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ABSTRACT 
This report highlights the methods, inputs, assumptions, and results of the Electric Vehicle 
Infrastructure for Road Trips (EVI-RoadTrip) model. Key results were previously published in 
the inaugural Assembly Bill 2127 Electric Vehicle Charging Infrastructure Assessment, and this 
report expands upon that report to provide more detailed analysis and discussion.   

EVI-RoadTrip simulations project the numbers and locations of direct current fast charging 
(DCFC) infrastructure needed for long-distance travel of battery-electric vehicles (BEVs) 
greater than 100 miles within and across California’s borders. This work addresses an under-
researched, but increasingly important use case for transportation electrification: long-distance 
travel. A fast-charging network connecting regions within and outside California is critical to 
accelerating and maximizing the transition to EVs by reducing range anxiety.   

The model follows four key steps: trip data generation, energy and charging simulation, 
station siting and sizing, and grid-hosting capacity analysis. The model simulates interregional 
and out-of-state road trips by BEVs, estimates energy use and charging demand along the 
road trip routes, calculates geographic clusters of charging demand, and simulates the 
existence of charging stations to serve those clusters, locating them in preferred areas with 
appropriate chargers. 

Assuming drivers prioritize charging at their origin or destination, an average of about 1,000 
DCFC stations and nearly 2,000 DC fast charging ports are estimated to support the electrified 
interregional travel of more than 5 million BEVs in 2030. Charging from road trips in this 
scenario is projected to result in a system peak load of about 60 megawatts around 2 to 3 
p.m. However, this report also highlights how these results can significantly vary depending on 
vehicle population, charging behavior, and other conditions. In particular, it may be possible to 
meet these charging needs with a smaller number of stations, and the same total number of 
chargers, as long as charging is available on all interregional travel corridors in the state. 

Keywords: Charging, infrastructure, transportation electrification, electric vehicle, road trip 
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EXECUTIVE SUMMARY   
Mobile sources in California contribute more than 50 percent of the state’s greenhouse gas 
(GHG) emissions, 80 percent of smog-forming nitrogen oxide pollution, and 95 percent of toxic 
diesel particulate matter. The associated impacts of these emissions are detrimental to the 
climate and harmful for the health of California’s residents. State policies such as Senate Bill 
32 address these negative externalities by requiring statewide GHG emissions to be reduced to 
40 percent below the 1990 level by 2030. The electrification of California’s transportation 
system is urgently needed, and the state has continued to pave the way for transportation 
electrification. Executive Order (EO) B-48-18 established a goal of 250,000 electric vehicle (EV) 
chargers by 2025 and 5 million zero-emission vehicles (ZEVs) on the road in 2030. Assembly 
Bill (AB) 2127 (Ting, Chapter 365, Statutes of 2018) tasked the California Energy Commission 
(CEC) with preparing a statewide assessment of the charging infrastructure needed to achieve 
these goals and reduce GHG emissions to 40 percent below 1990 levels by 2030. More 
recently, Governor Gavin Newsom set a goal in EO N-79-20 that 100 percent of in-state sales 
for new passenger vehicles will be ZEVs by 2035 and expanded the AB 2127 assessment to 
examine infrastructure requirements to support increased EV adoption. 

The CEC collaborated with the National Renewable Energy Laboratory (NREL) to evaluate 
charging infrastructure needs for light-duty passenger vehicles. This included an updated 
analysis using the Electric Vehicle Infrastructure Projections (EVI-Pro) 2 model to look at 
infrastructure requirements for local, short-distance travel, as well as a novel analysis targeting 
long-distance, interregional travel. To do the latter, NREL and CEC developed a new model, 
Electric Vehicle Infrastructure for Road Trips (EVI-RoadTrip) to project the direct current fast 
charging (DCFC) infrastructure needs to enable long-distance trips (LDTs) by battery electric 
vehicles (BEVs). 

LDTs are an historically under-researched area, and while these trips make up a small portion 
of total travel demand, they represent a significant barrier to widespread EV adoption. Building 
a properly sized and distributed DCFC network will decrease range anxiety and continued 
reliance on internal combustion engine vehicles (ICEVs), particularly in single-vehicle 
households or households looking to transition a second vehicle ICEV to an EV. Thus, this 
analysis seeks to answer four key questions: 

1) How many total charging stations and chargers are needed?   
2) Where should charging stations be located?   
3) How large should each charging station be (chargers per station)?   
4) What is the impact of LDT-related charging load on the electric grid infrastructure?   

