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PREFACE 
The California Energy Commission’s (CEC) Energy Research and Development Division 
supports energy research and development programs to spur innovation in energy efficiency, 
renewable energy and advanced clean generation, energy-related environmental protection, 
energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 
Public Utilities Commission to fund public investments in research to create and advance new 
energy solutions, foster regional innovation and bring ideas from the lab to the marketplace. 
The CEC and the state’s three largest investor-owned utilities—Pacific Gas and Electric 
Company, San Diego Gas & Electric Company and Southern California Edison Company—were 
selected to administer the EPIC funds and advance novel technologies, tools, and strategies 
that provide benefits to their electric ratepayers. 

The CEC is committed to ensuring public participation in its research and development 
programs that promote greater reliability, lower costs, and increase safety for the California 
electric ratepayer and include: 

• Providing societal benefits. 
• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost. 
• Supporting California’s loading order to meet energy needs first with energy efficiency 

and demand response, next with renewable energy (distributed generation and utility 
scale), and finally with clean, conventional electricity supply. 

• Supporting low-emission vehicles and transportation. 
• Providing economic development. 
• Using ratepayer funds efficiently. 

DEVINE: Demonstration of Vehicle-Grid Integration in Non-Residential Environments is the 
final report for the DEVINE: Demonstration of Vehicle-Grid Integration in Non-Residential 
Environments project (EPC-17-020) conducted by SLAC National Accelerator Laboratory. The 
information from this project contributes to the Energy Research and Development Division’s 
EPIC Program. 

For more information about the Energy Research and Development Division, please visit the 
CEC’s research website (www.energy.ca.gov/research/) or contact the CEC at 
ERDD@energy.ca.gov.  

http://www.energy.ca.gov/research/
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ABSTRACT 
Transportation is a key contributor of greenhouse gas emissions, recognized as one of the 
main factors contributing to climate change. For California to reach 100 percent zero-emission 
new passenger cars and trucks sales by 2035, per Executive Order N-79-20, understanding the 
effects of increased adoption of electric vehicles on the electrical system and the infrastructure 
required to support them is paramount to ensuring a smooth transition from internal 
combustion engine vehicles to electric vehicles. This project researched, developed, and 
demonstrated vehicle-grid integration in non-residential facilities; quantified the effects of 
electric vehicle charging on the grid, including its flexibility and revenue streams; and 
developed strategies to manage electric vehicle load to minimize the impact on the distribution 
system while minimizing customer utility costs. Finally, the project developed a method to 
evaluate emission impacts of charging electric vehicles given the current, and future, mix of 
bulk generation resources.  

The project focused its analysis on passenger vehicles at workplaces and on a university 
campus electric bus fleet. At the workplace sites selected for the project and using historical 
data from charging sessions, the project demonstrated that applying smart charging strategies 
can achieve a 25 percent cost reduction and a 76 percent reduction in peak electricity 
demand, as well as add 66 percent more electric vehicles to the grid without requiring 
infrastructure upgrades while simultaneously guaranteeing that electric vehicle energy 
requirements are satisfied.  

The algorithm used for real-time operation, which did not have information about the future, 
delivered 80 percent of the theoretical total energy required by electric vehicles, with a total 
savings of 30 percent, and a reduction in the maximum demand of 40 percent. For the electric 
bus fleet, smart charging obtained up to 88 percent in cost savings, with a 57 percent peak 
demand reduction and 52 percent emissions reduction. Finally, a transformer thermal data-
driven model was developed and resulted in a 9.8 percent root mean squared error of the 
mean value. 

Keywords: Electric vehicles, smart charging, emissions, electric grid impacts, software, 
controls 

Please use the following citation for this report: 

Vianna Cezar, Gustavo, Siobhan Powell, Claudio Rivetta, Mahnoosh Alizadeh, Nathaniel Tucker. 
2022. DEVINE: Demonstration of Vehicle-Grid Integration in Non-Residential 
Environments. California Energy Commission. Publication Number: CEC-500-2023-044. 
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EXECUTIVE SUMMARY  
Background 
Concern for the environment due to climate change and its consequences to society have 
driven significant growth of electric vehicles in California. Emissions from the transportation 
sector account for approximately 41 percent of total greenhouse gas emissions in the state. 
The transition from internal combustion engine vehicles to electric vehicles can drastically 
reduce overall emissions from this sector. 

This transition, however, requires electric utilities and system operators to rethink how they 
plan and operate the electric grid. Electric vehicles present a unique challenge since they 
couple the transportation and electricity sectors. This means that an electric vehicle can 
appear as a load at different points in the network when charging a vehicle in different 
locations. Moreover, a standard passenger electric vehicle consumes a considerable amount of 
energy, similar to what the average American home uses each day. The peak power to supply 
the required energy, using a standard Level 2 charger, can more than double the typical peak 
electricity demand of a standard single-family house in California. As a result, electric vehicles 
challenge the electric grid by threatening to overload the distribution network, cause 
accelerated aging of assets like transformers, force unplanned upgrades of grid infrastructure, 
and lead to system failures and outages. 

Seamless integration of electric vehicles with the grid can help achieve California’s SB 100 goal 
of 100 percent zero-carbon electricity sales by 2045 while supporting reliability and minimizing 
costs to ratepayers. Achieving this integration requires an understanding of the timing and 
location of charging sessions; the local grid infrastructure power hosting capacity; the ability to 
properly manage electric vehicle load using smart charging; and customer needs. 

Project Purpose 
The purpose of this project was to research, develop, and demonstrate vehicle-grid integration 
in non-residential sites to quantify the effects of electric vehicle charging on the grid, its 
flexibility, and revenue streams, and to develop strategies to manage electric vehicle load to 
minimize its effect on the distribution system while also minimizing customer utility costs. 

In this project, the research team developed a suite of analysis and software tools based on 
real-world data to measure and demonstrate the effects of electric vehicle charging on the 
distribution network. In particular, this project explored the following electric vehicle impacts, 
individually and in combination: electricity cost under different rate structures, transformer 
aging, phase imbalance, harmonics, and emissions. The project further proposed and 
demonstrated strategies and best practices on how to mitigate these impacts through smart 
charging controls and fleet scheduling, while maximizing customer benefits to support 
widespread adoption of electric vehicles in California. Moreover, the team developed and 
tested software to communicate directly with different electric vehicle supply equipment, 
onboard charge controllers, and site operators. 
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Project Approach  
The project team conducted the research in three phases: data collection, algorithms and 
analysis, and software field testing. In the data collection phase, a summary of all the data 
available, and their characteristics, was conducted for the three project sites: Stanford 
University campus, Google campus, and SLAC National Accelerator Laboratory campus. 
Historical data was collected and pre-processed during this phase. Moreover, characteristics of 
the real-time data available at each site was evaluated to inform design of the algorithms and 
the software to ingest, process, and store the data. Finally, during this phase additional 
sensors were installed to capture data of grid assets that did not exist before but were 
required to evaluate the effects of electric vehicle charging. 

During the algorithms and analysis phase, various algorithms were developed based on the 
different electricity rate structures and unique characteristics of each site (i.e., employee 
charging for Google and SLAC) and fleet charging (Stanford University). These algorithms 
were developed to minimize the impact of electric vehicles on the distribution grid assets while 
reducing the cost of charging and evaluating revenue streams from other electricity markets 
such as demand response programs. Additionally, a model for the emissions was developed 
based on the 2019 mix and projected 2030 mix of generating resources that supply electricity 
to California. This model was then used to quantify the emissions impact of electric vehicle 
charging with and without the developed algorithms. Moreover, an analysis was performed on 
the impacts in transformer aging due to electric vehicle charging. Finally, in this phase, 
simulations of distribution systems were performed using the GridLAB-D software to evaluate 
the large-scale effect of electric vehicles on the system. 

In the software field testing phase, the software infrastructure was developed to control and 
operate the charging stations in the field and demonstrate the capabilities of the proposed 
algorithms. However, given the COVID-19 pandemic, the three sites selected to perform the 
experiments were closed following local and state health authorities’ guidelines. Nonetheless, a 
number of charging stations remained online allowing the software components such as 
communication and controls to be tested and validated. An experiment was also conducted at 
the Grid Integration Systems and Mobility Laboratory at SLAC National Accelerator Laboratory 
where the charging of an electric vehicle was coordinated with solar and energy storage 
systems to reduce power consumption from the grid. 

The project involved coordination with experts from utilities, planning and operations, industry, 
facility managers, transportation service organizations, charging station and electric vehicle 
manufacturers, academics, and the project’s technical advisory committee.  

Project Results  
The outcomes of the project were broken into four main sections: Stanford Electric Vehicle Bus 
Fleet, Google campus, SLAC campus, and electric vehicles at scale.  

Stanford EV Bus Fleet  
The team developed an optimization method that jointly scheduled the charging and assigned 
buses to routes while reducing the electricity cost and maximizing use of onsite solar. The 
project team compared the performance of the status quo (pre-COVID, no optimization), with 
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the optimization with and without onsite solar. The daily electricity cost for the status quo was 
approximately $715.10. Optimizing the operation of the buses around time-of-use (TOU) rates 
and demand charges reduced the daily electricity cost by 54 percent, and when considering 
charging with onsite solar, by 87 percent. Additionally, the peak power to charge the buses 
when considering onsite solar was reduced by nearly 60 percent, from 350 kilowatts to 150 
kilowatts. During COVID, the buses schedules were drastically reduced. Among the bus lines 
that were able to be controlled and were still in service, the results obtained showed that by 
simply scheduling charging at off-peak hours and preventing the top-off behavior to reach 100 
percent state of charge, the fleet was able to reduce the weekly electricity cost by close to 47 
percent. Without onsite solar, and with 2019 levels of emissions from fossil fuel generation, 
the controlled profile would not necessarily improve the overall emissions compared to the 
uncontrolled profile. 

Google 
The smart charging algorithms developed for Google campus included different rate structures 
and participation in demand response programs. The yearly cost savings obtained through 
smart charging including participation in demand response varied between 22 percent and 26 
percent. Additionally, for such sites, an evaluation of the maximum load shed capacity was 
calculated to inform potential participation in other grid services. The maximum load shed 
capacity occurs between 9:00 a.m. and 11:00 a.m. with a maximum amount of load shed 
ranging from 71.92 kilowatts to 100.78 kilowatts, or 54 percent to 76 percent of the monthly 
uncontrolled maximum demand. From a transformer impact and aging standpoint, the project 
found that the transformer at the Google site could support fewer than 150 vehicles per day 
with uncontrolled charging, but nearly 250 vehicles with the best control schemes. Time-of-use 
rate schedules did not encourage any improvement. Capping the total demand at each site 
gave a modest improvement. The greatest number of vehicles supported, however, came from 
peak minimization, rates with demand charges, or the direct minimization for transformer 
aging. Finally, a smart charging algorithm was implemented for real-time operation using only 
the information provided by the charging stations at each time stamp, without knowledge of 
state of charge and future arrivals and departures. The results show that the algorithm could 
guarantee delivery a minimum of 81 percent of the total energy required by the vehicles with 
a 19 percent reduction in energy cost and 35 percent reduction in demand charge cost. From 
an emissions standpoint, there is more variation by day than by the load shapes of different 
smart charging strategies. This behavior is likely due to the flat median average and marginal 
emissions profile shapes during workplace charging hours. 

SLAC 
From the transformer temperature sensor installed, the team built a data-driven transformer 
thermal model and validated it using the site’s electric vehicle charging data. The proposed 
model had a 9.8 percent root mean square error of the mean value and a 4.8 percent error of 
the maximum value, when using a test dataset. Finally, testing at the Grid Integration Systems 
and Mobility lab showed that by properly coordinating electric vehicle charging with solar and 
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energy storage systems, a near net-zero power profile could be obtained to buffer the electric 
vehicle load from the grid. 

EVs at Scale 
Two analyses were performed to evaluate potential impacts of EV charging at scale focused on 
1) phase imbalance and harmonics impact and 2) emissions.  

The phase imbalance analysis showed that if the system was properly designed, with the 
neutral conductor the same size as the phase conductors, the additional current flowing in the 
neutral conductor due to electric vehicle charging generally would not present a problem from 
the system perspective. In the extreme cases, the limiting factor would be the capacity of grid 
assets, in particular transformers and conductors. From the harmonics perspective, an electric 
vehicle charging at a Level 2 station had all the current harmonics under 2 percent of the 
fundamental current. Even when considering the worst-case scenario where all electric 
vehicles would charge at the same time and phase diversity would be equal to zero, grid 
assets capacity would be the limiting factor.  

The emissions analysis explored the electric grid generating mix of 2019 and 2030 by 
assuming 100 percent of personal vehicles are electric vehicles, including the additional 
renewable generation and the fossil generating plants that are scheduled to be 
decommissioned by then. The analysis investigated the questions of “How do non-residential 
charging options impact emissions, and how do scenarios with more or less non-residential 
charging compare?” and “Can emissions be included as objectives of the control to reduce the 
impacts?”   

The project analyzed four scenarios of access to residential and non-residential charging 
options, with residential access ranging from low to high to universal. The key results from this 
analysis were the following: 1) with 2019 levels of emissions from fossil fuel generation, 
daytime charging would have led to higher emissions than evening charging; 2) daytime 
charging will be lower emission than evening charging by 2030, and non-residential 
infrastructure to support daytime charging should be deployed to support this type of 
charging; and 3) controlled charging based on emissions is challenging since there is a 
conflicting objective between the distribution and transmission systems. Spreading the electric 
vehicle charging load across the day including the late afternoon and early evening hours 
benefits the distribution system. Concentrating the electric vehicle charging load in the middle 
of the day when renewable energy, primarily from solar, is abundant and preventing charging 
during the critical ramp-up hours during late afternoon and early evening benefits the 
transmission system.  

Technology/Knowledge/Market Transfer Activities 
Outreach Activities, Knowledge Gained, and Feedback 
The methodology developed in this project generated peer reviewed publications and 
presentations in conferences and workshops to academia, industry, state and federal agencies. 
The team received multiple rounds of feedback from technical advisory committee members, 
academics and industry. The main goals of the outreach activities to influence the design of 
the project were to:  
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• Get utilities involved to help understand concerns about EV loads and to explore 
charging strategies to protect infrastructure, reduce costs, and reduce emissions.  

• Engage with other CEC project teams working in the same space and with vehicle 
manufacturers to implement hardware and software support for remotely managed EV 
charging. 

• Engage with fleet operations team to understand the EV charging requirements to 
minimize potential impacts to routine fleet operations and improve service reliability. 

• Understand user preferences to support the individual needs of EV operators. 
• Engage with potential collaborators in industry and academia to integrate system level 

information across EVSE and distribution assets. 

Intended Users 
The team identified four main users that can leverage the outcomes of this work: 

• Electric utilities can utilize the analytics, algorithms and results developed to design 
rate structures to better incentivize EV adoption while reducing emissions and impacts 
into the distribution system.  

• Industry: EVSE companies can increase revenue by implementing smart charging to 
their EVSE network. Campus managers and companies such as transformer 
manufacturers can also use the outcomes of this project to better understand the 
impact of the EV load, how they can affect the overall lifetime of these systems and 
improve the design of new equipment. 

• Federal and state agencies can use the results of this program to inform 
investments, research priorities, and policies needed to increase adoption of EVs and 
seamlessly integrate them with the electrical infrastructure.  

• Academia: The results from this project can be used as foundation for new models 
and algorithms and innovators can generalize the application of such models and 
algorithms beyond what was accomplished in this project. 

Continued Work and Technology Transfer 
The methodology developed in this project will be incorporated into initiatives to reduce SLAC 
and Stanford campuses’ overall emissions, in particular from transportation, and to increase 
resilience and reliability of power. This initiative includes exploration of integrating building 
controls with EVSEs, solar, and on-site generators across campuses.  
Stanford’s transportation team is continuing to support the analysis and development of 
solutions to their EV fleet including decommissioning remaining diesel buses, upgrading 
infrastructure, and identifying resources needed to operate the system during grid outages. 
A collaboration between SLAC, Stanford and Prolec-GE on distribution transformers and how to 
model the impacts of EVs is underway. Specifications are being developed based on the results 
obtained in this project to properly test, measure, quantify and develop models that can be 
transferable to existing transformers. 
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Benefits to California  
Electricity Cost Reduction 
Daytime charging, in particular workplace charging, has many characteristics that make it well 
suited for smart charging strategies. These charging segments have high flexibility, predictable 
arrival and departure times, and historical data. Electric vehicle supply equipment is 
aggregated under one connection point to the grid and is typically from the same vendor 
within a site. Leveraging these particular characteristics enables implementation of different 
strategies to benefit the site host as well as the overall grid and ratepayers. Smart charging 
can be used to provide grid services such as participation in demand response programs or the 
ancillary services market. 

