrograph characteristics in high-elevation river basins that provide water and hydropower 
supply. Existing hydropower systems are optimized for historical runoff patterns. 
Consequently, changes in runoff volumes and/or timing has the potential to affect hydropower 
in unknown ways. 

This project focused on developing an improved characterization of snow-dominated basins 
that contribute to water and hydropower supply. Application areas focus primarily on the 
Sierra Nevada of California and the broader Western United States where snow plays an 
outsized role. The primary objective is to understand the accumulation and melt of snow in 
these watersheds and how they contribute to runoff by developing a historical retrospective 
database (that is, “snow reanalysis”) over the Landsat remote sensing record (1985 – 
present). The snow reanalysis is used to characterize the climatology and variability of snow- 
water resources over the study domain and the remote sensing record of approximately the 
last 30 years. The new database is then used as a mechanism to test new frameworks for 
predicting streamflow from these watersheds, assessing climate models that are used for 
predicting and/or forecasting snowpack water resources, assessing how runoff from these 
watersheds may change under climate change, and developing and testing a new real-time 
algorithm for estimating snow accumulation and melt in these remote basins from newly 
available remote sensing products. These individual studies are organized as follows: 

1. Development of the Sierra Nevada Snow Reanalysis (SNSR) dataset. 
2. Testing the effect of improved snow estimates on runoff forecasts. 
3. Evaluation of climate models in representing Sierra Nevada and Western United States 

snowpack estimates and their prediction. 
4. The role of rain-on-snow on snowmelt-driven runoff in the current and future climate. 
5. Examination of a real-time snow estimation method. 

The results of this work are described in the subsequent sections of this report and in more 
detail in Margulis et al. (2016a, b; 2019), Kapnick et al. (2018), Rhoades et al. (2018), and Li 
et al. (2019a, b). These studies lay the groundwork for future work to adopt the use of the 
datasets and methods for improving California water and power supply forecasting at sub-
seasonal to seasonal lead times. 
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CHAPTER 2: 
Project Approach 

2.1 Development of Sierra Nevada Snow Reanalysis Dataset 
The first study in this project was the development of a new snow dataset that forms the basis 
for much of the work that follows. The domain and methodology are described below. 

2.1.1 Application Domain: Sierra Nevada Watersheds  
As a first step, the Sierra Nevada Snow Reanalysis (SNSR) dataset was developed over the key 
snow-dominated watersheds in the Sierra Nevada spanning California and Nevada in the 
Western United States (Figure 2). Specifically, the domain of interest included watersheds on 
the western slope (that is, from Upper Sacramento in the north to Kern in the south) along 
with Owens and Mono basins on the eastern slope that supply water to California. The 
remaining watersheds on the eastern slope (that is, from Truckee in the north to Walker in the 
south) generally drain to lakes including Lake Tahoe and others in the Great Basin. The 
watersheds in the Sierra Nevada span elevations from a few hundred meters above mean sea-
level to 4,421 meters (Mount Whitney in the Kern River watershed). The reanalysis dataset 
was developed for these 20 watersheds and is applied to elevations above 1,500 meters (m), 
which represent the nominal snow line, and covers 49,409 kilometers (km).2 The range-wide 
and basin-wise distribution of elevation, landcover, and fractional forest cover are illustrated in 
Figure 2. 
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Figure 2: Sierra Nevada Domain and Its Characteristics 

 
Maps of (left) elevation (in meters) over the domain (including watershed outlines/names), (middle) 
landcover type, and (right) forest cover fraction (percent). Location of snow courses and snow pillows are 
shown respectively with red symbols in (middle) and (right). 

Source: University of California, Los Angeles 

2.1.2 Snow Estimation (Reanalysis) Method  
The estimation (reanalysis) method applied herein (Figure 3) consists of a Bayesian approach 
called the particle batch smoother, which was developed and validated in Margulis et al. 
(2015). The method can be summarized as follows: 1) A model is used to first generate an 
initial guess (that is, the prior estimate), which is then 2) updated by remotely sensed 
fractional snow-covered area (fSCA) observations to generate a final (posterior) estimate. The 
prior estimate leverages readily available high-resolution elevation and landcover data as static 
inputs, and downscaled meteorological forcing (Girotto et al., 2014a; Margulis et al., 2015) as 
the time-varying inputs, to generate high-resolution snow-water equivalent (SWE) estimates 
over the full water year (WY), October 1 – September 30. The method accounts for 
uncertainty in key model inputs, including the downscaled meteorological variables (Girotto et 
al., 2014a, b; Margulis et al., 2015). The approach is a fully probabilistic Bayesian method that 
provides daily SWE estimates at 90 m resolution. A more detailed description of the method is 
provided in Margulis et al. (2015; 2019a). 
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Figure 3: Snow Reanalysis Framework 

 
Schematic representation of the Bayesian snow reanalysis framework that consists of an ensemble-
based prior modeling system (red boxes) and a posterior update component for assimilating remotely 
sensed fractional snow-covered area. 

Source: University of California, Los Angeles 

2.1.2 Data Needed for Snow Reanalysis and Verification  
Static model inputs for the prior modeling system (Xue et al., 2003; Liston, 2004) consisted of 
30 m resolution elevation and landcover information from the ASTER 
(http://asterweb.jpl.nasa.gov/) and NLCD (Homer et al., 2007) databases. These inputs were 
aggregated to 90 m resolution for use in the reanalysis. The hourly meteorological inputs used 
were taken from the 1/8° resolution NLDAS-2 dataset (Xia et al., 2012) and were downscaled 
probabilistically to 90 m based on topographic corrections and uncertainty models (Girotto et 
al., 2014a, b; Margulis et al., 2015). 

The retrieved fSCA estimates used in this study were derived from Landsat 5 Thematic 
Mapper, Landsat 7 Enhanced Thematic Mapper, and Landsat 8 Operational Land Imager 
reflectance data (Painter et al., 2003; Cortés et al., 2014). Based on data availability, only 
Landsat 5 was used from WY 1985–1998, Landsat 5 and 7 were used from WY 1999–2011, 
Landsat 7 was used solely in WY 2012, and Landsat 7 and 8 were used in WY 2013–2015. 

The data used for verification in this study is in-situ SWE data taken from 108 snow pillow and 
202 snow course sites scattered across the Sierra Nevada. The quality-controlled data is 
available from the Department of Water Resources California Data Exchange Center 
(http://cdec.water.ca.gov/). Snow pillows provide daily measurements, while snow courses 
provide monthly measurements near the first of each month from January through May. Many 
of the snow courses are co-located with snow pillows. The spatial distribution and basin-

http://cdec.water.ca.gov/
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specific number of verification sites in the Sierra Nevada are shown in Figure 2. Validation of 
the SNSR dataset and representative results are shown in Section 3.1. 

2.2 Testing the Effect of Improved Snow Estimates on Runoff 
Forecasts 
The second study in this project was aimed at understanding how a high-resolution and 
accurate SWE product would affect seasonal streamflow forecast skill. The SNSR was used as 
a representative example of such a dataset. The method used is described below. 