Key results of this analysis were previously published in the CEC’s AB 2127 Commission Report 
in 2021, and updated results will be published in the second AB 2127 Commission Report in 
2023. This report expands on that discussion to detail the methods of EVI-RoadTrip, provide 
more information on the inputs and assumptions used, and highlight additional results, 
sensitivity analysis, and key takeaways. 
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5 Million Battery Electric Vehicles in 2030 Need Nearly 2,000 DCFC 
Chargers across all long-distance travel corridors in California 
The California Air Resources Board’s (CARB) Mobile Source Strategy estimates that California 
needs 8 million light-duty ZEVs (including over 5 million BEVs) in 2030 to meet the goals of EO 
N-79-20. Those results are being refined as part of CARB’s Advanced Clean Cars II regulation. 
This work investigated three different charging behaviors. 

1) Always Topping Off (ATO) 
Drivers charge their vehicles to 100 percent state-of-charge (SOC) during every 
charging session of their trip. 

2) Time Penalty Minimization (TPM) 
Drivers stop charging before reaching 100% SOC to minimize charging time, as 
charging power level (and thus charging speed) drops off significantly at high SOCs. 

3) Hybrid 
This charging scenario blends ATO and TPM. Drivers adopt the ATO charging behavior 
except for the last charging event in their trip, where they follow the TPM behavior. 

Figure ES-1 shows that under the ideal TPM charging behavior, approximately 1,000 DCFC 
stations and nearly 2,000 DC fast chargers will support more than 5 million BEVs in 2030. Due 
to the high cost of establishing DCFC stations, it may be more economical to support BEV 
long-distance travel with a smaller number of stations with more chargers at each station. 
However, charging behavior can have a large impact on the network size. In the ATO scenario, 
the DCFC network increases by 46 percent and 87 percent for stations and chargers, 
respectively. This is due to increased overlap from longer charging events, which requires 
more infrastructure to avoid congestion and queuing. 
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Figure ES-1: DCFC Infrastructure Requirements for Stations (top) and Chargers 
(bottom) by Simulation Year and Charging Behavior – High BEV Adoption Scenario 

The number of DCFC stations and chargers is expected to increase over time to meet growing BEV travel and charging 
demand. By 2030, California is projected to need anywhere from 1,039 to 1,119 DCFC stations composed of 1,292 to 4,830 
chargers, depending on charging behavior. Under the ideal TPM charging behavior, the infrastructure requirements include 
an average of about 1,041 stations consisting of nearly 2,000 chargers. Source: CEC and NREL 
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DCFC Stations along Corridors and Rural Areas Should Be 
Prioritized to Enable Electrified Long-Distance Travel 
The projected DCFC station locations in 2030 present a notable contrast to the existing DCFC 
infrastructure published by the Alternative Fuels Data Center (AFDC). On the left side of Figure 
ES-2, the EVI-RoadTrip results for the year 2030 show that future stations will need to cover 
California’s road network more thoroughly to enable long-distance travel for EVs; specific 
station locations should be interpreted loosely. The right side of Figure ES-2 shows the charger 
count deficit for each traffic analysis zone (TAZ) in the state, illustrating that the largest gaps 
in infrastructure primarily occur in rural and less-traveled areas that have not been targeted in 
the market to date. Many other regions, however, have minimal or no charger deficit for long-
distance travel demand due in part to stations sited for local demand. That said, existing 
station factors, such as power level, embedded charger technology, and other specifics, today 
may not be suitable for future charger needs and it will be critical to consider the charging 
network evolution and to future-proof equipment. 
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Figure ES-2: Comparison between Existing DCFC Infrastructure and EVI-RoadTrip 
Projections in 2030 – Station Locations (left) and Charger Count Deficits by TAZ 

(right) 

On the left, EVI-RoadTrip results for the TPM charging behavior in 2030 show that DCFC stations will need to cover 
California’s road network more thoroughly than existing stations do today. On the right, a TAZ-by-TAZ analysis shows that 
the largest projected gaps in charger counts are concentrated in more rural areas of the state that have not been targeted as 
much in the market. However, many areas have minimal or no charger deficit, especially in urban areas and along major 
corridors. That said, these results do not consider the power level and embedded technology of existing chargers compared 
to projected chargers in the future. Source: CEC and NREL 