Additionally, smart charging can be used to defer investments in infrastructure upgrades that 
would ultimately lead to an increase in electricity costs. Ensuring that grid assets are used 
within their capacity prevents accelerated aging, and the same infrastructure can support 
more electric vehicles for longer periods of time. 

Moreover, users of charging infrastructure that have smart charging capabilities can generally 
expect lower electricity costs primarily through peak load reduction. 

Finally, a lower electricity cost, driven by smart charging technologies, has the potential to 
enable more companies to afford the operational costs of charging infrastructure. With more 
charging infrastructure available to employees, a greater adoption of EVs is expected to 
happen which will help spur the adoption of EVs across the state.  

Energy Reliability and Resiliency 
Smart charging can also improve system reliability and resilience. Electric vehicle charging, in 
particular daytime charging, which inherently has flexibility, can be used as a flexible resource, 
leveraging smart charging algorithms, to ensure that over and under generation of renewable 
resources is properly handled to prevent outages, which can be local or, in some cases, 
systemwide. 

When electric vehicle charging is coupled with onsite generation and energy storage systems, 
the reliability of the system can be greatly improved by leveraging these resources to reduce 
the burden on the grid through a seamless coordination. Resiliency can also be improved since 
these resources can operate in small microgrids. Removing load from the larger grid allows a 
quicker recovery. 

Finally, utilities can design rate structures to leverage smart charging and shape the electric 
vehicle load. Given a wide adoption of smart charging, particularly daytime charging, utilities 
can design rates to prevent the additional demands of electric vehicles in specific hours of the 
day affecting the overall operation. These approaches will ultimately improve system reliability 
and resiliency as electric vehicle adoption grows.  

Inform Policies 
The results presented show the potential for charging infrastructure to improve the grid 
integration of EVs at deep levels of adoption. Given the current state-level goals to have 
higher renewable generation in the grid, timing of charging is critical. Shifting drivers from 
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home to daytime charging improves all metrics of grid impact including ramping, use of non-
fossil fuel generation, storage requirements and emissions. These results can inform 
policymakers in deciding which charging segments to invest to achieve the benefits of 
transportation electrification while minimizing grid impacts and emissions. 

Moreover, to make charging controls more effective, policymakers should consider 
coordinating the management of grid generation and distribution impacts, and future 
electricity rates should better harmonize with wholesale electricity prices and could vary day by 
day with grid generation conditions.  
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CHAPTER 1:  
Introduction 

Climate change is considered one of the biggest threats to humanity (United Nations, 2021). 
With the recognition that greenhouse gases (GHG) are the main cause (National Academy of 
Sciences, 2020), many countries around the world are trying to drastically reduce their GHG 
emissions to combat this change through coordinated efforts, most notably the Paris 
Agreement. The United States in particular is committed to cutting economy-wide emissions of 
GHG by 26 percent to 28 percent below 2005 levels by 2025 and to making its best efforts to 
reduce its emissions by 28 percent (United Nations, 2021). The main source of GHG emissions 
in the United States is the transportation sector (29 percent), followed closely by electricity 
with 25 percent (Environmental Protection Agency, 2021). Many states are pushing toward 
electrifying the transportation sector and relying more on cleaner electricity generation, in 
particular, renewable generation in both transmission and distribution systems. California is 
setting ambitious goals to make this transition happen.  

This transition, however, requires electrical utilities and system operators to rethink how they 
plan and operate the grid to ensure generation meets demand. Electrical utilities were 
traditionally designed and operated to meet predictable demand from loads that were 
connected to fixed points in the network. The current scenario is drastically different. Loads 
are becoming smarter, with new technologies that change their behavior based on user 
preference, electric grid conditions, and electricity prices. Additionally, wind and solar 
generation, which are intrinsically intermittent, and other distributed energy resources (DER), 
such as energy storage systems, create new challenges for grid operators: customers are no 
longer only consuming electricity but also generating electricity for their own use or exporting 
back to the grid. Finally, the shift toward electric transportation and widespread adoption of 
electric vehicles (EVs), though critical to plans for achieving drastic GHG emissions reductions, 
creates a new set of challenges for grid operators. This new scenario is fundamentally altering 
the business of supplying electricity, and these changes will accelerate alongside adoption of 
these technologies in the coming years. This is the new energy paradigm. 

Among these new energy technologies, EVs in particular present a unique challenge for grid 
operators since they couple the transportation and electricity sectors. This means that an EV 
can appear as a load in different points in the network as the driver charges at different 
locations. Moreover, a standard passenger EV consumes a considerable amount of energy, on 
average 30 kilowatt-hours (kWh) per 100 miles (DOE Fuel Economy, 2022), an amount similar 
to what the average American home uses each day (EIA, 2021). The demand using a standard 
Level 2 charger1 is around 6.2k watts (ChargePoint, 2017), which can more than double the 
typical peak electricity demand of a standard single-family house in California (City of Palo Alto 

 
1 The Level 2 standard supports higher charging rates, but stations and cars that support it are not widely 
available (ChargePoint, 2017). 
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Utilities, 2020). As a result, EVs challenge the electric grid by threatening to overload the 
distribution network, cause accelerated aging of assets like transformers, force unplanned 
upgrades of grid infrastructure, and lead to system failures and outages (City of Palo Alto 
Utilities, 2020; Kevala, 2021).  

However, despite these challenges, EVs bring many important benefits including reduced GHG 
emissions and improved local air quality and health impacts. Electrified transportation is critical 
to plans for deep decarbonization. Many locations around the world are setting aggressive 
goals to increase EV adoption, with California at the forefront. In 2012, Governor Jerry Brown 
issued an executive order establishing a goal of 1.5 million zero-emission vehicles in California 
by 2025 (California Office of Governor, 2012). In 2018, Governor Brown issued another 
executive order to extend this goal with a 2030 target of 5 million zero-emission vehicles 
(California Office of Governor, 2018). In 2020, Governor Gavin Newsom signed an executive 
order to ban the sale of all new gasoline-powered cars and passenger trucks by 2035 
(Executive Department State of California, 2020). One of the main goals behind these efforts 
is to drastically reduce the emissions related to the transportation sector, which currently 
accounts for approximately 41 percent of California’s greenhouse gas emissions (California Air 
Resources Board, 2021).  

Better integration of EVs with the electric grid is essential for the state to reach these goals 
without negatively affecting the reliability and cost of power for California ratepayers. Better 
vehicle-grid integration will require, among many things, understanding (a) the timing of 
charging sessions and whether they will take place at a workplace, in public, or at a residence, 
(b) local grid infrastructure power hosting capacity, (c) the ability to properly manage the EV 
load using smart charging, and (d) customer requirements.  

From a planning perspective, the timing of charging sessions (including start time, end time, 
and duration) dictates when to expect load to increase due to EVs. By comparing with the 
baseline load, without EVs, planners can understand the additional demand and allocate 
enough generating capacity. Moreover, knowing the timing also supports better assessment of 
the emissions contribution of EVs when charging from the grid. For example, if the majority of 
EVs charge during the day when solar generation is abundant in the grid as a whole, the 
average emissions per mile are considerably lower than with nighttime charging.  

Knowing the charging segment where an EV will charge (workplace, public, residential) also 
helps planners and operators by providing information about the EV’s charging flexibility and 
how it can be used as a resource. Flexibility is defined as the ratio between the amount of 
time an EV is actually charging and the amount of time the vehicle is connected to the station. 
On average, in the workplace segment, EVs are connected to a station between six to eight 
hours but their actual charging time is between three to four hours. At fast-charging public 
stations, meanwhile, EVs are connected for a shorter duration, less than an hour, and charge 
most of the time (Vianna Cezar et al., 2020). High flexibility creates opportunities to manage 
EV charging in ways that reduce electricity costs, defer capacity expansion, protect grid assets, 
and reduce overall emissions (Szinaiet al., 2020; Zhanget al., 2020; Wolinetzet al., 2018; 
Crozier, Morstyn, & McCulloch, 2020; Zhanget al., 2019). Additionally, knowing the charging 
segment where a driver plans to charge can help operators to identify potential locations in 
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the network that will be overloaded and will require upgraded distribution grid assets such as 
transformers, lines, and feeders, to prevent equipment failure and outages.  

Among all charging segments, workplace charging has high potential to spur the adoption of 
EVs as it can enable adoption for drivers without access to charging at home. It also benefits 
the grid by shifting charging to hours when solar is abundant. Workplace charging, in general, 
has the following features: 1) high flexibility, 2) large amounts of historical data, 3) relatively 
predictable arrival and departure times, 4) aggregation of multiple charging stations under a 
single point in the network, and 5) single charging station providers for each site. However, 
most commercial sites do not have capabilities to properly assess the impacts of EVs on their 
bills and equipment in-house and, given the proprietary nature of such locations, access to site 
measurement data and controls by other institutions can be challenging. This creates barriers 
to performing a real-world assessment of such impacts on the electrical infrastructure. 
Furthermore, it prevents the development and demonstration of new vehicle-grid integration 
technologies that can support California reaching its goals of transportation electrification. 

In this project, a suite of analysis and software tools were developed based on real-world data 
to measure and demonstrate the impacts of EV charging in the distribution network. In 
particular, this project explored the following EV impacts, individually and in combination: 
electricity cost under different rate structures, transformer aging, phase imbalance, harmonics, 
and emissions. The project further proposed and demonstrated strategies and best practices 
on how to mitigate these impacts, through smart charging controls and fleet scheduling, while 
at the same time maximizing customer benefits to support widespread adoption of EVs in 
California. Moreover, software drivers to communicate directly with different electric vehicle 
supply equipment (EVSE) vendors, onboard charge controllers to manage charging, and a 
software interface for site operators were developed and tested in the field. Finally, all tools 
were made open-source in scientific publications (Powellet al., 2020; Moradipariet al., 2020; 
Tucker, Vianna Cezar, & Alizadeh, 2022; Powellet al., 2022), white papers (Levine, Powell, & 
Vianna Cezar, 2019), and source code. 

Existing approaches to quantify the impacts of EVs in the network targeting nonresidential 
environments had primarily focused on using synthetic data from EVs and performing 
simulations using algorithms that target objectives such as minimizing electricity costs under 
different rate schedules (J. Quiros-Tortos, 2018; B. Ferguson, 2018; Tucker N. A., 2019), 
maximizing transformer lifetime (Affonso & Kezunovic, 2019; A. Sanchez, 2017), and 
minimizing emissions (Chenget al., 2018). Each of these objectives is usually evaluated in 
isolation in the literature, relying on assumptions of key parameters such as arrival/departure 
times and state of charge (SOC), and not considering real-time implementation constraints 
such as software infrastructure development and security, or communication constraints like 
latency.  

This project aimed to fill these gaps by working with three institutions that manage workplace 
charging stations to run demonstrations: Google, SLAC National Accelerator Laboratory (SLAC) 
and Stanford University. At Google and SLAC the focus was on passenger vehicles charging at 
Level 2 stations; whereas, at Stanford the focus was on the electric bus fleet that operates on 
campus. Google offers charging to its employees at no cost and does not enforce EV removal 
once a vehicle is fully charged, and the majority of its stations are from ChargePoint. SLAC 
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charges a fee for employees to charge their EVs and requires that EVs be moved once fully 
charged to free up spots for other drivers, and most charging stations are from PowerFlex. 
Stanford operates an electric bus fleet from BYD Motors LLC (BYD) that includes 38 buses and 
23 chargers. From each of these demonstration sites historical data was collected, cleaned, 
and analyzed; temperature sensors and onboard controllers were installed when possible; 
software infrastructure was developed to establish communication, control vehicle charging, 
and provide a user interface; information about the electrical network at the site, such as 
electrical single line diagrams and grid assets’ specifications, were obtained; and operational 
constraints from site operators were compiled. All of this information was used to build the 
models and test the capabilities of the proposed solutions to assess and mitigate EV grid 
impacts. 

The project team has been publishing methodologies and results obtained in this project with 
the research community and presented at multiple conferences and meetings with academia, 
industry, and government agencies. 
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CHAPTER 2: 
Project Approach 

The project team was led by the Grid Integration System and Mobility Group (GISMo) within 
SLAC National Accelerator Laboratory and the invaluable knowledge, support, and 
development of SLAC partners including the team from the Smart Infrastructure Systems Lab 
from University of California, Santa Barbara led by Prof. Mahnoosh Alizadeh, ChargePoint 
through support from Paul Lipkin and Robert Calvert, and Google with support from Rolf 
Schreiber. The team also had support from multiple technical advisors, in particular eIQ 
Mobility, PowerFlex, and groups within Stanford University, including the Stanford Sustainable 
Systems Lab led by Prof. Ram Rajagopal and the Stanford Transportation Operations division 
through Brian Jackson, Matthew Brown, and Danny Finale. Each provided support and advice 
in different areas that made valuable contributions throughout the project with insights, 
direction, and guidance. Finally, the team also had support from First Transit and its 
dispatchers and drivers who operate the Stanford bus fleet, and Viriciti. 
To achieve the project goals the team structured a framework to break the project into 
subcomponents that helped the organization and execution, as shown in Figure 1.  

Figure 1: Framework Methodology for DEVINE 

 
Each block corresponds to an individual task in the overall project execution and is ordered based on its 
dependency to the other project tasks. 

Source: SLAC 

This framework has a total of seven blocks grouped into three main categories: data, 
algorithms and analysis, and field-testing software. The project engaged with multiple sites, 
each with its unique characteristics. A general description of each category and key 
characteristics of each site follow. 
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Data 
To understand the characteristics of each site and design the software and algorithms, the 
project team collected existing historical data and installed new instruments and sensors at 
some sites to collect additional data. The legal aspect of sharing historical data outside the 
institution was a common challenge faced at all sites, since in most cases the data contained 
either personal identifiable information, such as employees’ charging sessions, or proprietary 
information of the site such as electrical diagrams, capacity, equipment, and cost. To avoid 
potential lengthy legal processes that would affect the project’s execution, the team obtained 
an initial, small sample of pre-processed data from each site, without any personal identifiable 
information or proprietary site information, whenever possible, to begin developing the 
cleaning process and initial analytics pipeline. Another challenge was the installation of 
instruments and equipment, as the system being instrumented needed to be powered off and 
out of service for the duration of each installation. The project team worked with the 
operations team of each site to ensure the installation happened during times that would not 
affect users and clearly communicated about equipment outages in advance. 

Stanford University 
At Stanford University, the project worked with the Marguerite shuttle fleet, which serves the 
campus community. This fleet comprises 38 electric buses from BYD and has a total of 23 
charging stations, each consisting of two 40-kilowatt (kW) charging connectors for a total of 
80 kW per station (three-phase 480V/120A).  

These buses use hardware and software tools from different vendors to monitor the fleet and 
provide real-time information to the operators and users. The telemetry data used from this 
site came primarily from two systems: Viriciti and ETA Transit. 

Viriciti provides a platform for monitoring bus data in real-time through a hardware device 
installed inside the bus that connects to the controlled area network port. As part of this 
project, the project team installed the latest hardware from Viriciti,  the Datahub (DH), which 
collected many of the relevant variables for operation and, in addition, had the potential to 
control the charging of the buses. Among the multiple data types collected, some of the most 
relevant include: SOC, power, energy, odometer, charging status, and global positioning 
system location. The sampling of the data, however, was a challenge. Some of the variables 
were sampled frequently such as power, at every second, and energy, every 10 seconds. 
However, others did not have a constant sampling frequency and the information was based 
on the latest sample collected by the DH, which could vary from seconds to hours. For the 
purpose of this project, a five-minute average was used for power, energy, and SOC.  

The ETA Transit system provides the SPOT application which, similarly to Viriciti, provides real-
time information about bus locations and additionally indicates which route each bus is 
fulfilling. This system is used by the Stanford and First Transit teams to map buses to routes 
based on the daily schedules and current field fleet status and to generate reports for the 
management team. Further, it is used by the Stanford community to get real-time information 
of bus locations and schedules.  

From the distribution grid perspective, the bus yard is co-located with a solar photovoltaic (PV) 
system of 1.9 megawatt (MW) capacity in a 480-volt (V) system. The bus yard and solar 
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system have their own meters and are connected to an upstream three-phase transformer. 
The meters’ data were only historical and available at 15-minute intervals. Figure 2 provides 
samples of the bus meter and solar meter respectively for a given day in 2019. 