2.2.1 Hydrologic Modeling Framework  
The validated SNSR provides a realistic spatially distributed snow dataset that can be used to 
assess whether having such information would provide skill improvement in streamflow 
forecasts. To test the effect of improved snow characterization on runoff, the Variable 
Infiltration Capacity (VIC) hydrology model (Liang et al., 1994) was used. The model was 
setup to forecast at the outlets of the 13 river basins draining the western slopes of the Sierra 
Nevada (Figure 4). The model was applied at its commonly applied spatial resolution of 1/16 
degree latitude/longitude (about 6 km) with an hourly temporal resolution for the 31-year 
period from 1985 to 2015. The VIC model has been well-calibrated for the California basins 
where the modeled streamflow has a high degree of agreement with observations (Maurer et 
al., 2002; Livneh et al., 2013). No additional model calibration was performed for this study. 
The modeling framework was used for both baseline and test simulations, where the former 
was meant to represent the potential effect of forecasts under a normal scenario and the 
latter, a scenario with improved snow representation. In the context of this study, the method 
was applied as a series of annual hindcasts where baseline and validation data are available. 

2.2.2 Snow-Water Equivalent Initialization and Forecast Experimental 
Method 
To assess the effect of improved snow representation, the SNSR data on the day of peak SWE 
(typically around April 1) was used to re-initialize the basin snow conditions in the baseline 
simulation on that day. The only difference between the baseline forecast and test forecast 
was the difference in SWE initial conditions. Going forward in time from the re-initialization, 
the streamflow from the forecasting framework therefore reflects the effect of the inserted 
(SNSR) SWE initial condition. It was hypothesized that the new initial SWE condition would 
immediately reduce the error of the modeled SWE, allowing for the exploration of the extent 
to which the improved SWE affects the accuracy of the seasonal streamflow forecasts. 
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Figure 4: California Watershed Forecast Points 

 
Map showing the 13 headwater river basins with forecast points (gages) shown as red dots at which the 
California Department of Water Resources produces seasonal streamflow forecasts. The VIC model is 
applied upstream of each forecast point. 

Source: University of California, Los Angeles 

Two streamflow forecast experiments—a perfect forecast and a standard ensemble streamflow 
prediction (ESP)—were applied. In the perfect forecast, the VIC model was forced with the 
observed historical gridded meteorological data for that year. Thus, the perc forecast is an 
ideal scenario that allows for the assessment of the best possible forecast the system could 
produce, given the actual realization of the forcing during the forecasting period (Wood et al., 
2016). In comparison, ESP reproduces a more realistic forecasting scenario in which the 
meteorological conditions during the forecast period are unknown, and a forcing ensemble is 
used to characterize the meteorological dynamics and uncertainty during the forecast period.  

The perfect forecasting and the ESP used identical forcing data (the same as used in the 
SNSR); each has an insertion (SWE reinitialization) forecast and a baseline forecast. The 
analysis included two streamflow comparisons: 1) baseline versus re-initialized SWE forecasts 
and 2) re-initialized SWE versus operational California Department of Water Resources (DWR) 
streamflow forecasts compared to observed streamflow. The former comparison is analogous 
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to previous work (Kumar et al., 2013; Liu et al., 2015) and was done primarily to identify 
whether the re-initialization of SWE is a dominant factor in streamflow and can thereby 
improve streamflow forecasts. The latter comparison was done to assess the overall accuracy 
of the re-initialization of SWE compared to an operational framework. Representative results 
from these forecasts tests are provided in Section 3.2. More details on the experimental and 
modeling setup are provided in Li et al. (2019a). 

2.3 Evaluation of Climate Models in Representing Sierra Nevada 
and Western United States Snowpack Estimates 
Climate models will increasingly be the tools used to diagnose, forecast, and project snow-
derived water and energy resources in areas like California and the Western United States. 
However, until recently, verification and evaluation of such tools has been difficult due to lack 
of compatible and accurate snow datasets. The SNSR developed as part of this project was 
used in comparisons with two different climate models as described below to assess the 
potential of such models in predicting and forecasting Sierra Nevada SWE. 

2.3.1 Variable-Resolution Community Earth System Model 
The Variable-Resolution Community Earth System Model (VR-CESM) is comprised of stand-
alone atmospheric, land-surface, oceanic, sea-ice, and land-ice components. A detailed 
description of the benefits of VR-CESM are given in Zarzycki et al. (2015) and Rhoades et al. 
(2016, 2017). However, one key aspect of VR-CESM relevant to this study is that the variable-
resolution allows a global model to “zoom in” to mountainous areas at higher resolutions 
(Figure 5). 

The two key aspects of climate models with respect to simulations in mountain regions are 
resolution and the so-called microphysics parameterization of clouds and precipitation. 
Together these two factors are key to resolving the orographic-driven precipitation and 
snowfall that are characteristic of mountain regions. To examine the joint effect of these two 
factors, eight VR-CESM simulations were conducted for this study (over the period 1999 – 
2015): 1) at refined horizontal resolutions over California of 55 km, 28 km, 14 km, and 7 km 
and 2) using two different microphysics parameterizations (Morrison and Gettelman, 2008 
[MG1] and Gettelman and Morrison, 2015 [MG2]). These topography-microphysics 
combinations are expected to yield differences in snowfall and snowmelt (among many other 
factors). Representative results from these simulation cases and how they compare to SNSR 
are provided in Section 3.3.1. More details on the experimental and modeling setup are 
described in Rhoades et al. (2018).  
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Figure 5: Variable Resolution Climate Model Application Over California 

 
VR-CESM grid used for this study showing: a) uniform global grid with grid refinement in California at 
resolutions of 55 km, 28 km, 14 km, and 7 km; b) regions of analysis in California; and c) topographic 
differences at varying resolutions. 

Source: University of California, Los Angeles 

2.3.2 Geophysical Fluid Dynamics Laboratory Atmosphere-Ocean General 
Circulation Modeling Framework  
To study another aspect of snow simulation and predictability, the Geophysical Fluid Dynamics 
Laboratory (GFDL) atmosphere-ocean general circulation model, or AOGCM, (Delworth et al., 
2006) was used to test the lead-time predictability of Western United States snowpack. Three 
versions of the AOGCM were applied that differ in their horizontal atmospheric/land resolutions 
(that is, 200 km, 50 km, and 25 km; Figure 6). Seasonal eight-month lead-time predictions 
that were initialized on July 1 for the subsequent March Western United States snowpack were 
derived from three AOGCM multimember ensemble hindcasts (Kapnick et al., 2018). Starting 
from these July 1 initial conditions, the dynamical model then predicted the evolution of the 
climate system over the following year, allowing for the assessment of predicted snowpack 
values for the following March (1981–2016). Model results used ensemble mean predictions. 
Simpler statistical models were also tested by using observed climate indices available on July 
1 to contrast with the dynamical AOGCM predictions. The dynamical physical models and 
statistical models were verified against snow-water equivalent (SWE) observations and 
reanalysis including the SNSR over the Sierra Nevada. Representative results from these 
simulation cases are provided in Section 3.3.2. More details on the experimental and modeling 
setup are described in Kapnick et al. (2018). 
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Figure 6: Climate Model Snow-Water Equivalent Over Western United States 

 
Illustration of the GFDL AOGCM model at different resolutions (200 km, 50 km, and 25 km) in terms of 
simulated climatological SWE (top row) versus observed SWE (bottom row). The Western United States 
observations shown here are based on in-situ station data (bottom right) that are regridded. 