Charging Demand from LDTs May be Minor in Comparison to Local 
Travel, but Still Require Local Distribution Grid Upgrades 
Due to their relatively small share of total travel demand, expected charging load from LDTs 
will not be as significant as charging load from local passenger vehicle travel. As Figure ES-3 
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shows, under the TPM charging behavior, the estimated peak load in 2030 is 60 MW around 2 
to 3 p.m., which aligns with solar production. A significant portion of this load is attributed to 
vehicles visitors entering California from neighboring states and Mexico or residents returning 
to California, highlighting the importance of taking a holistic approach to charging 
infrastructure needs and continuing coordination across jurisdictions. 

Figure ES-3: Network-Wide Charging Load Profiles for Electrified LDTs in 2030 

The projected 2030 load profile in the TPM charging behavior scenario shows that charging from LDTs is not expected to 
make a significant impact on the grid, with a peak load of 60 MW around 2 to 3 p.m., which aligns with solar production. This 
charging load is dominated by intra-state and out-of-state inbound trips. Source: CEC and NREL 

This analysis also made use of the CEC’s Electric Vehicle Supply Equipment Deployment and 
Grid Evaluation (EDGE) model to conduct a proof-of-concept study on grid hosting capacity for 
LDT charging load. Figure ES-4 shows the net capacity deficits in MW at the TAZ resolution for 
lower and upper bounds on chargers. Negative values indicate the existing grid hosting 
capacity would be capable of supporting increasing charging demand from electrified LDTs. 
The results show that while most of the state is in a good position to accommodate this 
specific charging load, more rural or suburban areas along popular interstate highways 
(especially along the eastern and southern state borders) may require local distribution grid 
upgrades. The ability for the grid to accommodate fast charging for local travel and for 
medium and heavy duty truck travel is not assessed in this proof of concept. Furthermore, it is 
critical to continue coordination with the utilities to refine EDGE, as there are notable data 
quality and availability issues, such as blank regions on the map that currently have no grid 
data available. 
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Figure ES-4: Net Capacity Deficit by TAZ in 2030 for Lower (left) and Upper (right) 
Charger Bounds 

Integrating the EVI-RoadTrip load results with the CEC’s EDGE model allows net grid capacity deficits by TAZ to be 
evaluated for lower (left) and upper (right) bounds on chargers. Positive values indicate a capacity deficit. The results 
suggest that most LDT charging load could be accommodated by the current grid infrastructure, though more rural regions 
on the eastern and southern borders of the state may require grid upgrades. Source: CEC and NREL 

Conclusions and Future Work 
This novel model and analysis address an under-researched, but increasingly important use 
case for transportation electrification: personal on-road LDTs. To accelerate and maximize the 
transition to EVs, a DCFC network connecting regions within and outside California is critical to 
reduce range anxiety and use of ICEVs. 

While LDTs represent a small fraction of total travel, they will demand a disproportionate 
amount of the DCFC infrastructure. An estimated 1,041 stations with nearly 2,000 chargers will 
be needed to support the long-distance trips of more than 5 million BEVs. The size of this 
network could change depending on a number of factors, including BEV adoption trajectories, 
charging behavior, vehicle technologies, market preferences and evolution, and environmental 
conditions. Additionally, significant local demand reflected in the EVI-Pro 2 modeling will have 
to be incorporated to properly size stations, especially where stations serving LDT pass 
through urban areas. 

Future analysis will continue as part of the recurring AB 2127 assessments. Model methods 
and results will be updated to reflect market evolution and policy goals. Integrating EVI-
RoadTrip with EVI-Pro 2 will be key to providing a harmonized analysis. 
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CHAPTER 1: 
Introduction 

Policy Context 
Mobile sources in California contribute more than 50 percent of the state’s greenhouse gas 
(GHG) emissions, 80 percent of smog-forming nitrogen oxide pollution, and 95 percent of toxic 
diesel particulate matter.1 The associated impacts of these emissions are detrimental to the 
climate and harmful for the health of California’s residents. State policies such as Senate Bill 
322 address these negative externalities by requiring statewide greenhouse gas emissions to 
be reduced to 40 percent below the 1990 level by 2030.   