Figure 2: Meter Data from Stanford Bus Yard 

  
Bus meter data and solar meter data on a sample day. Note the peaks late morning/early afternoon and 
late evening. 

Source: SLAC 

Google Campus 
On the Google campus, three distinct sites were selected based on characteristics such as 
EVSE use rate. At all sites the EVSE information was available from ChargePoint, including 
both session and interval data. A session was defined as a single charging event: each session 
began when a vehicle connected to a station and ended when it left, i.e. plug-in and plug-out. 
An interval was each 15-minute block of time within a session. Data including start and end 
times, duration, energy, and power were provided. Additionally, historical building meter data 
was obtained whenever available. Appendix A provides a complete list of the data fields and 
each site characteristics. 

For each site, analytics such as flexibility, arrival and departure times, and energy delivered 
were calculated. Figure 3 presents such an analysis for Site 1. 
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Figure 3: Analytics of Charging Sessions for Site 1 

 
Top left: Histogram of energy delivered. Top right: Histogram of the charging flexibility. Bottom: 
Histogram of arrival and departure times. 

Source: SLAC 

From the histograms presented in Figure 3, a few observations can be made. First, the most 
common energy delivered (top left graph) was between 2 kWh and 7 kWh. Since one hour of 
charging at a ChargePoint Level 2 station at the maximum power gave approximately 7 kWh 
of energy and an estimated 25 miles of driving range (ChargePoint, 2022), these sessions 
were charging on average 25 miles or less of range. Second, approximately 32 percent of the 
sessions had zero flexibility, which meant the EVs charged all the time until they were 
unplugged, but 46 percent of all sessions had a flexibility higher than 0.5, which meant that 
more than half of the time EVs at this site were not charging. Finally, this site had arrival and 
departure time distributions with double peaks. The largest peak in the arrival times occurred 
early in the morning, but a second peak occurred early in the afternoon, after lunch time. The 
departure time had its largest peak in the late afternoon, with a second peak late morning, 
before lunch. The dynamics of this site, where employees leave for lunch and then return to 
work, gave one explanation for this double peak. 

SLAC Campus 
The SLAC National Accelerator Laboratory campus has a total of 23 Level 2 EVSE from 
PowerFlex (PowerFlex, 2022). Similar to ChargePoint, PowerFlex collects general charging 
session information such as start and end times and energy delivered. However, as part of the 
PowerFlex ecosystem, before a session starts, users are required to input how many miles 
they need out of that session and what time they plan to leave. The mileage requested is 
further converted to energy, in kWh, by PowerFlex. This information was used by the system 
to optimize the charging of all stations since the EVSE did not have information about the EV 
SOC. Given that PowerFlex implements active controls in the stations at SLAC, the project 
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team was not able to overwrite the commands and experiment with the approach. The team 
was only able to analyze the historical data collected to characterize the site. Since this system 
provided information about user behavior through the miles needed and departure time 
requested inputs, this data was used to inform the development of the real-time algorithm. 

Figure 4 shows histograms of energy delivered and actual departure time. The true actual 
departure time was the difference between the expected departure time reported by the user 
and the actual departure time. This figure shows, similar to the Google sites, that most 
sessions delivered less than 10 kWh. Additionally, most actual departure times were within 
plus or minus 2.5 hours of the times reported by the users. This information was relevant to 
understand general user behavior and also informed the real-time optimization algorithm 
about statistics of departure times.  

Figure 4: Analytics of Charging Sessions for SLAC Site 

 
Energy delivered to EV in kWh (left) and actual departure time in hours (right). A negative number in the 
actual departure time means a user left earlier than expected and a positive number indicates a user left 
later than expected. 

Source: SLAC 

Figure 5 uses the top 5 drivers based on the number of sessions in the month of February 
2019 and compares the energy requested with a) the actual energy delivered and b) the 
maximum possible energy that could have been delivered given the EV’s total session time. As 
before, units are presented in miles based on an internal software conversion from kWh to 
miles. From the left graph of Figure 5, it is evident that users requested similar energy values 
regularly and most of the time the energy delivered was less than the requested value. The 
right graph helps explain the reason. The theoretical total energy that each EV could have 
been delivered, given the time the vehicles were parked, was mostly higher than the 
requested energy by the users. This showed that EVs were not running out of time to receive 
their requested amount of energy, and that charging stopped before either delivering the 
requested energy or reaching the departure time. Therefore, the main reason users often did 
not get the total requested energy must have been because they reached 100 percent SOC 
and stopped charging with less energy than requested. This ultimately meant that there was a 
disconnection between the information the drivers provided based on their needs and what 
the EVs could actually consume. As a result, this information was challenging to use in 
charging control algorithms since it depended on users being proactive, having a clear 
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understanding of the purpose of reporting the information, and reporting accurate information 
about their energy needs. 

Figure 5: Comparison Between User Input and EVSE Behavior 

 
Each color represents a different driver, and each circle represents what happened in a charging session. 
Left: drivers often input similar energy requirements but mostly got less. Circles above the dashed line 
means the energy delivered was less than the energy requested. Right: given the duration of the 
sessions, most EVs had enough time to have received more energy than requested. 

Source: SLAC 

The EVSE stations at SLAC were connected to a dedicated three-phase 112.5 kilovolt amps 
(kVA), 480-208/120V transformer manufactured by Powersmiths. This transformer was floor-
mounted and located inside an electrical room of a nearby building. Powersmiths also provided 
the capability of measuring the transformer coils temperature by adding extra sensors. The 
team installed three temperature sensors, one in each of the coils, and a datalogger to analyze 
the effect of EV charging on the transformer temperature. The data was provided at 15-
minute intervals and manually queried from SLAC’s server with a one-day delay. The goal was 
to build temperature models to assess transformer aging that could potentially be transferred 
and applied to other transformers without this sensing capability or for which it is impractical 
to perform such an installation. Figures 6a and 6b show the installation being performed and a 
sample of the power and temperature collected by the datalogger. 
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Figure 6a: Transformer Temperature Sensor Installation 

 
Figure 6a: technician installing the temperature sensors inside transformer coils. Top right: final 
installation setup. Red arrow shows the sensor terminals, and the cyan arrow shows the data logger.  

Source: SLAC 

Figure 7b: Transformer Temperature Sensor Data Sample 

 
Figure 6b: Sample of the power (kW) and temperature (Celsius) data recorded over a two-week period. 

Source: SLAC 

Algorithms and Analysis 
To assess the EV impacts in electricity cost for a hosting site, grid assets, phase imbalance, 
harmonics, and emissions, the team developed a suite of algorithms and analyses. These 
algorithms and analyses were based on the characteristics of each site, i.e. employee 
charging, fleet charging, and electricity rate structures, and in some cases included the overall 
distribution grid with residences, solar PV systems, and the transmission grid. 
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Smart Charging 
Since passenger EVs are idle 95 percent of their lifetime, there is significant flexibility in when 
they can be charged (AC Propulsion, 2002). For workplace charging, many employee owned 
EVs sit idle most of the workday, while fleet vehicles may have a more variable pattern of idle 
time. Long idle periods present an opportunity for managing the EV’s charging, through smart 
charging, to reduce electricity costs, participate in demand response programs, maximize 
onsite solar generation and reduce impacts on grid assets. Several smart charging algorithms 
were developed in this project to address the constraints of the hosting sites.  

Electric Bus Fleet 
At surface level, replacing traditional buses with electric buses might seem a simple task; 
however, many obstacles prevent a transit system from simply assigning electric buses to 
existing routes that were previously served by diesel buses. The two most fundamental 
obstacles are the restricted travel distance and lengthy recharge time of electric buses. Even 
with recent advances in electric transportation and battery technology, modern electric buses 
are commonly restricted to operate within 20 percent to 95 percent SOC to prevent stressing 
the batteries and reducing lifespan (Hill, 2015). Combining this SOC limitation with the high 
cost of large battery packs, most electric buses currently have shorter operational ranges than 
diesel or natural gas buses. Second, the recharging process of an electric bus takes 
significantly more time than the refueling process of a diesel or natural gas bus (Hill, 2015). 
Additionally, due to the lengthy recharge time and limited charging infrastructure, the transit 
system dispatcher must be mindful of how the fleet’s recharging infrastructure is managed to 
provide adequate energy to serve routes. 

The algorithm developed for the electric bus fleet at Stanford looked into the joint route 
assignment and charge scheduling problem. Other studies have looked into this problem (Paul 
& Yamada, 2014; Janovec & Koháni, 2019), however the presented approach was able to 
improve upon previous mobility-aware work by accounting for time-varying electricity prices, 
using onsite solar energy generation, and providing a minimal cost schedule for the fleet’s 
daily operation. 

Stanford bus fleet consists of 38 electric buses, 23 diesel buses, 23 electric bus chargers, and 
a total of 20 daily routes of which 15 are fulfilled by the electric buses. Figure 7 presents the 
primary service area in 2019. The time for each route trip was already defined by the dispatch 
team. From an electricity cost standpoint, Stanford is on direct access and buys electricity from 
an energy service provider (ESP). However, the university campus is exposed to time of use 
prices that follow Pacific Gas and Electric Company’s (PG&E’s) E-20 rate schedule. 
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Figure 8: Stanford Bus Fleet 2019 Primary Service Area 

 
Source: Stanford University 

The optimization algorithm was formulated using a mixed-integer linear programming (MILP) 
framework to solve for both the optimal recharging schedules and route assignments. More 
details on the mathematical formulation and problem constraints can be found in (Moradipari 
et al., 2020). 

Workplace Charging 
Workplace charging, as previously discussed, presents a unique opportunity for smart 
charging. As part of this project, smart charging algorithms were developed for different rate 
structures and constraints including transformer capacity. Moreover, a real-time optimization 
strategy was developed to be used in the field given the available information. 

The general optimization formulation was based on an objective function, i.e. minimize 
electricity cost, given a rate structure the clusters of EVSEs were subjected to and a set of 
constraints. The constraints depended on the specific detail to be optimized, available data, 
grid assets capacity limits, such as transformers, and whether the optimization is off-line — i.e. 
used historical data and had information about what happened in the optimization time 
horizon with respect to charging— or real-time — i.e. used information as it became available.  

The offline approach had information about unmanaged charging load as well as the driver’s 
travel (arrival and departure times) and energy needs. Technical details about the 
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mathematical formulation and problem setting can be found in (Levine, Powell, & Vianna 
Cezar, 2019; Powell et al., 2020). Figure 8 shows results for offline smart charging controls 
under different rate structures and constraints.  

Figure 9: Offline Optimization with PG&E A-10 with Peak-day Pricing Events 

 
Median weekday charging profile with 10 and 90 percentile range shaded for the controlled and 
uncontrolled profile. The controlled July profile was based on full participation in PDP events. 

Source: SLAC 

The real-time optimization did not have the information the offline approach did, so it had to 
run either when a new event happened, i.e. vehicle arrival/departure or increase/decrease in 
the EV load, or run periodically to check for updates in the system conditions. The approach 
taken for the real-time optimization was to use a scenario generation methodology to account 
for each EV’s unknown future departure time and certainty equivalent control to account for 
the unknown EV arrivals in the future. The models were built from historical data for each day 
of the week and the algorithm used these models as the expected future when optimizing the 
EV charging schedules. Since the charging control was done through the EVSE, no SOC 
information was available; thus the algorithm had to be SOC agnostic. Finally, the algorithm 
was set to ensure EVs would receive a minimum amount of energy since the optimization did 
not know exactly when an EV would leave. Details on the mathematical model and problem 
set up can be found in (Tucker, Vianna Cezar, & Alizadeh, 2022). Figure 9 shows an example 
of the evolution of the planned charging power. 
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Figure 10: Real-time Algorithm Evolution 

 
Evolution of planned charging power. Top Left: At 12:00 a.m. the algorithm was fully using the expected 
future as a model for what could happen that day. Top Right: At 10:45 a.m., many EVs had arrived and the 
power output had started to deviate from the expected future. Bottom Left: Planned power output at 1:30 
p.m. Bottom Right: At 11:30 p.m., there were no more arrivals, Red curve shows the daily power output of 
the 57 EVSEs. Additionally, the green circles indicate spikes in total charging power in the evening due to 
the algorithm waiting for cheap electricity rates to charge multiple EVs. 

Source: SLAC 

Transformer Aging 
To understand the impact of workplace charging on a site’s transformer, the team modeled 
failure through premature aging of the transformer’s insulation, which often occurs through 
repeated overheating.  

Models of transformer temperature can be divided into physics-based and data-driven. 
Physics-based modeling is supported by detailed IEEE guides and was developed through 
experiments measuring temperature and insulation material in a range of dry-type 
transformers (IEEE, 2014). New modeling techniques including computational finite element 
analysis have improved the resolution of physics-based models, and ongoing research using 
circuit- or thermodynamic-based modeling show improvements over the traditional IEEE 
model. Unfortunately, however, many of the parameters used in recent models are not 
available for the small distribution transformers used at the workplace sites in these studies. 
Therefore, in the first study of transformer aging, the team implemented the standard model 
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from the IEEE guide using available parameters. The model details are available in the IEEE 
Guide for Loading Dry-Type Distribution and Power Transformers, Standard C57.96-2013 
(IEEE, 2014). 

Data-driven modeling took advantage of time series temperature and loading measurements 
to estimate model parameters directly. These have shown very good performance on larger 
transformer models. In this project, the team used data from newly installed temperature 
sensors in the transformer at SLAC to compare the two modeling approaches and publish the 
learned coefficients. Such data is rare for small distribution-level transformers. 

By calculating the relationship between temperature and lifetime and modeling the 
temperature at each time, the team could calculate the accelerated aging relative to the 
transformer’s expected lifetime. The total loss of life over a given time period was calculated 
by integrating accelerated aging factor over time and used to calculate the new lifetime of the 
transformer (IEEE, 2014). 

The project team studied transformer aging using data from the Google test sites, evaluating 
the aging while increasing the number of vehicles at the parking lot and changing the control 
scheme to minimize for different electricity rate schedules.  

The team also developed a control scheme to minimize directly for the transformer’s aging. 

 Figure 10 shows an example result of the control scheme. T studied this effect for a 225 kVA 
dry-type transformer at the Google site. 
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Figure 11: Comparison of EV Load Profiles under Different Optimization Strategies 

 
The total uncontrolled and controlled charging loads for a sample day with 355 cars in the parking lot, 
comparing simple peak minimization imitating a demand charge with the transformer aging minimization 
algorithm. The two controlled profiles were very similar, except for the small peaks allowed by the 
transformer aging algorithm: due to the time-delay in heat transfer in the transformer, a small spike in 
demand would not last long enough to cause significant heating but could be used to lower the demand 
during the rest of the day. Appears in the paper (Powell, Kara, Sevlian, Vianna Cezar, Kiliccote, & 
Rajagopal, 2020). 

Source: SLAC 

Emissions Model Methodology 
To quantify the emissions in each charging scenario, the team modeled the United States 
portion of the Western Electricity Coordinating Council (WECC), extending the reduced-order 
dispatch model first proposed in  “Reduced-order Dispatch Model for Simulating Marginal 
Emissions Factors for the United States Power Sector” (Deetjen & Azevedo, 2019). The 
dispatch model works by constructing a merit-order of generators for each week of the year 
based on historical cost data. For each hour of the year, the generators are dispatched to 
meet that hour’s demand in order of lowest cost, and the emissions are calculated based on 
which generators were dispatched. The team updated the model published in 2017 to reflect 
the grid in 2019, using the latest data on renewable generation, demand, and fossil fuel 
generator retirements or additions. The dispatch order is illustrated in Figure 11 for two 
example weeks from 2019.  
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Figure 12: Dispatch Order for Generators in WECC Model of 2019 

 
This figure shows the dispatch order or merit order of generators in the model for weeks 1 (top row) and 
27 (bottom row) in 2019. The subplot on the left in each row shows the generation cost for each 
generating unit and the subplot on the right in each row shows the carbon dioxide (CO2)  emissions rate 
for each generator. The width of each bar represents the generator’s capacity in gigawatts and the color 
of each bar shows the type of generator.. 

Source: Powell et al., 2022b. 

The team also developed a model of the future grid in 2030 to evaluate the future impacts of 
each control scenario. To make this extension the team implemented further fossil fuel 
generator additions and retirements, increased the baseline electricity demand to reflect 
forecast electrification in other sectors, and increased renewable generation.  