Source: University of California, Los Angeles 

2.4 Role of Rain-on-Snow on Snowmelt-Driven Runoff in Current 
and Future Climates 
Rain-on-snow is a potentially important component of current and future runoff. In this study, 
the same VIC model setup described in Section 2.2.1 was used to characterize flood risk 
associated with rain-on-snow (ROS) events both in the current climate and in how they are 
likely to change under climate warming. In this study, the domain of application was the 
broader conterminous United States (CONUS), as shown in Figure 7, over the 64-year period 
covering 1950–2013. Flood risk was based on VIC-simulated runoff using the Generalized 
Extreme Value, or GEV, (Cheng et al., 2014) distribution. To define ROS days, the criteria in 
Freudiger et al. (2014) was used. This method defines an ROS day as one having at least 3 
millimeters (mm) of rain falling on a snowpack with at least 10 mm SWE, and for which 
snowmelt makes up at least 20 percent of the sum of the rainfall and snowmelt for the day. In 
this study the criteria were used to identify every ROS day over the 64‐year study period at 
each grid cell. After identifying the ROS days for all grid cells, the ROS frequency in days per 
year was calculated along with the centroid of timing of the ROS days based on the rainfall 
intensity‐weighted average of the ROS timing in days of the water year (WY; that is, days 
from 1 October). This method was applied to the historical period and then applied to the case 
with the warming scenario. Representative results from this analysis are provided in Section 
3.4. More details on the experimental and modeling setup are described in Li et al. (2019b).  
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Figure 7: United States Domain Used in Rain-on-Snow Experiments 

 
(a) Elevation of the CONUS study domain. (b) Observed temperature change in the 20th century (1991 – 
2012 average compared to the 1901–1960 average). The mean temperature increased by about 34.1𝑭𝑭 
1(.2℃)on average over the domain (data source: Third National Climate Assessment, Melillo et al., 2014). 

Source: University of California, Los Angeles 

2.5 Examination of Real-Time Snow Estimation Method 
Finally, to examine how real-time SWE estimates could be made, the same data assimilation 
framework used in the development of the SNSR was used with newly available LIDAR-based 
Airborne Snow Observatory, or ASO, (Painter et al., 2016) snow depth (SD) dataset. The SNSR 
dataset is only available retrospectively (that is, for historical purposes after all snow 
disappears) because fSCA data does not provide instantaneous information about SWE. 
However, SD is closely related to SWE and therefore opens up the possibility of real-time SWE 
estimation. The research team focused on the Tuolumne River basin in the Sierra Nevada of 
California (Figure 8) where ASO data is available. The ASO snow depth dataset provides 
multitemporal lidar-derived SD images per year over this watershed, compared to most lidar 
datasets that only provide one SD estimate per year. The researchers used the ASO dataset as 
a testbed to assess how well a single SD image per year would perform in generating spatially 
and temporally continuous SWE estimates. Data was used from three water years (WYs): 2015 
(historically dry), 2016 (near average), and 2017 (historically wet). The baseline case 
assimilated a single SD image from ASO that was taken on the Day of Water Year (DOWY) 
closest to April 1 in each WY (DOWYs 185 in 2015, 184 in 2016, and 183 in 2017). A 
sensitivity test was also performed to assess how results change with respect to the number of 
assimilated measurements. Representative results from these tests are provided in Section 
3.5. More details on the experimental and modeling setup are described in Margulis et al. 
(2019b). 
  

(a) (b) 
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Figure 8: Tuolumne River Watershed Data 

 
Maps showing the spatial distribution of key physiographic characteristics across the Tuolumne basin: a) 
elevation, b) aspect, c) slope, and d) forest cover. Insets in each subpanel show the binned frequency 
distribution of each variable within the basin. Sites with in-situ snow data are shown in panel a) as either 
snow course sites (‘o’) or snow pillow sites (‘+’). The location of the United States Geological Survey 
stream gage is identified with a red star. 

Source: University of California, Los Angeles 
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CHAPTER 3: 
Project Results 

3.1 Sierra Nevada Snow Reanalysis 
The SNSR estimates were compared to all snow pillow and snow course sites across California 
as a means of verification. Scatter plots showing the comparison of posterior estimates to 
observations are shown in Figure 9 and visually confirm the general agreement between the 
estimates and observations. For snow pillow data, the verification was performed on the peak 
SWE values. For the snow course data, the verification was performed for all data (typically at 
the beginning of the month between January and May). The comparison performed includes 
more than 9,000 station-years of data. The posterior SWE estimates are generally significantly 
improved over the prior estimates in terms of mean error, root-mean-squared error (RMSE), 
and correlation coefficient when compared to the in-situ data. The posterior mean error values 
for snow pillows range from -12 – 1 centimeter (-1 centimeter [cm] across all sites). The 
posterior RMSE values for snow pillows values range from 5 – 18 cm (11 cm across all sites). 
The posterior correlation coefficient values for snow pillows range from 0.91 – 0.99 (0.97 
across all sites). The results are qualitatively similar for snow courses, with uniform and 
significant improvement in all metrics across all basins (with posterior mean error, RMSE, and 
correlation coefficient across all sites of -3 cm, 13 cm, and 0.95 respectively). These 
estimation errors compare favorably to other methods (Margulis et al., 2016). 

To highlight the SNSR SWE estimates that were derived as part of this study, Figure 10 (left 
panel) illustrates the climatological average (31-year average over 1985 – 2015 water years) 
reanalysis map of peak range-wide SWE over the domain. The patterns of spatial variability 
show the clear signature of larger SWE values at higher elevations and on the windward 
(western) slopes of the range. The average climatological SWE over the domain is 0.38 m. For 
context, the 2015 drought year SWE map is shown in Figure 10 (right panel) and illustrates 
how much less SWE occurred; the average SWE over the domain is 0.06 m (about 16 percent 
of the climatological average). In addition to the significantly lower SWE depth in 2015, many 
more pixels showed zero SWE values at the time of range-wide peak. Specifically, while the 
climatology map has SWE values of zero in 2 percent of the non-water covered portion of the 
domain, 47 percent of the domain had zero SWE values in 2015. 
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Figure 9: Verification of Snow Reanalysis Against In-Situ Data 

 
Comparison of observed SWE to posterior SWE reanalysis estimates at snow pillow (black ‘o’ symbols) 
and snow course (grey ‘✖’ symbols) locations. 