In order to achieve these goals, it is critical to convert California’s vehicle fleet from 
conventional internal combustion engine vehicles (ICEVs) to zero emission vehicles (ZEVs). 
The State of California has continued to pave the way for transportation electrification. 
Assembly Bill (AB) 1183 established the Clean Transportation Program and directed the 
California Energy Commission (CEC) to accelerate the development and deployment of 
innovative technologies that transform California's fuel and vehicle types to help attain the 
state's climate change policies with funding of approximately $100 million per year. AB 84 

extended the Clean Transportation Program through January 1, 2024. 

Executive Order (EO) B-16-20125 set the initial benchmarks for ZEV adoption in California of 1 
million ZEVs by 2020 and 1.5 million ZEVs by 2025. EO B-48-20186 established an additional 
target for 5 million ZEVs by 2030. The EO set an infrastructure goal of 250,000 electric vehicle 
(EV) charging stations in California, including 10,000 direct current fast charging (DCFC) 
stations by 2025. The goal also includes 200 hydrogen refueling stations. These policies have 
been instrumental in promoting ZEV adoption and deploying needed charging infrastructure, 

1 California Energy Commission staff. 2019. 2019 Integrated Energy Policy Report. California Energy Commission. 
Publication Number: CEC-100-2019-001-CM. Available at https://www.energy.ca.gov/data-
reports/reports/integrated-energy-policy-report/2019-integrated-energy-policy-report. 

2 Senate Bill 32 (Pavley), Statutes of 2006, Chapter 249. 
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201520160SB32. 

3 Assembly Bill 118 (Nunez), Statutes of 2007, Chapter 750. 
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=200720080AB118. 

4 Assembly Bill 8 (Perea), Statutes of 2013, Chapter 401. 
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201320140AB8. 

5 Governor Edmund G. Brown, Jr. Executive Order B-16-2012. Issued March 23, 2012. 
https://www.ca.gov/archive/gov39/2012/03/23/news17472/index.html 

6 Governor Edmund G. Brown, Jr. Executive Order B-48-18. Issued January 26, 2018. 
https://www.ca.gov/archive/gov39/2018/01/26/governor-brown-takes-action-to-increase-zero-emission-vehicles-
fund-new-climate-investments/index.html. 

https://www.energy.ca.gov/data-reports/reports/integrated-energy-policy-report/2019-integrated-energy-policy-report
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201520160SB32
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=200720080AB118
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201320140AB8
https://www.ca.gov/archive/gov39/2012/03/23/news17472/index.html
https://www.ca.gov/archive/gov39/2018/01/26/governor-brown-takes-action-to-increase-zero-emission-vehicles-fund-new-climate-investments/index.html
https://www.ca.gov/archive/gov39/2018/01/26/governor-brown-takes-action-to-increase-zero-emission-vehicles
https://www.ca.gov/archive/gov39/2012/03/23/news17472/index.html
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201320140AB8
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=200720080AB118
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201520160SB32
https://www.energy.ca.gov/data
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with over 1,111,000 ZEVs registered by the end of 2022 and over 87,000 public and shared 
private chargers as of January 2023 in the state.7 Of these chargers, over 9,200 are DCFCs.8 

Most recently, Governor Gavin Newsom issued EO N-79-20,9 which calls for all in-state sales of 
new passenger cars and trucks to be zero-emission by 2035 and sets other goals for medium- 
and heavy-duty and off-road vehicles. 

PEVs have been the most popular type of ZEV adopted by consumers. With the increasing 
adoption of PEVs, infrastructure planning for a widespread and diverse network of public 
chargers is critical to maximize the fraction of vehicle miles traveled that are powered by 
electricity (eVMT), alleviate range anxiety, and facilitate the further adoption of PEVs. To 
address this, AB 212710 tasked the CEC to prepare and biennially update a statewide 
assessment of the EV charging infrastructure needed to support the levels of adoption 
required for the state to meet its goals of putting at least 5 million ZEVs on California roads by 
2030 and reducing GHG emissions to 40 percent below 1990 levels by 2030. EO N-79-20, 
directed the CEC to update this analysis to support the new 2035 sales targets. 