The model used data collected by the U.S. Environmental Protection Agency (U.S. EPA) 
through its continuous emissions monitoring systems for the hourly operation of each 
generator in WECC including fuel consumption, capacity, and emissions (U.S. Environmental 
Protection Agency, 2019); data collected by the U.S. EPA in its Emissions and Generation 
Integrated Resource database for each plant’s construction date, fuel type, and location (U.S. 
Environmental Protection Agency, 2019); data from the U.S. Energy Information 
Administration (EIA) Form 923 data set for fuel purchases and prices (U.S. Environmental 
Protection Agency, 2019); and data from the U.S. EIA Electric System Operating Data website 
for nuclear, hydro, wind, and solar generation (U.S. Environmental Protection Agency, 2019). 

The total emissions at each hour were calculated as the sum of emissions from each generator 
dispatched. Divided by the total demand served at each hour, this determined the grid’s 
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average emissions factor (AEF). The emission rate in kilograms of carbon dioxide (CO2) per 
kWh of electricity produced for the last generator dispatched at each hour, the marginal 
generator, determined the grid’s marginal emissions factor (MEF).  

Smart Charging Infrastructure Planning Tool Large-Scale Emissions Optimization 
for Workplace Charging 
In addition to the control algorithms described above, the team tested one control scheme for 
workplace charging at large scale with the explicit objective of minimizing emissions. This 
analysis was built upon in the team’s recently submitted journal paper (Powell et al., 2022a; 
Powell et al., 2022b).  

The team extracted the hourly profile of average emissions in kilograms of CO2 per megawatt-
hour from the grid dispatch model for each day and used the mean daily profile as the 
objective in a site-level control. The team randomly sampled from the data set of workplace 
charging sessions to simulate 1,000 workplace site-days with 150 vehicles in each. The 
constraints of each day’s optimization problem included limiting the charging rate to Level 2, 
limiting charging for each vehicle to occur within the plugged-in time interval, and ensuring 
each vehicle received its full session energy. For this optimization, the team assumed all 
parameters were known in advance. 

The team used the methodology for large-scale charging control first proposed as part of the 
Smart Charging Infrastructure Planning Tool project (Powell et al., 2022a; (Vianna Cezar et al., 
2020) to scale these results to the WECC level for large-scale analysis. This approach informed 
a data-driven model of the mapping from the uncontrolled to controlled site profiles. The team 
normalized and divided these profiles into training, development, and testing sets and trained 
a Ridge Regression model with cross-validation and a grid search over the Ridge parameter. 
The model root mean squared error (RMSE) reported for the development set was 3.34 
percent of the peak site-level load. 

Phase Imbalance and Harmonics 
Level 2 EVSE stations are single-phase three-wire system (or split-phase) equipment that 
connect to the electrical grid. Since the grid is a three-phase system, whenever a Level 2 EVSE 
connects to the electrical infrastructure it uses two out of the three phases. It is important to 
analyze the impact of split-phase units on the load balance of the distribution system. These 
impacts are relevant in both residential and commercial sectors since charging can happen at 
these locations.  

In the residential sector in North America, homes use a split-phase system to connect to the 
distribution grid. This connection is through a single-phase distribution transformer with three-
wire center-tapped split-phase secondary winding. This means that the transformer, which 
often connects multiple houses, has its primary side connected to a single phase out of the 
three-phase distribution system.  

The commercial sector follows a similar approach. Within a campus/workplace, loads are 
connected to the system to ensure it is properly balanced. In many campuses, the Level 2 
EVSE network is connected to a three-phase transformer and since each EVSE uses two out of 
the three phases, installers try to balance the number of EVSEs connected to each phase. 
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When distribution operators plan the infrastructure, they try to balance the load between the 
phases to prevent high neutral currents from flowing through the neutral conductor and 
affecting the system’s efficiency and safety, causing issues such as transformer overheat and 
increased tap-changes to regulate voltages (Parmar, 2018; Sarwito, Semin, & Hanif, 2017). 
High neutral currents are not only caused by load imbalance but, even in a perfectly balanced 
three-phase system, they can appear due to harmonics generated by non-linear loads. Most of 
these higher frequency sine waves (high harmonics) cancel out similar to what is expected 
from the 60Hz sine waves. However, some harmonics don't cancel. In fact, they add in the 
neutral — in particular the third harmonic. These harmonics are called zero sequence 
harmonics, and they are the reason that high neutral currents exist, even though the loads 
may be perfectly balanced (Tyco Electronics Corportation, 2022). Harmonics can also increase 
losses in transformers, power cables, and malfunctioning of equipment (Woodman, Bass, & 
Donnelly, 2018) if not properly managed. There are standards that recommend limits in terms 
of harmonic content (IEEE, 1993; IEC, 2018; and 2002) but none of them specifically target 
EV chargers.  

The team measured and analyzed the harmonic content of two different EVs charging in a 
Level 2 EVSE under different charging conditions, i.e. different fundamental current 
magnitude. The first observation was that the odd harmonics had a higher magnitude 
compared to the even harmonics. Analyzing the magnitude content of the third (180Hz) and 
fifth (300Hz) harmonics, the content varied between 1 percent and 10 percent of the 
fundamental. Additionally, the lower the fundamental the higher the percentage change in the 
third and fifth harmonics. From a magnitude perspective, for a fundamental of around 30A 
root-mean-square (rms) the third harmonic was approximately 0.3Arms and the fifth was 
0.2Arms. For a fundamental of 3Arms, the third harmonic was 0.25Arms and the fifth harmonic 
was 0.08Arms (more information on the measurements and approach can be seen in Appendix 
C). However, the harmonic contains not only the magnitude but also a phase component. 
Among the information the phase provides about the harmonic, an important one is that it can 
make harmonics cancel out. This is called phase diversity. Different equipment may have 
distinct hardware configurations that create diversity in the phase and thus, when adding 
(vector addition) the harmonic content of different equipment connected to the network does 
not necessarily increase. It is shown that in many cases the fifth harmonic has, in general, 
effective cancellation but is less effective in the third (Meyer, 2014). Since the third harmonic 
is part of the zero sequence harmonics, its content will be flowing through the neutral 
conductor and add to the system imbalance.  

The analysis of phase imbalance was performed in the residential sector since extreme cases 
could be evaluated such as adding the impact of adjacent loads and PV systems. Moreover the 
EV load on campuses is generally small compared to the rest of the loads, i.e. buildings, and 
thus the overall effect is small. Finally, based on discussions with managers of the sites, this 
was not a concern. 

To analyze the effect of load imbalance due to the penetration of EV chargers in the 
residences, an example was analyzed based on the standard distribution bus IEEE123 with the 
GridLAB-D software. Figure 12 shows the IEEE 123 network. The study involved the nodes 
located inside the polygon depicted in that figure. The IEEE123 distribution network has a 
nominal line-to-line voltage equal to 4.16kV (IEEE, 2022). Based on Pecan Street data (Pecan 
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Street, 2022), the power consumption of a large number of residences was used to recreate 
the power demand at the nodes of the distribution system and compare the case when the 
houses did not include EV chargers with the case when the residences did include those 
devices. In the standard network, the total power installed in the area defined by the polygon 
is S = 480kW + j 240kVAr. This load was replaced by a number of residences such that the 
power consumed by those houses was similar to the total power S. As such, a similar 
procedure to the one performed  by Rivetta (Rivetta et al., 2021) was followed here to locate 
the houses in the network. Using the Pecan Street data, the after diversity maximum demand 
was calculated based on 230 residences using one-week measurements (168 hours) between 
July 10 and July 16, 2015. Based on that data, the peak value of the power consumed by an 
average residence in that period was estimated. That peak value was used to define the 
number of houses allocated per node, such that the total power consumed by the nodes was 
equal to the standard power defined in the normalized network. This procedure allowed the 
inclusion in the suggested area of a total of 151 houses. 

Figure 13: IEEE 123 Node Test Feeder 

 
 
The main three phase branches in the area are defined by the path following the nodes 150-149-1-7-13-152 
and 13-18-21-23-25. Those branches are the only three phase conductors in that area of the distribution 
system; the rest of branches connecting the nodes to the main branches are single phase lines 
corresponding to phases A, B, and C.  

Source: SLAC 

From the standard distribution network IEEE123 data, the currents per phase flowing between 
nodes 149 and 1, between nodes 23 and 25, and between nodes 13 and 152 are indicated in 
Table 1. Those nominal values were used as reference. From this initial setup, the scenario 
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analyzed assumed all 151 homes had a solar system and randomly assigned EVSE, including 
Level 1 and Level 2, to 40 percent of the homes. Further details of this scenario, including the 
currents in each phase and neutral are provided in Appendix C. 

Table 1: IEEE123 Phase Current 

 
Source: SLAC 

Looking at the phases and neutral currents it is evident that the system is already unbalanced. 
However, those values are typical in distribution systems, with neutral currents being less than 
30 percent of the phase current and phases being unbalanced. 

Field-testing Software 
The field-testing was planned for summer 2020. However, due to the COVID-19 pandemic the 
project team was not able to perform the tests in the field since all site locations were closed. 
Even though the field deployment did not happen in the end, software infrastructure was 
developed that would enable the deployments, communication with the stations was 
established, and user interfaces were developed. 

The design of the software was targeted for real-time operation. As such, for each site a data 
ingestion pipeline based on available, real-time, data streams was implemented. This data 
ingestion pipeline leveraged existing application programming interfaces (APIs) from the field 
devices such as EVSEs from ChargePoint and PowerFlex and bus data from Viriciti. A decision 
was made to run the system at a five-minute interval. The main reasons for this choice were: 
a) electricity rates varied at 15-minute intervals and thus a 5-minute interval captured the 
relevant dynamics for the optimization, and b) to prevent potential server overloading with 
multiple requests in a short time interval to read and write. This data ingestion pipeline was 
the entry point for the software system. A web application was developed using the Django 
web-framework (Django Software Foundation, 2022) and deployed in the Amazon Web 
Services cloud system (Amazon, 2022). The general architecture of the software is presented 
in Figure 13.  
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Figure 14: Software Architecture  

 
For each site, a set of requirements was defined based on data availability, controls, type of algorithm, 
and importance of the user interface for site operators. Below the main characteristics of each site are 
presented. 

Source: Grid Integration Systems and Mobility – SLAC National Accelerator Laboratory 

Stanford University 

Data and Controls 
The real-time data such as SOC, power, energy, location, speed, and charging status of the 
buses were available from the Viriciti DHs. A representational state transfer API was developed 
with Viriciti to allow data ingestion. The DH also had the ability to change the state of its 
output connections to enable the capability of start, stop, and resume charging. A new wiring 
diagram was obtained from BYD to enable the DH to control the charging and also provide a 
manual override switch in case a problem occurred with the DH. The schematic is provided in 
Figure 14.  
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Figure 15: Wiring Diagram Including Viriciti DH to Enable Remote Charging Control 

 
Single line diagram of bus connection showing the bus system represented by the Vehicle-To-Grid 
(VTOG) terminals and Body Control Module (BCM), the Viriciti DH, and override switch. 

Source: SLAC 

After performing the modifications, the DH was only able to stop charging but not resume or 
start charging. Charging would only start with manual connection or reconnection of the 
charging guns. After many conversations with Viriciti team in the United States and in the 
Netherlands and the BYD team in the United States and China, additional modifications on 
internal DH wiring and multiple software updates on the bus side were performed. The team 
then was able to successfully control the start, stop, and resume charging functionalities in the 
bus model K9M. However, the Stanford electric bus fleet has K7 (10 units) and K9 (10 units) 
models and BYD informed the team that the updated software was only available for the K9M. 
Therefore, only 18 buses could have remote charging control capabilities. Two buses were 
updated initially, and multiple tests were performed to stress the system and verify its 
reliability. Tests such as sending frequent stop and resume charging commands, preventing 
the bus from charging when charging guns are first connected and pause charging for long 
periods of time, and resume were tested. Figure 15 shows one of the many tests performed 
including the frequent start/stop commands, long standby (charging guns connected but not 
charging), as well as error.  
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Figure 16: BYD Remote Charging Control Test 

 
Electric bus test showing system’s ability to start/stop/resume with commands sent within minutes from each other, resume charging command sent 
after 40 minutes and stop charging command after 10 minutes. Also, this plot shows a common error when changing the charging state. The black line 
shows the power and the first column of the y-axis on the right shows its value with negative power indicating the bus is charging. 

Source: Viriciti 
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Even though the team was able to successfully demonstrate the ability to remote control the 
charging of the K9M buses, the reliability of the system would prevent the system from 
operating autonomously without human supervision. The two most common errors observed 
were:  

• 1) a start command sent to the DH would not necessarily always start the charging of 
the bus. In many cases the command needed to be reissued. In other words, if a start 
command was sent but the charging did not initiate within two minutes (it generally 
took 30 seconds) a stop followed by a start command was sent (middle section in 
Figure 15). If charging did not initiate after two attempts, the charging guns had to be 
removed and sometimes a power cycle in the bus and station would be required. 

• 2) when the bus was on standby mode a command to engage sent from the DH to 
resume charging generated an error message with error code: 0x00000002 displayed at 
the charging station. According to BYD, this is a general error code that means charge 
is forbidden and the only way to reset the system was to remove the charging gun from 
the vehicle.  

The BYD team was not able to trace the origin of such errors and, since once they happened, 
they required manual intervention, more tests with BYD field engineers on site would be 
required to reliably mitigate all the errors and deploy the system. 

Algorithm 
The algorithm developed to optimize the charging schedule of the bus fleet was designed 
based on how the fleet operates. The fleet peak hours of operation are mornings between 
7:00 a.m. and 10:00 a.m. and afternoons between 3:00 p.m. and 6:00 p.m. Other hours 
during the day require an average usage of the fleet and evenings have low requirements. 
Therefore, assignments of buses to routes was performed the night before to account for any 
issues with the fleet during the day operations. Thus, the scheduling algorithm was not 
required to run in real-time. 

Software User Interface 
From a user interface perspective, the team conducted two surveys with dispatchers and the 
management team, and another with drivers to understand the important parameters from an 
operations standpoint: which systems were being used and what was needed. The main 
findings were: 1) it is important to know each buses’ geographical location with respect to its 
current route, charging status, and SOC and to be able to generate reports and send service 
alert notifications to the public; 2) the main systems being used were Viriciti to obtain charging 
status and SOC and SPOT to obtain all other parameters (refer to the previous Data and 
Controls section); and 3) it was necessary to combine the relevant information from both 
systems into one single screen with the ability to enable/disable charging remotely. From the 
survey findings and the limited third-party integration capability the SPOT system had, the 
team concluded that the user interface for the dispatchers would provide information of the 
charging status, SOC, and ability to control charging remotely (see Appendix A).  
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Google  

Data and Controls 
The real-time data available at Google was primarily from the EVSE stations from ChargePoint. 
ChargePoint has an API using the open charge point protocol. From this API, each EVSE’s port 
load, shed status, allowed load, and user ID were collected and the EVSE’s maximum allowed 
load and shed status were sent back to control the EV charging.  

Algorithm and Software User Interface 
The algorithm developed to operate the system in real-time was designed to run at a 5-minute 
interval with only the information collected from the EVSE, provided above. This means that 
there was no information about when vehicles would arrive and leave, and no SOC information 
(more details are provided in the Algorithms section). From a user interface standpoint, there 
was no need to develop a new one since the current interface provided by ChargePoint 
satisfied the requirements of visualization. 

SLAC 

Data and Controls 
Since the stations available to the employees were not available for testing, the team used the 
GISMo lab facility and its recently added resources to demonstrate the software capabilities 
and communications. The GISMo lab has two experimental sections, emulating real homes. 
Each experimental home contains an independent PV system, a battery energy storage 
system, an EVSE, multiple outlets for standard loads, and monitoring equipment. The software 
system, the Smart Grid Management Platform (SGMP), was developed to interface with these 
resources, when an API was available. The EVSEs were both from PowerFlex, and the team 
was granted access to the API for real-time operation. In addition to the PowerFlex API, the 
team developed interfaces for the monitoring equipment that was measuring each subcircuit in 
the main service panel and one of the battery systems. The GISMo lab also had an EV to use 
for experiments with the stations.  