Source: University of California, Los Angeles 
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Figure 10: Illustrative Maps of Snow Reanalysis Snow-Water Equivalent 

 
Maps of snow-water equivalent (in meters) on day of range-wide peak snow-water equivalent volume 
corresponding to: (left panel) 31-year climatology and (right panel) water year 2015. White areas in the 
maps indicate those regions outside of the reanalysis domain (water bodies and areas below 1,500 m). 

Source: University of California, Los Angeles 

As a final example of the insight that can be gained from the reanalysis, Figure 11 provides a 
comprehensive illustration of the range-wide SWE dataset as a function of both WY and day of 
WY. The strong seasonal cycle and inter-annual variability is evident in the dataset, which 
shows a range in the peak SWE from 2.9 – 37.9 km3 with an average of 18.6 km.3 It is also 
clear from Figure 11 that the timing of peak SWE varies significantly. While the average day of 
range-wide peak SWE is March 15, the inter-annual day-of-peak ranges from January 20 – 
May 9. Considering the actual date of peak is important as evidenced by 2015, where the peak 
is quite early (February 10) and much of the snow is melted by April 1. Hence using April 1 to 
quantify variations in peak SWE has the potential to introduce significant errors and in the 
case of 2015 makes what is already an extreme year seem even more so. 

More details on the SNSR can be found in Margulis et al. (2016a, b) and the data can be found 
at https://margulis-group.github.io/data/. Based on the development of the dataset and its 
positive performance, it was used in the subsequent studies related to snow-derived runoff 
(Section 3.2 and 3.4), characterization and prediction of snow-water resources from climate 
models (Section 3.3). The method was also used in the development of a prototype real-time 
estimation method (Section 3.5). 
  

https://margulis-group.github.io/data/
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Figure 11: Seasonal and Interannual Variability in Rangewide Snow-Water 
Equivalent 

 
Daily time series of range-wide SWE (in km3) for each year of the SNSR record. The ‘x’ symbols mark the 
timing of the peak range-wide SWE for each year and the corresponding text indicates the value of peak 
SWE. Above- and below-average values are shown in white and black text respectively. The red line 
corresponds to April 1. 

Source: University of California, Los Angeles 
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3.2 Testing the Effect of Improved Snow Estimates on Runoff 
Forecasts 
To assess the potential for improving streamflow forecasts (and thereby hydropower 
forecasts) via SWE re-initialization, a hindcasting approach was used for the watersheds that 
are forecast by the California Department of Water Resources (DWR), as shown in Figure 4. 
Three cases were compared: 1) a baseline modeling case with default snow estimates, 2) a 
“perfect” forecast where SWE was re-initialized using the SNSR estimates at the time of peak 
SWE and forced with known deterministic meteorological forcing inputs, and 3) an ensemble 
streamflow prediction (ESP) case re-initialized using the SNSR estimates, but forced with 
unknown probabilistic meteorological forcing inputs. The three cases were examined for all 
watersheds with sample results for the Merced River watershed shown in Figure 12.  

Figure 12: Streamflow Forecast Comparison for Merced River 

 
Comparison of the monthly streamflow from the SNSR insertion experiment (blue) and the baseline 
experiment (red) with the DWR streamflow observations (green) using the Merced River basin experiment 
results. (a) shows the comparison of the time-series streamflow from the perfect forecast experiment, (b) 
shows the comparison of the time-series streamflow from ESP, (c) and (d) show the average monthly 
streamflow over the study period from the perfect forecasting and ESP, respectively, relative to the 
baseline case and observations. 

Source: University of California, Los Angeles  
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The results show a clear improvement in streamflow over the baseline case for both the 
perfect forecast and ESP cases relative to the observed (naturalized) streamflow. 

Figure 13 shows the results for the baseline versus perfect and ESP forecasts relative to 
observed streamflow for all basin-years over the study period. There is generally significant 
improvement over the baseline when the more accurate SNSR SWE is used for re-initialization. 
The SWE insertion forecast was also compared to the DWR forecast system.  

Figure 13: Streamflow Forecast Evaluation for All Basin-Years 

 
Comparison of aggregated April–July streamflow from insertion experiment and baseline experiment for 
the (left) perfect forecast and (right) ESP forecast. Each dot in scatterplots represents aggregated 
streamflow for a single year at one gage; all dots represent the data from all 13 basins over all 31 years. 

Source: University of California, Los Angeles 

Figure 14 shows a comparison of both forecasts to the observed streamflow.  

To quantify the improvement of the SNSR SWE insertion over a reference streamflow forecast, 
two metrics are defined: 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 (3.1) 

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼−𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅
1−𝑁𝑁𝑁𝑁𝑁𝑁𝑅𝑅

 (3.2) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐼𝐼 are the RMSE of the streamflow forecast from the reference 
experiment and the insertion experiment, respectively, and 𝑁𝑁𝑁𝑁𝑁𝑁𝐵𝐵 and 𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼 are the Nash 
Sutcliffe Efficiency (NSE) of the streamflow forecast from the reference experiment and the 
insertion experiment, respectively. In both cases the normalized information content (NIC) 
essentially measures the relative RMSE and NSE difference between the reference forecast and 
the insertion forecast. Based on its definition, NIC values range from negative infinity to 1; 
positive NIC indicates the insertion improves the accuracy over the reference forecast, while 
negative NIC indicates the insertion results degrade with respect to the reference. The closer 
the NIC is to 1, the larger improvement the insertion forecast introduces. 
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Figure 14: Streamflow Forecast Comparison for All Basin-Years Compared to 
Operational Forecasts 

 
Comparison of seasonal streamflow forecast from peak-annual SWE insertion experiment with that from 
the DWR forecast issued at the peak-SWE month. Each dot represents the aggregated April–July 
streamflow for one gage for a single year. 

Source: University of California, Los Angeles 

The bulk improvement metrics are shown in Figure 15. In eight of the 13 basins, the SWE re-
initialization shows an improved forecast over the reference DWR forecast system. Finally, the 
forecast systems were compared in dry years, when streamflow forecasts are most important. 
For the years in the driest 20 percent over the record examined, forecasts for all 13 basins 
were better for the SWE reinitialization over the standard DWR forecast (Figure 16), with a 
mean forecast improvement of 23 percent. 

Figure 15: Forecast Improvement Relative to Operational Forecasts 

 
The normalized information content (NIC) of RMSE (blue circle) and NIC of NSE (orange triangle) of the 
insertion ESP forecast made on DWR forecasting dates relative to the DWR forecasts on corresponding 
dates. Basins are ordered from north (left) to south (right). 

Source: University of California, Los Angeles  
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Figure 16: Forecast Improvement Relative to Operational Forecasts in Dry Years 

 
The NIC of RMSE (blue circle) and NIC of NSE (orange triangle) of the insertion ESP forecast made on 
DWR forecasting dates relative to the DWR forecasts on corresponding dates for the driest 20 percent of 
the years in the study period. Taken over all forecast points, the SWE insertion increases the accuracy of 
the April – July streamflow forecast by 23 percent. 