Charging Infrastructure for Electrified Long-Distance Trips 
To evaluate the charging infrastructure needed to support the targeted adoption of PEVs, the 
CEC previously developed the Electric Vehicle Infrastructure Projection (EVI-Pro) tool, in 
collaboration with the National Renewable Energy Laboratory (NREL). EVI-Pro projects the 
number, location, and type of chargers required to meet the needs of light-duty PEV drivers. 
The original EVI-Pro analysis11 provided results that informed the EO B-48-2018 target of 
250,000 electric vehicle chargers by 2025, including 10,000 DC fast chargers. 

One of the limitations of the existing EVI-Pro model is that the analysis focuses on local, 
intraregional travel and charging demand. However, it is important to expand beyond this 
scope and also assess the potential of electrifying interregional long-distance trips (LDTs).12 As 

7 CEC. 2021. California Energy Commission Zero Emission Vehicle and Infrastructure Statistics. Data last updated 
April 28, 2023. Retrieved June 14, 2023 from https://www.energy.ca.gov/zevstats. 

8 Ibid.   

9 Governor Gavin Newsom. Executive Order N-79-20. Issued September 23, 2020. https://www.gov.ca.gov/wp-
content/uploads/2020/09/9.23.20-EO-N-79-20-text.pdf. 

10 Assembly Bill 2127 (Ting), Statutes of 2018, Chapter 365. 
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB2127. 

11 Bedir, Abdulkadir, Noel Crisostomo, Jennifer Allen, Eric Wood, and Clément Rames. 2018. California Plug-In 
Electric Vehicle Infrastructure Projections: 2017-2025. California Energy Commission. Publication Number: CEC-
600-2018-001. 

12 In this analysis, long distance trips (LDTs) are defined as 100 or more miles one-way from origin to 
destination. However, this definition is only applied to intra-state LDTs that begin and end in California. For out-
of-state or external LDTs, as discussed in Chapter 3, we only know the travel volume and distance for the portion 
of the trip within California. Due to this lack of knowledge of exact travel distance beyond the state boundary for 
out-of-state LDTs, we consider trips that include at least 50 miles within California. 

https://www.energy.ca.gov/zevstats
https://www.gov.ca.gov/wp-content/uploads/2020/09/9.23.20-EO-N-79-20-text.pdf
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB2127
https://efiling.energy.ca.gov/GetDocument.aspx?tn=224521&DocumentContentId=55071
https://efiling.energy.ca.gov/GetDocument.aspx?tn=224521&DocumentContentId=55071
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180AB2127
https://www.gov.ca.gov/wp
https://www.energy.ca.gov/zevstats
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technology improvements continue to introduce PEVs with larger batteries and longer ranges, 
and PEV adoption expands beyond early adopters into the mainstream market, LDTs must be 
supported with appropriate and adequate charging stations. This will help reduce range 
anxiety, one of the most commonly cited concerns of drivers, encourage the growth of multi-
PEV households, and connect California not only regionally, but also across its borders to 
neighboring states. 

An appropriate charging infrastructure network to support LDT electrification requires 
determining how many charging stations are needed, where they are needed, how large each 
charging station should be (in terms of both the number of chargers and power capacity), and 
the impact of LDT-related charging load on the electric grid. There are no publicly available 
models, tools, or studies that can provide comprehensive and current answers to those four 
key questions. Thus, the CEC collaborated with NREL to develop a new model, Electric Vehicle 
Infrastructure for Road Trips (EVI-RoadTrip) to determine the state-wide charging 
infrastructure required for electrified LDTs in California, the associated substation-level grid 
impacts, and policy implications of the results. 

This analysis leverages state-wide LDT activity data from the California Department of 
Transportation’s (Caltrans) California Statewide Travel Demand Model (CSTDM)13 to 
characterize LDTs in California. This is the most comprehensive and detailed LDT activity data 
source currently available to CEC staff. This analysis accounts for both intrastate and interstate 
trips with one-way travel distances greater than 100 miles. 

The basic spatial resolution of LDT activity characterization in this analysis is the Traffic 
Analysis Zone (TAZ), which is inherited from the CSTDM. Based on detailed bottom-up 
simulations of trip and charging events across California, the charging infrastructure network 
for electrified LDTs is evaluated for four years – 2020, 2025, 2030, and 2035. Although both 
plug-in hybrid electric vehicles (PHEVs) and BEVs could be used for electrified LDTs, PHEVs 
predominantly operate in conventional gasoline vehicle mode, rather than electric drive mode, 
for these types of trips. Consequently, the scope of this analysis is limited to BEVs and DC fast 
charging, which is typically the most suitable charging technology for LDTs. More details on 
the methods and data are discussed in Chapter 3, with the results and conclusions presented 
in Chapter 4 and 5, respectively. 