Software User Interface 
The software was developed to establish communication with the resources and show the 
control capabilities. Since there was only one EV and two EVSE, the demonstration of the 
algorithm capabilities was very limited. The focus of the development was then on 
visualization, analytics, and customization of the data ingestion. The analytics component, in 
particular for the EVSE, included power and cumulative energy at five-minute intervals, 
number of charging events, and average duration of charging sessions. The customization 
component of the data ingestion allowed researchers to change or add to the way data was 
being collected in real time, for example, by implementing mathematical operations of multiple 
data streams, adding new measurements, and changing the sampling rate. Figure 16 and 
Figure 17 show the user interface developed for the GISMo lab. 
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Figure 17: Dashboard Page of the GISMo Lab Application 

 
This image shows the main page of the software developed for the GISMo lab showing the available 
resources data and metrics. The tab on the left let the user navigate to other pages within the application 
to look into deep details of each resource and change configurations without needing to go to the source 
code. 

Source: SLAC 

Figure 18: EV Page of the GISMo Lab Application 

 
This image shows the EV detailed page with key event metrics and the time series graph. 

Source: SLAC 

 



 

4 

CHAPTER 3: 
Project Results 

This chapter provides an analysis of the results obtained in this project to meet the project 
goals of 1) quantifying the impacts of EVs on the grid, in particular transformer impacts, phase 
imbalance, harmonics, and emissions and 2) evaluating the potential of smart charging as a 
value stream for workplace charging under different rate structures while minimizing the 
infrastructure impact and satisfying user needs. The project aimed to test the algorithms 
developed in the field in at least two test sites during spring and fall of 2020. However, given 
the COVID-19 pandemic, the demonstration sites were closed and multiple stations within the 
sites were decommissioned. Nonetheless, many insights were obtained and lessons learned 
that can inform future projects and increase their likelihood of success. 

This chapter organizes the results by site. First, the chapter analyzes the Stanford electric bus 
fleet, presenting the results of the joint route assignment and charge scheduling problem with 
electricity cost minimization, then discussing the site emissions. Then the chapter further 
discusses the field tests and challenges with the hardware, bus software, and reliability. 
Following the Stanford fleet discussion, the analysis and results for the smart charging 
algorithms and emissions model at Google are presented with discussion of some of the 
challenges encountered with communication with the stations. Lastly, the analysis and results 
from the SLAC site are presented with the transformer analysis with the real data, the 
emissions model, and a discussion about the GISMo lab software. The last section of this 
chapter discusses the impacts of EV charging at a larger scale with regard to emissions and 
phase imbalance. 

Stanford EV Bus Fleet 
Smart Charging Analysis 
As presented in Chapter 2, the goal of optimization is to jointly schedule the charging and 
assign buses to routes while reducing the electricity cost and maximizing the onsite solar use. 
Further, the electric bus fleet system serves as many as 20 unique routes, 15 of which are 
fulfilled by the electric fleet, with predefined schedules, for a total of 352 trips per day during 
the week. Finally, the minimum SOC was constrained to 20 percent based on the survey 
conducted with drivers, who identified this as the minimum level with which they were 
comfortable driving back to the bus yard to charge. Detailed information about the 
mathematical model and formulation can be found in (Moradipari et al., 2020). 

This analysis reports on the charging schedule, route assignments, and cost savings when 
comparing the proposed mixed-integer linear programming (MILP) solution with onsite solar 
generation, without onsite solar generation, and the status quo (the status quo is the actual 
operations of the Stanford Marguerite Fleet from October 7, 2019), which did not exploit free 
onsite solar generation. 
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Figure 18 presents the energy levels of each bus in the fleet during the day when the dispatch 
was generated through the project’s proposed MILP. Time on the x-axis began at 5:00 a.m., 
as this was the start of the earliest route that must be fulfilled. The left plot shows the energy 
levels of the buses when the MILP was not using onsite solar generation. The right plot shows 
the battery levels of the buses when the MILP accounted for onsite solar generation. It will 
become clearer when examining Figure 18 that the buses charge more during midday in the 
right plot than the left, to make use of the free onsite solar. 

Figure 19: Energy Used for Each Bus During the Day 

 
Left: Battery levels for each electric bus when considering a fleet without available onsite solar. Right: 
Battery levels for each electric bus when optimizing with available onsite solar generation. 

Source: SLAC 

Figure 19 presents the total charging power of the fleet across the entire day. The red curve 
presents the total charging power for the MILP solution that does not exploit onsite solar 
generation. Conversely, the blue plot shows the fleet’s total charging power from the MILP 
solution that does account for onsite solar generation. It is clear from this plot that the 
solution that accounted for onsite solar (blue) was able to charge in the middle of the day 
when solar is abundant; however, the solution that did not exploit solar (red) did not charge 
during the midday as the electricity prices are highest at this time. Instead, the fleet had a 
spike in charging power in the evening when electricity rates decrease. This large transient in 
the evening could be detrimental to grid stability, increase in harmonics, accelerate aging of 
grid assets (i.e. transformers), and potentially lead to demand charges for the fleet dispatcher 
due to high power consumption. As such, the solution making use of onsite solar generation 
with a forecasting method is preferable. 
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Figure 20: Comparison of Total Charging Power with/without Onsite Solar 

 
 

Source: SLAC 

Last, Figure 20 presents the daily electricity costs for the three different test cases. In Case A: 
Status Quo, the project team had access to the data from the operations of the Stanford 
Marguerite fleet on October 7, 2019, and calculated the cost of charging the fleet under the E-
20 rate structure. As such, under normal operation, the daily operational cost was $715.10. 
Case B corresponded to the solution of the proposed MILP with the same routes, buses, and 
chargers as Case A; however, the mobility-aware solution reassigned buses to new trips and 
rescheduled the charging of each bus. In Case B, the MILP solution did not account for onsite 
solar and the daily cost was $315.90. Case C was identical to Case B; however, the MILP 
accounted for the onsite solar generation and had access to the daily solar forecast. As such, 
the daily cost was reduced to $91.89. From these results, it is evident that the fleet dispatcher 
benefitted from the MILP formulation for routing and charging (55 percent decrease in cost in 
Case B). 
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Figure 21: Comparison of Daily Electricity Cost 

 
Price Comparison for three different regimes: Case A: Status Quo, electric bus charging data obtained 
from real-implementation (Stanford Marguerite Shuttle) on Oct 7, 2019. Case B: Mobility-Aware MILP 
solution for same routes and buses as Case A, without onsite solar generation. Case C: Mobility- Aware 
MILP solution for same routes and buses as Case A, with onsite solar generation. 

Source: SLAC 

Since the only bus model that had the capability of remote charging was the K9M, although 
not reliably as explained in Chapter 2, another analysis was performed, with the reduced bus 
schedule given the COVID-19 restrictions. This schedule had the K9M buses fulfilling primarily 
two routes, HD and MC lines. HD line used four buses to fulfill four trips in the morning and 
four trips in the evening. MC line used three buses to fulfill three morning trips and three 
evening trips. Historical data for buses performing these routes were analyzed to define a 
baseline for energy used and to compare the performance of the smart charging approach 
given the new proposed charging schedule. Given the historical data analysis, it was 
determined that in the worst case a bus would use 81 kWh of energy to complete a single trip 
in the MC line route and 65 kWh for HD line. The status quo load, i.e. uncontrolled charging, 
and the charging load based on the proposed schedule using the smart charging algorithm is 
shown in the bottom graph of Figure 21 for HD line and in the bottom of Figure 22 for MC line. 
The buses serving HD line need to charge twice a week during the 10:00 a.m. to 2:00 p.m. 
time period. During this period, they had to charge on average for one hour. Thus their 
midday flexibility index was 0.75 for 10:00 a.m. to 2:00 p.m.. Additionally, they also had to 
charge three times a week during the off-peak hours from 9:30 p.m. to 4:30 a.m. During this 
seven-hour window, the buses had to charge on average for 3.25 hours. Thus, their nighttime 
flexibility index was 0.54. For the MC Line, buses only charged during the off-peak hours and 
on average only needed 2.7 hours of charging. Additionally, the minimum SOC for the buses 
doing HD line was 40 percent and MC line was 50 percent. From a cost savings perspective, 
the schedule using the smart charging was able to save 37 percent for the HD line and 56 
percent for the MC line. These savings came primarily from charging mostly during off-peak 
hours and preventing the top-off behavior of always connecting the buses to the stations if 
they were not in use irrespective of time of the day and SOC. This leaves enough energy on 
the buses to make drivers comfortable adopting such schedules. Appendix B shows the 
schedules provided to the dispatch team. 
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Emissions Model 
From the uncontrolled and controlled profiles, based on the proposed schedule for HD and MC 
lines, the emissions model proposed in Chapter 2 was applied. The team calculated the 
emissions profile of each, during four days in September 2021. 

The team used a model of the 2019 grid and assumed the emissions profiles would be similar 
on those days in 2019 and 2021. The results of the analysis, presented in Figure 21, for HD 
line, and Figure 22, for MC line, show that the effect of controls was inconsistent day-to-day: 
emissions per mile increased some days and decreased others. 

Figure 22: Comparison of the Emission’s Profile for HD Line 

 
This figure shows the Marginal and Average Emissions Factors (MEFs and AEFs) [top] and load profile 
[bottom] for the HD line during September 14 – 17. The control scheme did not charge on the first and 
third day, so there are no emissions rates shown for those days. The emissions are shown per energy in 
grams (g) CO2/kWh. Calculating the added emissions using the average and marginal emissions factor 
methods are shown on the left and right axes of the upper plot.  

Source: SLAC 
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Figure 23: Comparison of the Emission’s Profile for MC Line 

 
This figure shows the emissions (AEFs and MEFs) [top] and load profile [bottom] for MC line for 
September 14 – 17. The emissions are shown per energy in g CO2/kWh. Calculating the added emissions 
using the average and marginal emissions factor methods are shown on the left and right axes of the 
upper plot.  

Source: SLAC 

Google 
Smart Charging Analysis 

Demand Response 
The demand response potential of workplace electric vehicle charging using the Google 
demonstration site was quantified. While EVs have the potential to participate in multiple 
demand response markets and programs, the focus of this analysis was on participation in 
time of use and peak day pricing (PDP) tariffs. Particularly during a PDP pricing event, 
customers faced a high energy charge from 2:00 p.m. to 6:00 p.m. Key vehicle charging 
parameters were extracted from the ChargePoint data at the Google site from 2017 and used 
to implement optimal control algorithms to minimize cost of charging on PG&E’s A-10 and E-19 
Tariffs. 

One of the main differences between these two rate structures was that for E-19, in the 
summer, participants in PDP incurred time varying energy charges, a max demand charge, 
peak and part-peak demand charges, PDP energy charges, and PDP demand credits. 
Additionally, the peak and part-peak demand charges were determined based on a capacity 
reservation level (CRL). Customers were billed based on this level of usage even if their actual 



 

10 

usage was below this level. During a PDP event, participants were charged for energy usage 
above the CRL at a higher rate. To compensate for incurring high PDP energy charges, 
customers were credited for their peak usage above the CRL during the peak and part-peak 
period. 

Figure 23 shows the uncontrolled charging profile and controlled charging profiles for the A-10 
tariff on July 8 — when a PDP event was implemented for the full participation optimization, 
but the event was not implemented for half participation. There was a noticeable response to 
the high energy charges in the full participation profile compared to half participation. More 
charging occurred during the peak period before the PDP event started in the full participation 
profile and less charging occurred during the PDP event compared to the half participation 
profile. 

Most of the savings for the A-10 tariff were achieved by reducing the demand charge. There 
was limited ability for charging to be shifted into off-peak periods and load was shifted from 
the early part-peak period into the peak period to avoid the hefty demand charge, causing 
energy charges to decrease minimally or increase slightly. If the charging session time frames 
were more flexible, greater energy charge savings would be achieved by pushing load into off-
peak periods and further reducing the peak load. Since most workplace charging sessions 
occurred during the part-peak and peak periods, off-peak charging potential was minimal. 
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Figure 24: Comparison of EV Charging Profiles for A-10 Tariff with PDP  

 
Charging profile on July 8 where the full participation profile was optimized for the high peak day pricing 
charges and the half participation profile was optimized based on the standard charges. 

Source: SLAC 

Figure 24 shows the uncontrolled charging profile and controlled charging profiles for the E-19 
tariff. During most PDP events, usage did not exceed the CRL when it was set to 43.08 kW (50 
percent of average maximum peak period demand of the summer months). During these 
events no PDP energy charges were incurred. There was one event each in June, July, and 
August in which the usage exceeded the CRL. During those events, the maximum usage was 
only slightly less than the maximum demand for the month, indicating significant charging 
demand with limited flexibility during these times. As seen in the profile for the July 31 event, 
the daily uncontrolled peak was flattened in the controlled charging scenario, pushing charging 
load into the event to avoid incurring a higher maximum demand charge.  
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Figure 25: Comparison of EV charging profiles for E-19 with PDP and CRL 

 

  
Top: no PDP event day charging profile with CRL. Bottom: PDP event day charging profiles with CRL. 

Source: SLAC 
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The monthly savings resulting from implementing the smart charging controls under the two 
tariffs are shown in Table 2.. The savings were calculated based on what the bill would be 
given the charging profile reconstructed from ChargePoint data (uncontrolled charging).  

Table 2: Percentage Savings Achieved through Smart-Charging Control 

 
Source: SLAC 

Another analysis was performed to investigate the load shed capacity of EV charging at each 
hour. The load shed capacity was determined by optimizing charging with a demand penalty 
applied at the given hour. For all months, the maximum load shed capacity occurred between 
9:00 a.m. and 11:00 a.m. This timing was expected as there was significant demand in the 
uncontrolled profiles as employees arrived at work and charging could be delayed significantly 
at this hour as it is at the beginning of most charging sessions (see Appendix B for further 
details). The maximum sheddable load at these hours ranged from 71.92 kW to 100.78 kW, or 
54 percent to 76 percent of the monthly uncontrolled maximum demand. 

Transformer Analysis 
The results of the transformer aging analysis shown in Figure 25 reveal a large difference 
between uncontrolled and controlled charging. For this analysis, simpler control schemes were 
modeled based on rate schedule designs, and the number of vehicles in the parking lot was 
increased to see how many could be supported without aging the transformer in each case 
(Powell et al., 2020).  
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Figure 26: Comparison of the Effects of Different Smart-Charging Schemes in the 
Transformer Lifetime 

 
Figure 25 shows the transformer lifetime (capped at 20 years) as the number of vehicles in the parking lot 
was increased (Powell et al., 2020). The Cap control schemes did not have objectives but placed limits of 
150 and 200 kW on the total demand. The Min Peak control scheme minimized the maximum demand as 
its objective. The PGE E19 control schemes were designed for PG&E’s E-19 rate schedule.  

Source: SLAC 

The project team found that the transformer at the Google site could support fewer than 150 
vehicles per day with uncontrolled charging, but nearly 250 vehicles with the best control 
schemes. Time-of-use rate schedules did not encourage any improvement, as shown by the 
Energy-Only implementation of the PG&E E-19 rate. Capping the total demand at each site 
gave a modest improvement. The best case, however, came from peak minimization, rates 
with demand charges, or the direct minimization for transformer aging.  

This result is encouraging: at sites with high use, demand charges and peak minimization can 
be used to encourage controls that protect distribution transformers by reducing peak 
demand.  

Real-Time Charging 
The real-time charging algorithm using the scenario generation and certainty equivalent 
control performance was evaluated (Tucker, Vianna Cezar, & Alizadeh, 2022). Figure 26 
presents a comparison of a weekday's predicted daily charging schedule and the actual daily 
charging power that occurred that day. As seen in Figure 26, the daily model did a good job 
predicting the future load for this location. Furthermore, note that most of the power was 
scheduled for delivery during the partial-peak electricity rates during the mid-morning (8:30 
a.m. – 12:00 p.m.) and the charging power decreased rapidly during the peak electricity rates 
midday (12:00 p.m. – 6:00 p.m.). 
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Figure 27: Real-time Predicted Daily Charging Schedule vs Actual Daily Charging 
Power 

 
In this figure, the red curve shows the EV charging load that happened on that day using the real-time 
algorithm. The purple curve shows what the algorithm predicted the model to be at the start of the day. 
The orange curve shows the transformer nominal capacity. Blue curve shows the electricity price.  