Source: University of California, Los Angeles 

The results of this study (more details of which can be found in Li et al., 2019a) demonstrate 
that a SWE dataset that has sufficient accuracy in the magnitude and spatial distribution of 
basin-scale SWE has significant potential for improving streamflow forecasts. Accurate snow 
information itself (that is, initial conditions near peak SWE) was shown to be enough to allow 
physically based forecasts to have similar accuracy with a widely used statistical forecasting 
approach. These results also support the long-term efforts of the hydrologic community to 
continue to work toward developing near-real-time estimates of SWE (at high spatial and 
temporal resolution), through a combination remote sensing, reanalysis, machine learning, and 
other methods under consideration, in support of the larger goal of improved streamflow 
forecasts in snow dominated areas. 

3.3 Evaluation of Climate Models in Representing Sierra Nevada 
and Western United States Snowpack Estimates 
3.3.1 Variable-Resolution Community Earth System Model  
To assess the ability for simulating SWE in the Sierra Nevada, the SNSR was used for verifying 
the VR-CESM model as described in Section 2.3.1. The distribution of precipitation and 
partitioning of rain/snow on the windward and leeward side of the Sierra Nevada is critical 
when climate data are used for the assessment of watershed scale basins, particularly for 
ecosystem maintenance and reservoir operations. To assess the efficacy of variable resolution 
(VR) simulations over California (CAL_VRXX where “XX” corresponds to the model resolution) 
in their representation of mountain snowpack (that is, rain and snow partitioning), Figure 17 
highlights the December, January, February (DJF) climate average differences in SWE against 
SNSR. The CAL_VR55 MG1 and MG2 simulations underestimate DJF climate SWE by 54.4 to 
265.4 mm in the California mountain region as precipitation failed to transition from liquid to 
ice due to unrealistic topography and a smaller orographic uplift. For the CAL_VR_28 
simulations, it is clear that the windward/leeward precipitation bias in MG1 shaped the 
windward/leeward snow bias (Figure 17). The DJF climate average SWE was 227.4 to 24.2 
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mm in the CAL_VR MG1 simulations and 222.0 to 26.1 mm in the CAL_VR MG2 simulations. 
The average absolute difference for SWE was 26.0 mm for CAL_VR MG1 at horizontal grid-
refinement of 28 km and improved to 17.2 mm for CAL_VR MG2 at horizontal grid-spacings of 
28 km, although benefits were most seen at 14 km (Figure 17). In terms of the DJF seasonal 
Pearson pattern correlation coefficients for SWE, the CAL_VR MG1 simulations ranged between 
0.28 and 0.68 when compared with SNSR. The CAL_VR MG2 simulations generally improved 
upon the CAL_VR MG1 simulations’ DJF seasonal spatial correlations for SWE by 10.17 to 
10.18 with values as high as 0.87, which were for CAL_VR7 MG2. The windward/leeward 
ratios of CAL_VR MG1 simulations highlight the poor distribution of SWE in the California 
mountain region with average windward/leeward ratios 4.6 times higher than SNSR. In 
contrast, the CAL_VR MG2 simulations generally matched the mountain windward/leeward 
ratios of SNSR SWE (2.22) with ratios ranging between 0.92 and 1.12 for snow cover and 
between 1.27 and 1.96 for SWE. 

Figure 17: Climate Model Snow-Water Equivalent Difference Maps 

 
Difference in modeled SWE against SNSR SWE. Results are shown for the eight CAL_VR simulations at 
various refined horizontal grid-resolutions (55 7 km) using (a) MG1 versus (b) MG2 microphysics. 

Source: University of California, Los Angeles 

Model efficacy in SWE over an average water year is depicted in Figure 18. Each of the plotted 
lines represents a given CAL_VR simulation day averaged across the 16 simulated years and 
differenced from that of the reference data set for model evaluation in SWE. Results indicated 
that too much of the precipitation fell as rain versus snow. This results in the highest daily 
climate difference in average (range) simulated SWE accumulation for the windward, 261.5 to 
269.1 mm (183–196 mm), and leeward, 237.0 to 239.9 mm (118–120 mm), side of the Sierra 
Nevada when compared with SNSR. At 28 km a clear SWE improvement is apparent with the 
average improved by 4.2 times in MG1 and 3.7 times in MG2 along the windward side of the 
Sierra Nevada. Further improvement arises in MG2 simulations on the leeward side of the 
Sierra Nevada by 3.5 times. Regardless of the resolution improvement beyond 28 km, a clear 
bias is present in most of the MG1 simulations with too much (too little) SWE accumulating 
prior to 1 April on the windward (leeward) side of the Sierra Nevada. This results in an 
average difference in the CAL_VR MG1 simulations (at 28 km) of 15.4 mm on the windward 
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side of the Sierra Nevada and 40.0 mm on the leeward side of the Sierra Nevada. The CAL_VR 
MG2 simulations at 28 km show a steady improvement in SWE from 28 to 7 km with the 
closest match to SNSR from October–March in the windward side of the Sierra Nevada. 
However, factors that influence the spring melt season led to a large underestimation of SWE 
(Figure 18). Although biased throughout the water year, the CAL_VR7 MG2 simulation 
represents the closest approximation to SNSR in both the windward (–0.55 mm) and leeward 
(–1.69 mm) side of the Sierra Nevada. Thus, increased grid-refinement coupled with 
prognostic treatment of precipitation in the microphysics scheme did create major benefits in 
the seasonal cycle of mountain SWE over a given simulated water year. 

Figure 18: Climate Model Seasonal Snow-Water Equivalent Differences  

 
Water year daily climate average differences between the CAL_VR MG1 (solid line) and CAL_VR MG2 
(dotted line) simulations at a maximum VR grid-spacing of 55 km (blue), 28 km (orange), 14 km (green), 
and 7 km (maroon). Simulations were compared against SNSR SWE for (left column) the full California 
Mountain Region, (middle column) windward side of the Sierra Nevada, and (right column) leeward side of 
the Sierra Nevada. The vertical black line represents the date of 1 April, which traditionally delineates the 
snowpack accumulation period from the melt period. 

Source: University of California, Los Angeles 

3.3.2 Geophysical Fluid Dynamics Laboratory Atmosphere-Ocean General 
Circulation Modeling Framework  
Given the importance of snow-derived runoff, there is significant economic value in long-lead 
forecasts of SWE. In this study, the ability to predict SWE over the Western United States at 
long lead times (about eight months) was examined using the GFDL model applied at varying 
spatial resolutions (Section 2.3.2). The multiresolution modeling framework clearly illustrates 
the role of horizontal resolution for improving simulation of snowpack climatology (Figure 6 
and Figure 19). At 200 km, mountains are smooth and low, resulting in minimal SWE confined 
to the interior Western United States. At 50 and 25 km, the models reproduce finer-scale 
maritime mountain features with SWE values approaching observations. Biases in the absolute 
value of snowpack are partially limited by resolution restricting topographic height and 
therefore snow accumulation. As a result, snowpack anomalies normalized by regional means 
were used to provide a relative comparison across resolutions. Figure 19 provides an example 
for the recent 2012–2015 multiyear southern Western United States snowpack drought. All of 



 

26 

the AOGCMs roughly reproduce the observed pattern of anomalously low snowpack in the 
southwest. The 50-km model appears to perform the best, while the 25-km model incorrectly 
predicts highs in the southern portion of the Western United States.  

Figure 19: Climate Model Snow-Water Equivalent Over Western United States 
(2012 - 2015) 

 
As in Figure 6, observed (bottom) and mean of annual ensemble mean simulated AOGCM March 
predictions from previous July (top) of snowpack anomalies in 2012-2015 relative to 1981-2016 mean. 
Note that for simulated plots, points have been masked for only those with climatological (1981-2016) 
simulated SWE greater than or equal to 1 cm. 

Source: University of California, Los Angeles 

Figure 20 provides regional seasonal prediction metrics for AOGCM March snowpack based on 
previous July 1 initialization. The higher-resolution AOGCMs consistently produce positive 
statistically significant correlations across all regions except in the southern Sierra Nevada and 
in the State of Washington. The southern Sierra Nevada, being a narrow mountain range with 
the highest peak in the contiguous United States, Mt. Whitney, seems to require even higher 
resolutions than the GFDL system to achieve mountain heights for sufficient orographic 
precipitation and cold temperatures for snowpack dynamics. This region is characterized by 
narrow and infrequent storms—fewer than 10 per year, with some years receiving the majority 
of snowpack from a single storm (Huning and Margulis, 2017). The higher resolution models 
capture the spatial patterns of interannual variability, but with lower magnitudes than in the 
observations. This high natural variability and bias in the models may make it inherently more 
difficult to predict Sierra Nevada snowpack, particularly if the few storms that happen in a year 
are shifted outside the defined region. 

To test larger-scale prediction skill and reduce errors caused by spatial differences in storms 
shifted across the region, aggregation to the Sierra Nevada, Maritime Mountains (Sierra 
Nevada, Oregon Cascades, Washington state), and the entire Western United States region 
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are shown in Figure 20. Aggregation leads to dynamical predictions outperforming statistical 
predictions everywhere. With aggregation, skill emerges across the combined Sierra Nevada 
and Maritime Mountains. However, the AOGCM snowpack predictions lose statistical 
significance over the Sierra Nevada when longer-term trends were removed from the model 
predictions, resulting in a loss of prediction skill in the aggregated Maritime Mountains despite 
skill in Oregon and Washington. Hence, the predictive skill shown in Figure 20 for the Sierra 
Nevada and Maritime Mountains came from the models’ ability to reproduce the longer-term 
trend of Sierra Nevada snowpack loss. This suggests that the AOGCM system cannot capture 
the internally forced natural variability of Sierra Nevada snowpack. More work is needed with 
dynamical AOGCMs and observing systems customized for the Sierra Nevada and more broadly 
to California to: 1) enhance regional prediction skill or 2) elucidate if longer lead times are 
unattainable due to the nature of Sierra Nevada snowpack. More detail is provided in Kapnick 
et al. (2018). 

Figure 20: Statistical Performance of Climate Model Prediction Skill 

 
Mountain range snowpack prediction skill measured by correlations (Spearman) between observed March 
snowpack and predictors available 1 July from AOGCM models (triangles, circles) or climate indices 
(squares). Shown for (a) various mountain ranges and (b) ranges aggregated in increasing scale. Dashed 
line provided for the value of the higher resolution multimodel (50 km and 25 km) prediction (0.48) for 
snowpack over the entire mountainous Western United States. Inset provided for ranges in highest 
resolution model; the 200 km model has no ranges for: Northern and Southern Sierra Nevada, Oregon 
Cascades, or Arizona and New Mexico. 

Source: University of California, Los Angeles 

3.4 Role of Rain-on-Snow on Snowmelt-Driven Runoff in Current 
and Future Climates 
As climate changes in snow-dominated areas, more precipitation events that might have 
previously fallen as snow will instead fall as rain. In this study, the project team used a 
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process-level characterization of historical and future ROS events, to quantify the source of 
runoff in large ROS events and the runoff contribution from ROS to extreme floods within the 
CONUS. Snow predictions from a hydrologic model were validated using the SNSR reanalysis 
(Figure 21).  
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Figure 21: Verification of Snow-Water Equivalent in Rain-on-Snow Simulations 

 
(a) Historical (1950–2013) simulated mean annual maximum SWE. (b) The change in the maximum SWE 
that would occur if the air temperature were uniformly increased over the 1950–2013 record by 2.0 
degrees Celsius. (c) Comparison of the daily time series of total SWE (blue) in the Sierra Nevada from the 
SNSR dataset (Margulis et al., 2016) and from the VIC model (red). (d) Comparison of the timing and (e) 
the total volume of the annual peak SWE over the Sierra Nevada. (f) and (g) compare the spatial 
distribution of the peak SWE from the VIC model and from the SNSR (1990–lowest SWE WY). (h) and (i) 
are similar to (f) and (g), but for WY1993 (highest SWE WY). 

Source: University of California, Los Angeles 

The simulations indicate that the regions affected most heavily by ROS include the West Coast, 
the major mountain ranges of the western interior, the Upper Midwest, the Northeast, and the 
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lower Appalachians (Figure 22). While 70 percent of extreme runoff events in these regions is 
associated with ROS, the runoff generated during these ROS events accounts for less than 10 
percent of the total extreme flood runoff; the much larger fraction of extreme runoff is derived 
either directly from intense rainfall or from clear-sky snowmelt. Rainfall is the dominant source 
of runoff in ROS events along the West Coast and over the west-facing slopes of the Cascades 
and Sierra Nevada, while snowmelt dominates the ROS runoff in the other regions in the 
CONUS.  

Figure 22: Historical Rain-on-Snow Event Characterization 

 
(a) The frequency of historical ROS days. (b) The centroid of timing of all the historical ROS days. Results 
are shown only for grid cells with average maximum annual SWE greater than 20 mm. 

Source: University of California, Los Angeles 

Historically, the role of ROS in streamflow extremes is most significant in mid-elevation areas, 
but based on the future climate simulations performed, this “significant influence zone” will 
shift to higher elevations in a warmer future. ROS will account for more of the extreme runoff 
in the high elevations of the mountainous West and the Upper Midwest, but less in areas with 
low and moderate elevations in the West and almost the entire East (Figure 23). The future 
ROS frequency changes exert a first order control on the future change of the runoff 
contribution from ROS to extreme floods. A more detailed presentation of the results is 
described in Li et al. (2019b). 
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Figure 23: Future Changes in Rain-on-Snow Events 

 
a) Change in ROS frequency in the +2 degrees Celsius warmer scenario in comparison with the historical 
ROS frequency. (b) Change in the centroid of timing of ROS days in the +2 degrees Celsius warmer 
climate in comparison with the historical ROS timing. The white areas either have historical mean annual 
maximum SWE less than 20 mm or no identified ROS days in the warmer climate due to reduced SWE. 