Source: SLAC 

Table 3 presents several test cases. In these tests, w1 and w2 were varied in the objective 
function between (2,1) and (10,1) to show how the algorithm swapped priority from 
minimizing electricity cost to maximizing user utility for receiving energy. Additionally, the 
transformer constraint that couples all the EVs together between 250 kW and 100k W was 
varied. Table 3  also shows the total energy delivered over the two-week period and the total 
cost of purchasing that energy from the grid from energy rates as well as the total cost due to 
demand charges (displayed as percentages compared to the status quo values). The last two 
columns in Table 3 show whether or not the test case included a constraint that forced the 
EVSEs to charge at a certain rate for the first hour that a new EV was plugged in. The idea 
behind this was to ensure that EVs would receive some minimum amount of energy, even if 
they were only plugged in for a short duration, or if they arrived during peak electricity rates. 
The project team experimented with forcing the EVs to charge for the first hour of a new 
session at their maximum rate, half their maximum rate, a quarter of their maximum rate, and 
without this constraint altogether. The second-to-last column indicates whether or not this 
constraint was included, and the last column indicates the charge rate that was used for this 
first hour (pmax = 6.6kW). The first row of this table shows the total energy delivered and the 
total energy cost for the status quo (i.e., no algorithm in place, just the energy consumed and 
cost for June 17 to June 29, 2019). The (w1 , w2) = (10,1) results in Tests 07–13 indicate that 
the smart charging algorithm was able to reduce energy costs and demand charges while 
delivering adequate energy (greater than 80 percent of the status quo energy) to the EVs.  
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Table 3: Results for 13 Test Cases 

 
Source: SLAC 

Table 3 also shows the transformer capacity constraint that coupled the charging power of all 
the EVs was varied. In the status quo, there was no coupling constraint and the total load 
peaked at 169 kW. However, with the real-time smart-charging algorithm in place, the team 
could constrain the total load. This allowed for the location to use a smaller transformer 
capacity, increase the number of charging ports for EVs, or increase their other non-EVs loads 
(e.g., the nearby offices could safely use more power without worrying about exceeding the 
transformer capacity due to the EVSEs). Figure 27 shows a five-day comparison of the Test 08 
load (see Table 3) compared to the status quo load. As seen in this plot, the smart-charging 
algorithm was able to enforce a transformer capacity limit at 150 kW without sacrificing much 
energy delivered. Furthermore, the smart-charging profile purposely dropped below the status 
quo during the middle of each day to avoid the peak electricity rates from 12:00 p.m. to 6:00 
p.m. 
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Figure 28: Comparison of Monday-Friday Load Profile of Real-time Algorithm and 
Status Quo 

 
Comparison of the weekday load for the status quo (i.e., no algorithm in place) vs. the smart-charging 
algorithm with parameters as listed in Test 08 of Table 3. The status quo load (blue) delivered more power 
during the middle of each weekday during peak electricity rates but the controlled load dipped down 
during this period to avoid peak prices and then increased when electricity rates lowered in the evening. 
Additionally, the smart-charging algorithm enforced the transformer constraint (green line). 

Source: SLAC 

Emissions Results 
The team analyzed the emissions impacts of several control strategies for the Google sites to 
evaluate whether these controls would increase or decrease emissions relative to uncontrolled 
charging. The different test cases for each site follow the parameters selection from Table 3.. 

The marginal and average emissions profiles modeled for 2019, explained in the Emissions 
Model Methodology section in Chapter 2, are shown in Figure 28. Average emissions were 
more consistent, consistently lower during the middle of the day in times of high solar, and 
consistently higher in the late afternoon, evening, and just before sunrise. Marginal emissions, 
by contrast, were highly variable, and there was a less clear shape throughout the day of 
periods of high and low marginal emissions. 
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Figure 29: Weekday and Weekend Marginal and Average Emissions Factors 

 
Weekday and weekend marginal and average emissions factors (MEFs and AEFs) for the model of 2019 in 
WECC. The lines show the median value over all weekdays or weekends at each hour and the colored 
bands show the 25th–75th percentile.  

Source: SLAC 

This variation was reflected in the results for each site. Each site shows variation in emissions, 
calculated both with average and marginal emissions and per unit energy, but in general there 
was more variation by day than by load shapes due to different control schemes. This was 
likely due to the flat median average and marginal emissions profile shapes during workplace 
charging hours. The results for this analysis are shown in Figure 29, Figure 30, and Figure 31 
for site 1. The analysis for the other sites can be seen in Appendix B. 

Figure 30: Comparison of the Managed Load Profiles and Status Quo for Site 1 

 
Sample loads on one weekday from Site 1 site showing the different control scheme results: tests 6, 7, 9, 
and 11. 

Source: SLAC 
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Figure 31: Weekday Distribution of AEF and MEF for Site 1 

 
Each box shows the distribution across different control schemes of average or marginal emissions (per 
energy) on different weekdays tested at Site 1. 

Source: SLAC 
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Figure 32: Test Cases Distribution of AEF and MEF for Site 1 

 
Each box shows the distribution across different weekdays of the average and marginal emissions for 
each control scheme tested at Site 1. As a percentage, the median changed very little relative to 
uncontrolled charging in each case. 

Source: SLAC 

SLAC 
Lastly, the analysis and results from the SLAC site discuss the transformer analysis with the 
real data and the emissions model and ends with a discussion about the GISMo lab software. 
The last section of this chapter discusses the impacts of EV charging at a larger scale in regard 
to emissions and phase imbalance. 

Transformer Analysis 
Using measurements from the temperature sensors installed in the transformer at the SLAC 
site, the team was able to train a data-driven model of the temperature.  

To train the model, the team used data from August 10 to 23 and tested several models. Many 
data-driven transformer temperature models use the previous time step temperature to 
predict the current time step, an auto-regressive form, but the team decided not to include 
temperature as an input because it may have been unavailable at many sites. The team 
developed an equation denoting the temperature inside the transformer windings, the ambient 
temperature, and the loading factor, then calculated by dividing the load by the transformer 
nameplate capacity. 
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Ordinary least squares (OLS) regression was used to fit the equation as a linear model. At the 
SLAC site, the transformer was indoors in a temperature-controlled building, so the team 
modeled the ambient temperature as constant. These results were calculated using the 
statsmodels package in Python. Table 4 shows the model statistics and Table 5 shows the 
model coefficients. 

Table 4: Regression Statistics for SLAC Transformer Data-driven model 

 
The high R-squared suggested a strong model fit: 77 percent of the variation in the temperature 
measurement was explained by these input variables. 

Source: SLAC 

Table 5: Regression Model Coefficients 

 
Coefficients for SLAC transformer data-driven model. All were highly significant (p<0.001) 

Source: SLAC 

When applied to a test set of August 24 to September 30, the model root mean squared error 
was just 9.8 percent of the mean value during that time and 4.8 percent of the max value. 

For comparison, the team calculated the coefficients to model the same transformer using the 
IEEE Guide’s physics-based model, making the same assumptions to use nameplate reported 
values as in the study of the Google transformer. This model performed worse, reporting root 
mean squared error values of 33 percent of the mean and 16 percent of the max temperature 
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when applied to the same test period. The difference between the two models is illustrated in 
Figure 32. 

Figure 33: Comparison of Transformer Temperature Model 

 
Results for the transformer temperature modeling at SLAC, shown for September 1–3, 2021. The three-
temperature series use the left y-axis: the measured mean coil temperature, the temperature predicted by 
the IEEE physics-based transformer model, and the temperature predicted by the data-driven transformer 
model trained on data from the previous month. The black solid series using the right y-axis shows the 
transformer loading: overnight the transformer was not in use; during the day, it reached peaks of near 50 
percent nameplate capacity. 

Source: SLAC 

The physics-based model seemed to overestimate how much the transformer cooled, 
particularly overnight when the measurements suggested a plateau value more than 86°F 
(30°C). The physics-based model also had a significant time delay, while the data-driven 
model and the temperature measurement tracked the rapid changes in loading more quickly. 
This difference may have been due to the application: EV demand at a workplace increases 
very steeply in the morning, and the physics-based model may have been designed for loads 
that change more slowly. This difference may also have related to the type and generation of 
transformer: the transformer at the SLAC site was newer and more efficient than older 
models. Finally, this difference may have been due to the calibration of the model: if more 
detailed information had been available to calculate the physics-based coefficients, the 
physics-based model may have performed better. 

Emissions Analysis 
The team evaluated the emissions from the SLAC EV charging demand using both the average 
and marginal emissions methods for a range of days in August and September 2021. The team 
used the model developed for the 2019 grid, based on the most recent complete plant data 
available, and assumed the emissions factors would be of similar shape. The results shown 
below in Figure 33 highlight the range in emissions seen day-to-day.  
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Figure 34: SLAC EV Load AEF and MEF Comparison 

 
Histogram of average and marginal emission factors per energy calculated using EV charging demand from the 
SLAC site on weekdays between August 12 and September 27.  

Source: SLAC 

The median value highlighted was 288.8, meaning that the electricity used to serve EV 
demand in 2019 had an approximate carbon intensity of 288.8 grams (g) CO2 per kWh. This 
was much lower than the marginal emissions results thanks to the alignment of workplace 
charging with hours of high solar generation.  

Smart Grid Management Platform 
As presented in Chapter 2, the SGMP developed at the GISMo lab targeted not only controlling 
the EVSE, but also other DERs such as battery energy storage systems and even solar by 
curtailing solar production to test different algorithms and dispatching strategies.  

Recall that the GISMo lab emulated two homes, House A and House B. Both homes had similar 
DERs where, based on manufacturers, some provided ways to directly interface and control 
while others did not. Figure 34 shows the ability of SGMP to control the EV charging at House 
A from the maximum charging power to zero and values in between. Figure 35 shows a more 
interesting case in House B: how the integration and coordination of EV, solar, and energy 
storage could help minimize the consumption from the grid. During the early morning, the 
battery system charged from solar (battery charging is indicated by the yellow bars and solar 
production by the blue bars). Once an EV started charging (solid purple line), the battery 
started to discharge (red bars) to provide the remaining power, after the solar. The 
consumption from the grid (solid blue line) kept at, or very close to, zero watts for most of the 
charging time, indicating that the EV charging was close to net-power zero from the grid. 



 

1 

Figure 35: Control of EV Charging from SGMP 

 
Demonstration of ability to control EVSE from the maximum charging power to zero and values in between. 

Source: SLAC 

Figure 36: Integration of Solar, Storage, and EV 

 
Integration and coordination of solar, storage, and EV charging to minimize grid consumption when charging an EV. 

Source: SLAC  
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EV Impacts at Scale 
Two analyses were conducted to evaluate the impacts of EV at scale: the potential issues of 
phase imbalance and the emission’s impact. 

Phase Imbalance and Harmonics 
The distribution network analyzed in this section is presented in Figure 16, Chapter 2. A 
comparison was performed between the base case and the scenario of all 151 homes including 
solar and 40 percent including EVs (65 EVs in total).  

Figure 36 shows that the impact of PVs in the currents was very strong between 8:00 a.m. 
and 7:00 p.m., and the impact of the EV charging load in the current was minimal. In this 
figure, the phase A current flowing between nodes 149 – 1 is depicted in the top plot, 
comparing the baseline current with the total current when EV chargers and PVs were added 
to the residences. The bottom plot compares the currents flowing in the neutral conductor. 
The figure shows the slight increment of the current per phase and in the neutral conductor 
due to the EV chargers added to the area; however, due to the diversity of charging times all 
sessions did not necessarily overlap. Noticeably, the system already had a large neutral 
current without the addition of EVs and PVs. This neutral current came from the natural 
imbalance of loads between phases in the distribution network. 

Figure 37: Comparison of Current Impact between Base Case and PV/EV Scenario 

 
Detail current flowing in phase A [top] and neutral [bottom] between nodes 149 – 1. There was minimum 
impact of the EVs in the system neutral current indicating that in this scenario EVs did not affect the 
system significantly. 

Source: SLAC 
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An extreme case was analyzed assuming none of the residences had PVs and all the EV 
chargers were added to houses connected to phase A. Figure 37 shows the phase A and 
neutral current with and without the EVs added.  

Figure 38: Comparison of Phase and Neutral Current with and without EVs 

 
The system imbalance observed in the distribution grid due to the EV chargers added to the residences 
was minimal given that the system was already unbalanced for the normalized network; but it is possible 
to extrapolate some conclusions. If the original system was designed to be perfectly balanced, the 
conductors size should be the same, i.e. neutral conductor should match the phase conductors for the 
maximum load. Therefore, the steady state returning current over the neutral conductor could 
theoretically be equal, or even higher, than the phases’ maximum current. Therefore, this analysis 
suggests that the impact of the EV chargers in the balance and stability of the distribution grid was not 
critical if the neutral conductor for the original design of the network took into account some degree of 
current unbalance among phases. 

Source: SLAC 

The current waveform of a Nissan Leaf charging in a Level 2 EVSE was measured in the GISMo 
lab and its harmonic content evaluated. Figure 38 shows the spectrum analysis of an EV 
charger operating with an input current equal to 28.9Arms. It is possible to observe that all the 
current harmonics are less than 2 percent of the fundamental current. 
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Figure 39: Harmonic Content of a Nissan Leaf Charging in an L2 Station 

 
The fundamental component can be seen as the largest peak. The other peaks correspond to the odd 
harmonics since the even harmonics were very small. 

Source: SLAC 

Since the third harmonic content of the EVs measured was relatively low, it was concluded 
that for such analysis, even considering the worst-case scenario where all EVs would charge at 
the same time and phase diversity was zero, the amount of current flowing through the 
neutral conductor would not significantly impact the overall system balance. At this point the 
capacity would be the limiting factor. 

Emissions Impact 
The project team used the grid model and charging data to investigate the emissions of 
charging at a larger scale. The first key research question addressed was: “How do non-
residential charging options impact emissions, and how do scenarios with more or less non-
residential charging compare?”  

The team developed four scenarios of access to residential and non-residential charging 
options, with residential access ranging from low to high to universal and rescaled behaviors 
found in the charging data to estimate the daily charging demand in each scenario for all 
drivers in the Western interconnection grid (WECC). Figure 39 shows the load profiles. 
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Figure 40: Charging Demand Scenarios for 100 Percent Electrification in WECC 

 
In Scenario 1, access to residential charging either at a single-family home (SFH) or a multi-unit dwelling 
(MUD) was universal. In Scenario 2, access to residential charging was high. In Scenarios 3 and 4, access 
to residential charging was low: in Scenario 3, workplace charging access was relatively high and carried 
more of the demand; in Scenario 4, public charging carried most of the demand (Powell et al., 2022b). 

Source: SLAC 

If 100 percent of personal vehicles had been electric in 2019 and charged according to these 
four scenarios, the two scenarios with highest non-residential charging would have resulted in 
higher grid emissions. Modeling the 2030 grid, however, with higher renewables and storage 
and the retirement of many coal generators, the two scenarios with highest non-residential 
charging would result in the lowest grid emissions.  

Figure 41 shows the added grid emissions per mile of EV charging for each of the four 
scenarios, if 100 percent of vehicles in WECC had been electrified in 2019 vs 2030. The 2030 
grid model assumes 2.5 times the 2019 levels of both wind and solar, as well as increased 
baseline demand, storage, and fossil fuel generator retirements. Those results assume 
uncontrolled workplace charging.  

The next research question to address was: “Can emissions be included as objectives of the 
control to reduce the impacts?” Upon implementing the large-scale emissions optimization 
control scheme in the workplace charging segment, as described in Chapter 2, the workplace 
demand was concentrated into times of low average emissions, with a peak just before noon.  
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Using Scenario 3 with low residential charging and high workplace charging access as an 
example, Figure 40 shows the uncontrolled and controlled workplace charging profiles when 
the average-emissions-minimizing control was applied. Studying the emissions shows that this 
actually increased emissions in both the 2019 and 2030 grids relative to uncontrolled charging. 

Figure 41: Load Shape with Average-Emissions-Minimization Control 

 
 

Source: SLAC 

Studying the impact of applying workplace charging control aimed at minimizing average 
emissions, finds the emissions per mile traveled actually increased relative to uncontrolled 
workplace charging with the proposed control scheme, as shown in Figure 41 (Powell et al., 
2022b). This highlights the challenge in using average emissions factors to guide charging. 
The average carbon intensity of electricity generated during the day, before adding EV 
charging, is low thanks to the presence of high levels of solar generation. However, when EV 
charging demand is added at those hours, unless there is solar being curtailed, renewables 
cannot instantly be added to meet that new demand and it is instead met by increasing fossil 
fuel generation. The marginal emissions factors of generators at that hour better explain the 
increase in emissions, and higher emitting plants are often on the margin midday. In the long 
term, however, adding consistent demand midday through charging will increase demand for 
solar and support additional solar deployments.  
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Figure 42: Impact of Charging Control on EV Grid Emissions per Mile 

 
  

Source: SLAC 

In summary, the key results from this analysis are:  

• Daytime charging would have led to higher emission in 2019. 
• Daytime charging will have lower emissions than evening charging by 2030, and non-

residential infrastructure to support daytime charging should be deployed to support 
this type of charging. 

• Controlled charging based on emissions is challenging and needs further research 
attention. 

These results and scenarios are extended and further explored in the team’s recently 
submitted paper (Powell et al., 2022b). 
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CHAPTER 4: 
Technology/Knowledge/Market Transfer 
Activities 

Outreach Activities, Knowledge Gained, and Feedback 
The methodology developed in this project generated, to date, three peer-reviewed 
publications2, 3,4 in relevant power system, transportation, and energy conferences. 
Additionally, it generated one report to a project site partner quantifying in detail the potential 
in cost savings obtained through implementing smart charging at that location. The team also 
presented the work in conferences and workshops to academia, industry, and state and 
federal agencies, such as IEEE Power and Energy Society General Meeting in 2020 and 2022, 
RT Spotlight in 2019, Center for Community Energy V2G (Vehicle to Grid) Virtual Conference in 
2021, California Public Utilities Commission Electric Program Investment Charge Policy + 
Innovation Forum in February and October of 2021, and California Energy Commission (CEC) 
Energy Innovation Tour in 2022, to understand the directions each is taking, exchange ideas, 
and inform  the team’s research goals on how to help solve the problem of increasing adoption 
of EVs and reducing emissions. 

The team received multiple rounds of feedback from technical advisory committee members, 
academics, and industry. The most relevant feedback that heavily influenced the design of the 
project were:  

a) Get utilities involved to help understand the pain points from their angle.  
b) Engage with other CEC project teams working in the same space.  
c) Engage with fleet operations team.  
d) Understand user preferences. 
e) Think about new ways to integrate system-level information.  

Get Utilities Involved to Understand Pain Points from Their Angle 
To address this recommendation the team met with different utilities in and out of state 
including PG&E, City of Palo Alto, National Grid, and Holy Cross Energy. Most were concerned 

 
2 Powell, Siobhan; Emre Can Kara, Raffi Sevlian, Gustavo Vianna Cezar, Sila Kiliccote, and Ram 
Rajagopal. 2020. "Controlled workplace charging of electric vehicles: The impact of rate 
schedules on transformer aging." Applied Energy (Elsevier) 115352. 
3 Powell, Siobhan; Gustavo Vianna Cezar, Elpiniki Apostolaki-Iosifidou, and Ram Rajagopal. 
2022. "Large-Scale Scenarios of Electric Vehicle Charging with a Data-Driven Model of 
Control." Elsevier Energy (Energy). 
4 Moradipari, A.; N. Tucker, T. Zhang, G. Vianna Cezar, and M. Alizadeh. 2020. "Mobility-Aware 
Smart Charging of Electric Bus Fleets." IEEE Power & Energy Society General Meeting. IEEE. 1-
5. 
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about the additional overall load EVs would be adding to the system and the timing. The team 
explored this concern by developing multiple charging strategies looking into protecting 
infrastructure, reducing cost based on electricity tariff, and reducing emissions to shape the 
load to support a higher number of EVs while reducing grid impacts and meeting customer 
needs. Another common concern was the residential infrastructure requirement to support 
residential charging and impacts on assets such as transformers. The team instrumented one 
of the transformers it had access to and developed multiple analysis and a data-driven 
temperature model to assess transformer aging.  

Engage with Other CEC Project Teams Working in the Same Space 
To address this recommendation, the team reached out to the project manager and connected 
with other teams working on similar topics, such as electrifying and managing charge of fleets, 
in particular buses, since this is still an area that requires development and industry 
engagement. A common issue reported by all teams was the challenge in controlling the 
charging of the buses. Even within the same vehicle/charger manufacturer the same 
methodology worked differently among projects. To address this common issue among 
projects, the project team worked extensively with the partners and vehicle manufacturers to 
understand the small differences, such as software and firmware versions, and new wiring and 
procedures, which often were not properly documented and performed extensive testing to 
show the ability to manage charging remotely.  

Engage with Fleet Operations Team 
For this recommendation, the project team met frequently not only with the management and 
planning teams, but also with the dispatch team and drivers to provide a clear understanding 
of what the goals were and understand how they operate to minimize the impact in their 
routine and operations.  

Understand User Preferences 
To address this recommendation the project team conducted surveys with fleet managers, 
operators, and drivers to understand preferences and capture information that could drive 
behavior. The team also analyzed data from drivers using workplace charging at SLAC.  

Think about New Ways to Integrate System-Level Information 
Finally, for this recommendation the team engaged in discussions of new potential 
collaborations with other research teams from industry and academia to include building 
controls and enable real-time monitoring and communication capabilities with distribution 
system assets, in particular transformers, that can be integrated with EV charging controls. 

Intended Users 
The team identified four main users that can leverage the outcomes of this work: 

• Electric utilities. Electric utilities can use the analytics, algorithms, and results 
developed to design rate structures to better incentivize EV adoption while reducing 
emissions from and impact to the distribution system. Additionally, they can use the 
results obtained to incentivize EVSE and third-party companies to continue developing 
and providing smart charging solutions to minimize EV load impact on the 
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infrastructure. Moreover, utilities can use the analysis and results obtained from the 
transformer analysis to better quantify whether their distribution level transformers are 
experiencing accelerated aging given the additional EV loads, and other loads, to 
prevent failures and catastrophic events. Finally, even though this project targeted non-
residential environments, the technology developed can be translated to other sectors. 
For example, the transformer analysis would also apply to the residential sector. 
Another example would be incentivizing smart technologies and manage charging in the 
residential sector to spur adoption of EVs, in particular, in disadvantaged communities. 
These locations often cannot install Level 2 chargers because they will require an 
upgrade of the main service panel, which can be costly. If managed charging is 
adopted, building codes could be updated and allow homes to install Level 2 managed 
EVSE. 

• Industry. Similar to electric utilities, different sectors of the industry can use the 
outcomes and knowledge created by this project. EVSE companies can increase 
revenue by implementing smart charging to their EVSE network. This project 
demonstrated a diverse set of control strategies applied in different cases to show the 
benefits of such an approach. Very few companies are actively, and successfully, doing 
this. Among all workplace campus managers with which the project team interacted, 
common feedback was the lack of smart charging capabilities in the charging stations 
they had on site. Another revenue stream that EVSE companies, campus managers, and 
third-party aggregators can leverage is the market participation of EVs as a flexible 
resource. Finally, campus managers and companies such as transformer manufacturers 
can also use the outcomes of this project to better understand the impact of the EV 
load and how that understanding can affect the overall lifetime of these systems and 
improve the design of new equipment. 

• Federal and state agencies. These agencies can use the results of this program to 
inform the next line of investments and research needed to increase adoption of EVs 
and seamlessly integrate them with the electrical infrastructure, in a practical way. In 
addition, agencies can use the outcomes to create new policies and mandates, or 
modify current ones, to better align with the most current findings from research, 
technology development, and implementation. 

• Academia. The results from this project can be used as foundation for new academic 
research. Models and algorithms developed are open source and accessible to 
researchers to use and potentially create new frameworks and generalize the 
application of such models and algorithms beyond what was accomplished in this 
project. 

Continued Work and Technology Transfer 
The methodology developed in this project is already generating interest from different 
segments. With the knowledge obtained working with SLAC and Stanford and knowing the 
close collaboration between these institutions in multiple fields, an initiative called Living Lab is 
forming. The goal of this initiative is to leverage the capabilities and resources of each campus 
and work together to design, implement, and demonstrate solutions that look into 
sustainability and reducing overall campus emissions, from transportation in particular, and 
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increase resilience and reliability of power. Under this initiative, exploring the integration of 
building controls with cross-campus EVSE, solar, and onsite generators is one of the main 
topics. Similarly, to the Living Lab, the Bits and Watts initiative at Stanford with its EV50 
program is already leveraging the algorithms, communication, and software capabilities 
developed in this project and applying them to their specific goals. 

Stanford transportation team, which manages the electric bus fleet, is very keen to continue to 
support the analysis and development of solutions to its fleet. One current issue is the unequal 
use of the fleet, with some buses being used more than others. Smart charging is a 
mechanism to ensure uniform use of the fleet by leaving underused buses fully charged while 
leaving overused buses in need of charging. Another interest area for further collaborating is 
in helping to plan how to decommission the current diesel buses and replace them with 
electric buses. Key questions to address include 1) will the size of their infrastructure need 
upgrading? and 2) what resources are needed to operate the system for 4, 8, and 24 hours 
without power?  

A collaboration is underway between SLAC, Stanford, and Prolec-GE on distribution 
transformers and how to model the impacts of EVs. Prolec-GE is one of the largest transformer 
manufacturers, and their expertise and active involvement of their research engineering team 
will add additional information and operational considerations to the analysis. Further, a Smart 
Transformer white paper is being defined and specifications are being developed based on the 
results obtained in this project to properly test, measure, quantify, and develop models that 
can be transferable to other transformers that cannot be instrumented. 

Finally, SLAC is part of a team led by PostRoad Foundation, which will deploy and demonstrate 
the benefits of transactive energy systems in residences in New Hampshire as part of a project 
funded by the Building Technologies Office within the U.S. Department of Energy. The 
framework developed in this project provides the basis for underlying software architecture 
and hardware to communicate and control the EVSE. 
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CHAPTER 5: 
Conclusions/Recommendations 

SLAC, UCSB, and ChargePoint teams have demonstrated the many benefits of the capabilities 
of vehicle-grid integration. Additionally, they addressed multiple challenges with respect to 
communication with devices and hardware, as well as real-time software implementations. 
Unfortunately, the COVID-19 pandemic, severely affected the demonstration component of the 
project since the selected demonstration sites were closed and, to this date, have very limited 
use of the EVSE infrastructure in place. Nonetheless, the teams worked hard to improve the 
knowledge gap about the effects of EVs in the distribution system, ways to mitigate those 
effects, and the hardware and software used to manage the charging.  

Project Outcomes 
For the Stanford electric bus fleet, a 55 percent daily electricity cost savings could be achieved 
by optimizing the charging schedule and electric bus assignment to routes, and up to 88 
percent savings could be achieved if leveraging onsite solar generation. These savings were 
based on using the entire electric fleet with the pre-COVID 2019 schedule. Using the limited 
schedule during COVID and including only the electric buses that were able to have charging 
controlled remotely (K9M bus model), the new proposed solution was able to save 
approximately 47 percent in electricity costs. These savings come primarily from charging 
mostly during off-peak hours and preventing top-off behavior when charging. From an 
emissions standpoint, using the analysis during COVID, the proposed schedule reduced the 
emissions by approximately 25 percent compared to the status quo. Finally, the team was also 
able to demonstrate the capabilities of remotely controlling the charging of BYD’s K9M models 
through Viriciti's DH hardware. However, there are still reliability issues related to internal 
bus/station firmware and software that prevent this system from being deployed as a 
production-ready software package.  

For the Google site, different smart charging mechanisms were implemented targeting several 
rate structures, demand response, reducing transformer impacts, real-time operations, and 
emissions. For sites under PG&E’s A-10 and E-19 electricity tariffs participating in demand 
response programs, for example, the annual cost savings were approximately 23 percent and 
25 percent, respectively. Additionally, based on the flexibility of EV charging, it was found that 
the maximum sheddable load capacity occurred between 9:00 a.m. and 11:00 a.m., and the 
capacity ranged from 71.92kW to 100.78kW, or 54 percent to 76 percent of the monthly 
uncontrolled maximum demand. From the transformer impact analysis, the project team found 
that some sites could support fewer than 150 vehicles per day with uncontrolled charging, but 
nearly 250 vehicles with the best control schemes. Time-of-use rate schedules did not 
encourage any improvement in the number of EVs supported. Capping the total demand at 
each site gave a modest improvement. The best case, however, came from peak minimization, 
rates with demand charges, or the direct minimization for transformer aging. For the algorithm 
designed to operate in the field in real-time conditions with only data available from the EVSE, 
different scenarios were evaluated by including transformer constraint, minimum amount of 
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charge and different weights for the objective functions (electricity cost and EV energy). In 
general, the algorithm was able to deliver more than 80 percent of the requested energy while 
reducing the energy cost by 20 percent and demand chargers by 40 percent. Finally, from an 
emissions perspective, a comparison between different controlled and uncontrolled profiles 
was performed for the real-time algorithm. No significant variation between the different 
controlled and uncontrolled profiles among the three sites was found. This is likely due to the 
flat median average and marginal emissions profile shapes during workplace charging hours. 

At the SLAC site, a data-driven model of the temperature of the transformer feeding the EV 
stations was developed based on sensors installed in the transformer coils. The model 
reported a root mean square error of just 9.8 percent of the mean value during that time and 
4.8 percent of the maximum value. Finally, at SLAC, the team developed and deployed a 
software platform, the SGMP, to manage and control the lab resources that included EV 
charging stations, solar, battery energy storage systems, and loads. The project team 
demonstrated how solar, battery, and EVSE can be coordinated to reduce the dependency on 
grid power when charging an EV. 

When looking at the larger electrical system, the team analyzed the impact of phase imbalance 
and harmonics. From the analysis performed, the phase imbalance in the system at scale, 
generally, will not create problems for the system. The main problem continues to be capacity 
and grid asset limits. However, extreme cases such as all EVs charging at the same time and 
in the same phases can present a challenge, in particular overloading the neutral conductor 
due to unbalanced loads and harmonics, in particular the third harmonic, due to non-linear 
loads. However, due to diversity and possibility of harmonic cancellation, these cases are 
unlikely to happen in practice. 

Finally when comparing scenarios with more or less non-residential charging in the system, 
given the grid conditions and generating resources of 2019 and 2030, and considering 100 
percent of passenger vehicles electrified, the team found that a) daytime charging would have 
led to higher emission in 2019, b) daytime charging would be lower emission than evening 
charging by 2030, and non-residential infrastructure to support daytime charging should be 
deployed to support this type of charging, and c) controlled charging based on emissions is 
challenging and needs further research attention. 

Lessons Learned 
The team faced many challenges during this project and learned lessons on how to overcome 
and prevent those challenges moving forward. These lessons can be useful for other 
researchers, teams, and projects. Some of the most important lessons include: 

• Legal: If the project requires access to proprietary information or data containing 
personal identifiable information, getting the legal approvals can be lengthy. Working 
very early with the partners, defining what is needed from a data standpoint, and 
connecting the legal teams of the institutions involved is critical. Additionally, if the data 
requirements are still being defined, it is advised to overestimate what will be needed 
rather than adding on to the existing agreement at a later date. 

• Delay from vendors/manufacturers: Working with equipment from a variety of 
manufacturers and vendors that are not part of the project team can be challenging. In 
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many cases, support is not immediately available and changes in equipment hardware 
and software can be time consuming and costly. Requesting, testing, and debugging 
new equipment features can be a big challenge. Therefore, it is critical to know what 
will be needed from an equipment standpoint and whether such capabilities already 
exist or are being developed if the manufacturer is not part of the project team. 
Additionally, building a relationship with the product manufacturer and having a 
responsive contact person who is interested in the project outcomes is important to get 
prompt support. 

• Input from different stakeholders: In large-scale projects, having a clear understanding 
of the different stakeholders and their perspectives is key. Management/planning 
stakeholders have a different view of the problem compared to operations stakeholders. 
Sometimes they might even have conflicting information or a difficult relationship. Being 
able to address everyone's concerns and needs and building a good relationship with all 
stakeholders are key to success. 

• Software Application Programming Interface (API): Software and APIs are becoming 
increasingly important when it comes to accessing and controlling devices. A well-
documented API with clear instructions is key to accelerate the development of the 
software and algorithms. Even with good documentation, evaluation of the performance 
in the field under real-world conditions will require performance of many tests. 
Moreover, there are no standards adopted by EV and EVSE manufacturers; thus 
integration with different equipment will require writing a different set of software 
drivers. 

Future Research 
This project will take multiple directions for future research to continue advancing a seamless 
integration of electric vehicles with the grid. 

The first direction is targeting distribution transformers. The data-driven model developed 
using the transformer temperature was able to capture and predict the variation in 
temperature with given EV loads. The new direction will investigate the transferability of such 
models to other transformers that cannot be instrumented, either because it is expensive, 
impractical, or impossible. The team is in discussions with transformer manufacturers to 
pursue collaborations that will help in this direction by understanding what information can be 
transferred and what needs to be specific.  