Source: University of California, Los Angeles 

3.5 Examination of Real-Time Snow Estimation Method 
In the final study of the project, the team examined the potential for real-time SWE and 
snowmelt estimation for driving streamflow in the context of assimilating the Airborne Snow 
Observatory (ASO) data into the reanalysis framework used to generate the SNSR. In 
particular, the goal of this work is to identify the potential for infrequent snow depth (SD) 
measurements to provide space-time continuous estimates of SWE. 

Sample estimates from WY 2016 are presented in Figure 24 to qualitatively illustrate the 
results. The prior ensemble simulations provide daily SWE and SD estimates. The single 
assimilated ASO SD measurement is on DOWY 184, which is used to probabilistically condition 
the prior ensemble to generate the posterior estimate via the particle batch smoother update. 
The seasonal evolution of prior and posterior SD and SWE is shown, including on a subset of 
days with independent (that is, non-assimilated) ASO data (DOWY 178, 240, and 264). The 
posterior SD at the assimilation time (by construct) should closely match the measured SD 
field. This is clearly seen on DOWY 184, where the posterior SD and ASO SD fields are in good 
agreement, while different than the prior SD field. Importantly, the method essentially 
provides a retrieved (posterior) estimate of SWE via the relationship between modeled SWE 
and SD in the prior. The Bayesian smoother also implicitly uses SD information from the 
measurement time to generate the posterior estimates before and after the measurement day 
(that is, all daily estimates of SD and SWE are updated). As a result of the multitemporal ASO 
measurements, independent comparisons can be made between the posterior estimates and 
ASO data on days that were not used in the assimilation. It is evident that posterior SD fields 
on these days are also in better agreement with measurements than the prior (Figure 24). 
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Figure 24: Illustration of Prior, Measurement, and Posterior Snow Depth 

 
Sample estimation results from WY 2016, top two rows: prior (ensemble median) estimated SWE and 
snow depth (SD) fields on select days throughout the year; middle row: ASO measurements on four 
select days including the assimilation day (DOWY 184); bottom two rows: posterior (ensemble median) 
estimated SD and SWE fields resulting from the assimilation of the ASO measurement. Rows in between 
prior/posterior SD and ASO SD data show the respective SD difference fields on the day of assimilation 
(DOWY 184) and non-assimilation days (DOWYs 178, 240, 264). 

Source: University of California, Los Angeles 

Within a given WY, the posterior statistical metrics are expected to be optimal on the SD 
assimilation day. This is clearly seen in terms of the correlation, which is above 0.95 on the 
assimilation day for all three years tested (Figure 25, top row). The prior range (mean) of 
spatial correlation coefficients was: 0.37–0.60 (0.56), 0.34–0.60 (0.48), and 0.42–0.62 (0.54) 
in WYs 2015, 2016, and 2017, respectively. In comparison, the posterior range (mean) of 
spatial correlation coefficients was: 0.81–0.98 (0.91), 0.58–0.99 (0.83), and 0.89–0.98 (0.94). 
As expected, the correlation degrades away from the maximum values on the day of 
assimilation. For bias and unbiased RMSE, the optimal (lowest) values are also seen on the 
day of assimilation (Figure 25, middle/bottom rows) with intra-seasonal variability in their 
magnitudes due to: 1) the juxtaposition between the assimilated ASO measurement and the 
seasonal accumulation and ablation dynamics within each WY and 2) inter-annual variability 
due to the different snow accumulation amounts across WYs. The posterior bias and unbiased 
RMSE results mostly show sizeable improvements relative to the prior, with a few exceptions. 
The relative improvement is least in WY 2015 as a result of a few distinct factors: 1) less 
overall room for improvement due to the historically dry year, 2) the peak SWE occurring more 
than 50 days before the assimilated ASO measurement (compared to closer to peak SWE in 
WY 2016 and 2017), and 3) several relatively significant storms that occurred after the day of 



 

33 

ASO measurement assimilation (Figure 25, top left panel). Additionally, in WY 2016, while 
improvements are large near peak SWE, the prior and posterior SD bias and unbiased RMSE 
values are comparable to each other beyond about 75 days after the assimilated 
measurement. 

Figure 25: Estimation Errors in Snow Depth for All Measurement Times 

 
Spatial statistics from the comparison of prior and posterior to ASO SD fields for the baseline case with 
assimilation of a single SD image, top row: correlation; middle row: bias; and bottom row: unbiased 
RMSE. In the top row, the fraction of (basin-average) peak SWE time series is shown for reference relative 
to ASO SD acquisition times. The vertical dashed line indicates the day of the assimilated SD 
measurement. 

Source: University of California, Los Angeles 

A key benefit of the developed data assimilation framework is that non-observed posterior 
states and fluxes at non-observation times are provided. In fact, SD in and of itself is of less 
interest to hydrologists and water planners than other variables like peak accumulated SWE 
and snowmelt fluxes, which are more tightly linked to runoff and streamflow. This study 
provides a useful example whereby a variable that is more easily measured (SD) can be 
leveraged to generate other more useful state and flux estimates. To illustrate this, the 
posterior estimates of SWE fields at the time of peak basin-averaged SWE and the time series 
of snowmelt across the WY are shown in Figure 26. The peak SWE in WYs 2015 and 2016 
occurs 52 and 17 days, respectively, before the day of SD assimilation, while in WY 2017 the 
peak SWE occurs 18 days after the day of assimilation. Based on this juxtaposition, the 
fraction of cumulative annual (posterior) snowmelt across each of the three WYs at the time of 
SD assimilation is 46 percent, 17 percent, and 11 percent respectively. The posterior estimates 
of snowmelt are also compared to the streamflow near the Tuolumne outlet (Figure 26, 
second column). The correlation coefficient between the daily basin-average snowmelt time 
series and the daily streamflow at the United States Geological Survey stream gage are 
respectively 0.63, 0.90, and 0.91 for WYs 2015, 2016, and 2017. The measured streamflow is 
the combined result of rainfall runoff, snowmelt-driven runoff, and baseflow and thus is not 
expected to be fully explained by the snowmelt time series alone, but the general agreement 
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provides additional, albeit indirect, verification of the posterior snow estimates. The fact that 
WY 2015 snowmelt is the least correlated with streamflow is not surprising due to the 
extremely early peak SWE relative to the day of SD assimilation and the fact that it was not 
only an extremely dry but also warm year (Margulis et al., 2016b), during which snow was 
stored only at much higher elevations relative to other years (Figure 26, left column), with a 
larger fraction of precipitation falling as rain and thus resulting in more rainfall-driven runoff. 
In the near-average year (2016) and wet year (2017), where snow is expected to dominate 
the runoff signal, there is a strong correlation between the posterior estimates and the 
measured streamflow. 
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Figure 26: Peak Snow-Water Equivalent and Snowmelt Time Series 

 
(left column) Maps of estimated posterior SWE fields (in meters) for each WY on basin-averaged day-of-
peak SWE. (right column) Posterior basin-average snowmelt time series compared to streamflow at 
watershed outlet (correlation between snowmelt and streamflow is shown in upper right corner of each 
panel). The SD data assimilation day and the day-of-peak SWE are shown with vertical dashed black and 
red lines respectively. 