The second direction will look into exploring ways to add more functionalities to a transformer 
regarding information exchange and controls. The concept of the smart transformer and its 
capabilities will be defined. These capabilities will include, but not be limited to: 

• Communication leveraging the Industrial Internet of Things. 
• Controls to enable the transformer to perform tap changes and change voltage based 

on higher level information, and to communicate directly with local resources such as 
EVSEs, EVs, solar and energy systems, and building and smart home controls. 

• Sensing capabilities such as temperature, harmonics, and phase. 
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The third direction is exploring global coordination among networked EVSE and answering how 
global coordination of EVSE will perform compared to individual sites optimizing their own 
operation. The project team found that there is a conflicting objective between the distribution 
system, which tries to protect its infrastructure while maximizing use of its stations and in 
many cases can shift loads to late afternoon and early evening, and the transmission system, 
which looks into pushing more of the EV load to daytime to reduce the ramping requirements 
in the late afternoon and early evening.  

The fourth direction is looking into integration of multiple distributed energy resources such as 
EVSE/EV and solar and storage systems, with loads to minimize the impacts of such resources 
in the grid through coordination. Each individual resource has great potential on its own but 
can achieve greater benefits if coordinated with other resources. Further, within this scope, 
vehicle to grid capabilities will be explored given that this has greater potential for additional 
benefits when properly coordinated. 

Lastly, the team will continue to work on the intersection of electrification of transportation 
and grid impacts. From the multiple discussions the team had throughout this project with 
different stakeholders, it is clear that there are many unanswered questions as to whether the 
current grid can support the current goals of EVs and, if not, what modifications are required 
to support those goals. To ensure the goals set by the state can be achieved without 
compromising the entire grid and thus affecting ratepayers, in particular those living in 
disadvantaged communities, a stronger interdisciplinary effort among industry, academia and 
research institutions, policy makers, and electric utilities, among others, must be in place. 
Within these institutions, it is of utmost importance to have experts in planning and operations 
discussing solutions since on many occasions conflicting objectives exist. 

 
 

 



 

15 

CHAPTER 6: 
Benefits to Ratepayers 

Smart Charging as a Tool to Reduce Electricity Costs  
Daytime charging, in particular workplace charging, has many characteristics that make it well 
suited for smart charging strategies. These charging segments have high flexibility, predictable 
arrival and departure times, and historical data, and the EVSEs are aggregated under one 
connection point to the grid and are typically from the same vendor. Leveraging these 
particular characteristics, different strategies can be implemented to benefit the site host as 
well as the overall grid and ratepayers. Smart charging can be used to provide grid services 
such as participating in demand response programs or the ancillary services market. This 
would prevent electric utilities from dispatching more expensive and polluting generation 
resources to meet the load demands which ultimately increase the electricity costs and 
generate more emissions that can impact the population’s health. 

Additionally, smart charging can be used to defer investments in infrastructure upgrades that 
would ultimately lead to an increase in electricity costs. Ensuring that grid assets are used 
within their capacity prevents accelerated aging, and more EVs can leverage the same 
infrastructure for longer periods of time. 

Finally, users of charging infrastructure that have smart charging capabilities can generally 
expect lower electricity costs since the site host, overall, will pay less compared to not having 
smart charging capabilities. 

Smart Charging as a Way to Improve Grid Resilience and 
Reliability 
Smart charging can also improve system reliability and resilience. With the increasing adoption 
of renewable generation and its intrinsic intermittent characteristic, a load that requires 
reliable power to operate cannot fully count on such generation being available. This means 
that there might be moments where generation is more or less than what is needed. EV 
charging, in particular daytime charging, which inherently has flexibility, can be used as a 
flexible resource, leveraging smart charging algorithms, to ensure that over and under 
generation of renewable resources is properly handled to prevent outages, which can be local 
or, in some cases, systemwide. 

Coupling EV charging with onsite generation and energy storage systems can greatly improve 
the reliability of the system by leveraging these resources to reduce the burden on the grid 
through a seamless coordination. Resiliency can also be improved since these resources can 
operate in small microgrids and, by removing load from the larger grid, allow a quicker 
recovery. 

Finally, utilities can leverage smart charging to inform the design of rate structures to shape 
the EV load. Given a wide adoption of smart charging, particularly daytime charging, utilities 
can design rates to prevent the additional demands of EVs in specific hours of the day 
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impacting the overall operation. These approaches will ultimately improve system reliability 
and resiliency as the EV adoption grows. 

Summary of Results 
Table 6 and Table 7 present a summary of the major results obtained from analyses 
performed in each site, i.e. university campus with an electric bus fleet and workplace campus 
with passenger EVs. The Charging Strategy column is related to what the optimization was 
capable of doing. If the charging was only able to change in time but no control over power 
delivery was possible, it is identified as Shift. If power delivery was able to be controlled, it is 
identified as Shed+Shift. Finally, if solar is available and used within the optimization, the 
charging strategy is identified as OnSite Solar+Shed+Shift. The results presented in these 
tables are the best case among all the results presented in Chapter 3. 

Table 6 presents two test cases, one with all the 38 electric buses (pre-COVID) and another 
with only 7 buses (during COVID). The Savings column is with respect to the uncontrolled 
charging, i.e. the status-quo. The values of Max Demand Reduction and Emissions Reduction 
for the test case, including all the buses, compare the values between the two charging 
strategies, thus the Shed+Shift is the reference case. The test case with seven buses uses as 
a reference the status-quo for that case. Since in this case there is a small number of buses 
demand reduction was not considered. 

Table 6: Electric Bus Fleet Summary Results 

 
Table 7presents the summary of two test cases, Offline and Real-Time. The Offline case 
reflects the analysis performed using the full knowledge of the charging events; whereas, the 
Real-Time has no knowledge of future information. 

Table 7: Workplace Passenger EV Summary Results 

 
Source: SLAC 
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LIST OF ACRONYMS 
 

Term Definition 

AEF average emissions factor 

API application programming interface 
Arms ampere root-mean-square 
CO2 carbon dioxide 

CRL capacity reservation level 
DEVINE Demonstration of Vehicle Grid Integration in Non-residential Environments 
DER distributed energy resources 
DH Datahub 
ESP energy service provider 
EV electric vehicle 
EVSE electric vehicle supply equipment 
g Gram 
GHG greenhouse gas 
IEEE Institute of Electrical and Electronics Engineers 
kVa kilovolt-amperes 
kW Kilowatt 
kWh kilowatt-hour 
MEF marginal emissions factor 
MILP mixed integer linear programming 
PDP Peak Day Pricing 
PG&E Pacific Gas and Electric Company 
PV Photovoltaic 
RMSE root mean squared error 
SGMP smart grid management platform 
SOC state of charge 
TOU time of use 
U.S. EIA United States Energy Information Administraton 
U.S. EPA United States Environmental Protection Agency 
UI user interface 
V Volt 
VGI vehicle grid integration 
W Watt 
WECC Western Electricity Coordinating Council 
Wh watt-hour 
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APPENDIX A: 
Data Availability 

Each site had a different set of characteristics and data availability that informed the design of 
the different components of the project. This appendix provides further information on each 
site. 

Stanford University 
The Stanford University fleet comprises 38 electric buses from BYD and has a total of 23 
charging stations, each consisting of two 40 kW charging connectors for a total of 80kW per 
station (3-phase 480V/120A). Figure A-1 shows Stanford’s bus yard and charging stations. 

 

Figure A-1: Stanford bus yard with buses connected to the charging stations 

 
 

Caption: The telemetry data used from this site came primarily from two systems, Viriciti and ETA Transit. 

In addition to the information provided in Chapter 2, the Viriciti telemetry also provided 
variations of the main data used, described in Chapter 2, such as SOC and energy “used in 
service” and “not in service”, among others. However, when performing analysis of these 
variations to understand their potential it was found that they were not accurate on what they 
were reporting. The two main causes of such discrepancies were: 1) the dependency on 
drivers to accurately report when in service and 2) understanding the underlying formula to 
calculate these variables since they were reported as data points in the controlled area 
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network port that the DH collected. Therefore we decided not to use these variations. Table 1 
shows all the data Viriciti system collected through the DH. 

Table A-1 shows the Information provided by the Viriciti API. 
ENERGY_IDLED_PER_

DAY 
ODO_PER_DA

Y 
ENERGY_DRIVE

N_PER_DAY 
TIME_CONSUME

D_PER_DAY 
SOC_USED ODOMET

ER 
COOLANT_TEM

P_RIGHT 
EFFICIENCY_CUR_KM acceleration energy_idled time_driven speed_from_r

pm 
contacter_

status 
trip_distance 

ENERGY_RECOVERED power energy_recovere

d_per_day 
time_driven_per_

day 
charge_cable_

con_status 
precharge

_contact 
kneeling 

ESTIMATED_RANGE_I

NSERVICE 
energy soc_filtered time_idled battery.soc parking_br

ake 
wheelchair_ramp 

ENERGY_INSERVICE_

PER_DAY 
energy_used efficiency_cur_k

m_driving 
time_idled_per_d

ay 
battery.voltage front_door cont_driving_ran

ge 
ENERGY_NOT_INSERV

ICE_PER_DAY 
energy_used_p

er_day 
efficiency_cur_k

m_inservice 
time_charged gps_position rear_door rpm 

SOC_USED_INSERVIC

E_PER_DAY 
energy_consum

ed 
time_used time_charged_per

_day 
gps_speed door_statu

s 
engine.temp_stat

us_left 
SOC_USED_NOT_INSE

RVICE_PER_DAY 
energy_consum

ed_per_day 
time_used_per_d

ay 
time_ignition_on charging_statu

s 
brake_swit

ch 
engine.temp_stat

us_right 
TIME_STOPPED energy_charge

d 
time_recovered time_ignition_on_

per_day 
battery.current gear_posit

ion 
battery.lowest_b

at_cell_temp 
ENERGETIC_STATE energy_charge

d_per_day 
time_recovered_

per_day 
soc_charged coolant_temp_

left 
speed battery.highest_b

at_cell_temp 
ODO_REFERENCE energy_driven time_consumed soc_charged_per

_day 

   

Table A-1: Viriciti parameters exposed through API 

Figure A-2 shows two pictures of Viriciti’s Datahub installed in each bus and Figure A-3 shows 
a screenshot of the Viriciti web portal. 

 

Figure A-2: Viriciti Datahub installed in Stanford’s BYD buses. 
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Caption: Installation location is dependent on bus model and year. Left image is from a BYD K9 model 
and the right image is from a BYD K9M model. 

 
 

Figure A-3: Viriciti web portal with real-time buses information 

 
 
 

Caption: The SPOT telemetry system, as discussed in Chapter 2, provides real-time bus location and 
routes. It also provides reporting that is used by the operators. Figure A-4 shows the information one can 
view and download from the system. Figure A-5 shows one of the reports the SPOT app can generate for 
the Stanford bus fleet.  

 

Figure A-4: SPOT dashboard 



 

A-4 

 
Caption: SPOT web portal showing 3 routes, out of 20, and which buses are fulfilling them. 

 

Figure A-5: SPOT reporting system 

 
Caption: Report providing information about trip statistics by route and bus 
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Figure A-6: Stanford bus fleet user-interface  

 
Caption: The user interface developed to remotely control the charging of the buses is shown in Figure A-
6. 

 

Google Campus 
At Google, the characteristics of each of the three sites are as follows: 

Site 1:  

Number of Level 2 EVSE: 57 

Number of sessions: 19,322 over one year 

Electricity tariff: E19S 

Transformer capacity: 300kVA for 30 EVSE and 150kVA for 18 EVSE 

Site 2:  

Number of Level 2 EVSE: 57 

Number of sessions: 19,799 over one year 

Electricity tariff: B10S in Q2 2020 

Transformer capacity: 500kVA 

Site 3:  

Number of Level 2 EVSE: 62 

Number of sessions: 8764 over six months 

Electricity tariff: A10SX 
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Transformer capacity: 500kVA 

 

These sites had ChargePoint stations which provided many data fields. Table A-2 presents the 
fields available from the ChargePoint historical data. 

 

Table A-2: Data fields obtained from ChargePoint historical data 
1 Unique identifier for each charging session 
Session Start Time Timestamp of when the session started 
Session End Time Timestamp of when the session ended 
Session Energy Total energy in kWh consumed in a session 
Interval ID Unique identifier of each charging interval within a session 
Interval Start Time Timestamp of when an interval started within a session 
Interval End Time Timestamp of when an interval ended within a session 
Interval Energy Total energy in kWh consumed in an interval 
Interval Avg Power Average power in kW utilized in an interval 
Charging Station Ports Number of ports in a charging station 

Charging Station ID unique, anonymous identifier of a charging station 
Charging Port ID anonymous identifier of a charging port 
Driver ID unique, anonymous identifier of a driver who initiated the session 
Queue Driver position in a queue for charging 
SOC State of charge 
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APPENDIX B: 
Algorithms Analysis 

Bus Schedules 
Figures B-1 and B-2 show the bus schedules provided to the dispatch team to operate the 
fleet. 

 

Figure B-1: HD-Line Schedule 

 
 

Figure B-2: MC-Line Schedule 
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Google 
Hourly load shed capacity of EV charging 
The hourly load shed capacity was determined by optimizing charging with a demand penalty 
applied at the given hour. The results of the average weekday profile with the hourly demand 
penalty for January is shown in Figure B-3. The controlled charging profile shows depressed 
load in the hour in which the demand charge is applied. 

Figure B-3: January average weekday profile with a demand penalty applied at 
each hour 
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Caption: The hourly load shed capacity from this optimization was calculated as the difference between 
maximum demand in the uncontrolled profile and the controlled profile for the hour in which the demand 
penalty was applied. The median hourly load shed ability for each month is shown in Figure B-4. 

Figure B-4: EV charging load shed capacity 
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Caption: Median hourly weekday load shed capacity and 25-75 percentile shaded for each month 

Real Time Optimization Results 
In the following section we present the results running the algorithms for the 3 sites. 

Site 1 
Figure B-5 and Table B-1 provide the load profiles and the results summary of the top 4 test 
cases. 

Figure B-5: Top four profiles out of the 13 Test Cases for Site 1 
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Table B-1: Top four results out of the 13 Test Cases for Site 1 
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Site 2 

Figure B-6: Top four profiles out of the 13 Test Cases for Site 2  

 
 

Table B-2: Top four results out of the 13 Test Cases for Site 2 

 
Caption: Figure B-6 and Table B-2 provide the load profiles and the results summary of the top 4 test 
cases. 
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Site 3 

Figure B-7: Top four profiles out of the 13 Test Cases for Site 3  

 
 

Table B-3: Top four results out of the 13 Test Cases for Site 3 

 
Caption: Figure B-7 and Table B-3 provide the load profiles and the results summary of the top 4 test 
cases. 

 

Emissions Results for Google Sites 
This section reports the additional emissions results from Chapter 3, section Emissions Results, 
for the other sites at Google. Figures B-8 through B-13 show the load shapes under different 
control schemes, and the average and marginal emissions profile applied in different days and 
across different control schemes. As noted in Chapter 3, there is more variation by day than by 
EV load shapes. 

Figure B-8: Comparison of the managed load profiles and status quo for Site 2 
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Caption: Sample loads on one weekday from Site 2 showing the different control scheme results: tests 6, 
7, and 9. 

Figure B-9: Weekday distribution of AEF and MEF for Site 2 

 
Caption: Each box shows the distribution across different control schemes of average or marginal 
emissions (per energy) on different weekdays tested at Site 2.  

 

Figure B-10: Comparison of the effects of different smart charging schemes for Site 
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2 

 
Caption: Each box shows the distribution across different weekdays of the average and marginal 
emissions for each control scheme tested at Site 2. As a percentage, the median changes very little 
relative to uncontrolled charging in each case.  

Figure B-11: Comparison of the managed load profiles and status quo for Site 3 
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Sample loads on one weekday from the Site 3 showing the different control scheme results: tests 6, 7, 9, 
and 11. 
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Figure B-12: Weekday distribution of AEF and MEF for Site 3 

 
Caption: Each box shows the distribution across different control schemes of average or marginal 
emissions (per energy) on different weekdays tested at Site 3.  

Figure B-13: Comparison of the effects of different smart charging schemes for Site 
3 
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Caption: Each box shows the distribution across different weekdays of the average and marginal 
emissions for each control scheme tested at Site 3. As a percentage, the median changes very little 
relative to uncontrolled charging in each case.  
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