Source: University of California, Los Angeles  
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CHAPTER 4: 
Technology/Knowledge/Market Transfer 
Activities 

In this report, the research team developed a new snow-water equivalent dataset for analysis 
of snow-derived water resources over the Sierra Nevada in California. The new dataset was 
used in conjunction with modeling studies to characterize how snow-water equivalent, and 
therefore snow-derived runoff, can be improved. The dataset and model results are available 
to researchers and policy makers to provide better understanding historical and future 
availability of these resources. This project was part of a larger Department of Energy Clean 
Energy Research Center for Water-Energy Technologies project (https://cerc-
wet.berkeley.edu/). As part of that larger effort the research team has participated in regular 
industry and stakeholder outreach efforts (https://cerc-wet.berkeley.edu/events) where results 
have been presented to a wide audience. The analysis is informative to policy makers and 
stakeholders for future climate adaptation plans on how these changes in snow-derived runoff 
will project to changes in hydropower production and how it can be optimally managed. The 
researchers will continue to work with the CEC and other stakeholders to inform them based 
on the analysis in this report.  

https://cerc-wet.berkeley.edu/
https://cerc-wet.berkeley.edu/
https://cerc-wet.berkeley.edu/events
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CHAPTER 5: 
Conclusions and Recommendations 

In this report, the research team showed the potential for new methods for characterizing the 
Sierra Nevada snowpack and snow-derived runoff (both historically and in real-time) as well as 
how snow-derived runoff is likely to change in a warming climate. This was done through 
development of a new snow dataset that was used in conjunction with follow-on modeling and 
estimation studies targeting specific questions related to snow characterization and how it is 
changing. 

The key conclusions and recommendations of the report include the following: 

1. The newly developed state-of-the-art Sierra Nevada Snow Reanalysis (SNSR) dataset, 
which is based on the use of retrospective remotely sensed fractional snow-covered 
area data over the Landsat 5-8 record, and compares favorably to in-situ data from 
more than 9,000 station-years. The new dataset provides a unique capability for 
investigating snow processes at a space-time resolution, temporal extent, and accuracy 
not available from other existing datasets. Results provide an accounting of average 
annual snow-water equivalent and inter-annual variability over both the full Sierra 
Nevada and basins within it. One key implication of the SNSR dataset is its ability to 
validate other (that is, climate) models and initialize models to assess how improved 
snowpack states propagate to downstream estimates. The SNSR is currently available 
for public use, and the development of a Western United States-wide version of the 
reanalysis dataset is currently in progress. 

2. To move toward better streamflow forecasting frameworks, a commonly applied model 
(VIC) was used but with re-initialized snow variables from the SNSR. When re-initialized 
with a realistic snow state (from the SNSR) near the time of peak snowpack water 
storage, significant improvements in streamflow forecasts were seen. Re-initialization of 
the annual peak snow-water equivalent increased the accuracy of the seasonal 
streamflow forecasts over operational statistical forecasts with an overall increase in 
accuracy of 13 percent. Seasonal streamflow forecast comparisons for earlier re-
initialization for the driest years in the study period increase in early-season forecast 
accuracy across all basins with an overall increase of 23 percent. These improvements 
using historical data and a hindcasting approach imply that developing methods for 
real-time snow-water equivalent estimation would pay significant dividends on 
streamflow (and therefore) hydropower forecasts. 

3. In two different climate modeling frameworks it was found that: 1) higher spatial 
resolution alone was insufficient to accurately predict snow distribution in space and 
time (compared to SNSR), but when combined with a prognostic cloud microphysics 
parameterization, significant improvements were seen; and 2) snowpack predictions 
with an eight-month lead time outperform statistical methods for the broader Western 
United States, but difficulties still exist at that time scale for the narrow Sierra Nevada. 
A key implication of this work is that climate models, when configured properly, have 
some skill in predicting Western United States snow distribution that could be exploited 
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for snow-water equivalent, runoff, and perhaps hydropower forecasts at short, medium, 
and even potentially long lead times, but that continued development of such models is 
needed in areas of complex terrain.  

4. Simulations to characterize historical rain-on-snow over the conterminous United States 
showed that the sub-regions most affected by rain-on-snow are the major western 
mountain ranges (including the Cascades, the Sierra Nevada, and the Rockies) where 
extreme events are most likely in the spring. In a future (warmer climate) simulation, 
the role of rain-on-snow in local hydrologic extremes will increase in high‐elevation 
mountains (greater than 2,000 meters), while decreasing at low and moderate elevation 
areas (less than 1,500 to 2,000 meters). Both results indicate the importance and 
potential amplification of extreme rain-on-snow events in the Sierra Nevada of 
California. Given this and the preceding results, using methods capable of characterizing 
events likely to generate rain-on-snow events (that is, atmospheric rivers) should be 
pursued for the purposes of predicting rain-on-snow events in the Sierra Nevada. 

5. The same framework used in the development of the SNSR was used to assimilate 
lidar-derived snow depth measurements. Because snow depth has significant 
instantaneous correlation with snow-water equivalent, this method provided a 
mechanism for real-time characterization of snow-water equivalent and other non-
observed variables (for example, snowmelt). In particular it can be concluded that even 
one measurement of snow depth around the time of peak snow-water equivalent (that 
is, typically about April 1) is capable of deriving useful estimates of snow-water 
equivalent and snowmelt as determined through comparison to independent 
observations. While the hydrologic and snow communities have been pursuing spatially 
distributed real-time estimates of snow-water equivalent for decades, this work 
provides an argument that using snow depth data (for example, from existing airborne 
or planned satellite platforms) combined with a data assimilation framework could make 
significant inroads toward the ultimate goal of a real-time snow-water equivalent 
estimation system. Other results from this project clearly show the benefits such a 
system would accrue. 
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CHAPTER 6: 
Benefits to Ratepayers 

Hydroelectric power generally depends on streamflow passing through run-of-river facilities or 
streamflow inputs to reservoirs behind dams that can be released to drive turbines. In either 
case, optimal management of these resources require optimal characterization and prediction 
of streamflow. In California, much of the hydroelectric power infrastructure exists in the Sierra 
Nevada where streamflow is driven by spring snowmelt. Because of the complex terrain in 
these environments, in-situ data is relatively sparsely distributed, yielding uncertainty in snow 
predictions where it is most needed. Moreover, previous models, which have been developed 
based on the in-situ data, are becoming less reliable as climate changes. Hence there is a 
need for better understanding of the Sierra Nevada snowpack and tools for real-time 
characterization and predictions at various forecast lead-times.    

This project benefitted ratepayers by developing new datasets, analyses, and tools needed for 
improving forecasts of Sierra Nevada snowpack and the streamflow needed for hydropower at 
various lead times and how it is likely to change under long-term climate warming. Based on 
the conclusions and recommendations of this project, California is better equipped to optimize 
how snow-derived water and energy resources can be managed going forward. Developing 
and implementing such frameworks will have direct economic benefits by allowing for 
improvements in streamflow predictions and hydroelectric power forecasts and management. 
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