The goal of this analysis is to answer Five key questions related to DCFC infrastructure needs 
to enable electrified LDTs: 

1) How many total charging stations and chargers are needed by year? 
2) What power level will be needed and when? 
3) Where should charging stations be located? 

4) How large should each charging station be (chargers per station)? 

13 Caltrans (California Department of Transportation). (2020). Transportation Demand Modeling and Simulation. 
https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-
modeling/transportation-demand-modeling-simulation. 

https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-modeling/transportation-demand-modeling-simulation
https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide
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5) What is the impact of LDT-related charging load on the electric grid infrastructure? 

Key results of this analysis were previously published in the CEC’s AB 2127 Commission 
Report.14 This report expands on that discussion to detail the methods of EVI-RoadTrip, 
provide more information on the inputs and assumptions used, and show additional results, 
sensitivity analysis, and key takeaways. In particular, it updates key assumptions and results 
about the lower and upper bounds of chargers needed. 
  

14 Alexander, Matt, Noel Crisostomo, Wendell Krell, Jeffrey Lu, and Raja Ramesh. July 2021. Assembly Bill 2127 
Electric Vehicle Charging Infrastructure Assessment: Analyzing Charging Needs to Support Zero-Emission Vehicles 
in 2030 – Commission Report. California Energy Commission. Publication Number: CEC-600-2021-001-CMR. 
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CHAPTER 2: 
Literature Review 

LDTs are expected to rely on DC fast charging, because charging speed is typically the primary 
concern. However, designing an effectively sized and distributed DCFC infrastructure network 
requires numerous considerations, including travel pattern and volume, growth of EV adoption, 
types of EVs and their attributes (for example, range), DCFC technology (for example, 
maximum charging power), EV drivers’ charging behavior, and electrical grid conditions that 
may not have available capacity to host high-power charging. 

Personal On-Road Long-Distance Travel 
LDTs greater than 100 miles account for less than 1 percent of all personal vehicle trips. As a 
result, personal LDTs make a relatively small impact on overall energy consumption and 
emissions compared to short-distance travel, and have historically been under-researched in 
the transportation research community.15,16,17 For example, the 1995 American Travel Survey 
(ATS)18 and 2001 National Household Travel Survey (NHTS)19 are the only national surveys 
conducted to collect data for LDT activities in the U.S. Given the lack of LDT-specific surveys 
available, there is only one national travel demand modeling analysis20 that provides a county-
by-county origin-destination (O-D) matrix, which is built upon the 1995 ATS and 2001 NHTS. 

15 FHWA (Federal Highway Administration). (2008). Our Nation’s Highways. FHWA-PL-08-021. Retrieved from: 
https://www.fhwa.dot.gov/policyinformation/pubs/pl08021/.   

16 Bose, J., Giesbrecht, L., Sharp, J., Memmott, J., Khan, M., and Roberto, E. (2004). A Picture of Long-Distance 
Travel Behavior of Americans Through Analysis of the 2001 National Household Travel Survey. Transportation 
Research Board, 2004. Retrieved from: http://onlinepubs.trb.org/onlinepubs/archive/conferences/nhts/Sharp.pdf. 

17 Aultman-Hall, L. (2018). Incorporating Long-Distance Travel into Transportation Planning in the United States. 
Retrieved from: https://escholarship.org/uc/item/0ft8b3b5.   

18 Ibid.   

19 Hu, P. S. and Reuscher, T. R. (2004). 2001 National Household Travel Survey. Summary of Travel Trends. 
Federal Highway Administration. U.S. Department of Transportation. Retrieved from: 
https://nhts.ornl.gov/2001/pub/STT.pdf. 

20 Ibid. 

https://www.fhwa.dot.gov/policyinformation/pubs/pl08021/
http://onlinepubs.trb.org/onlinepubs/archive/conferences/nhts/Sharp.pdf
https://escholarship.org/uc/item/0ft8b3b5
https://nhts.ornl.gov/2001/pub/STT.pdf
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However, there have been more state-level efforts to collect LDT data, mainly to develop and 
calibrate state-wide travel demand models and forecasts.21,22 An example is the 2010–2012 
California Household Travel Survey (CHTS)23 , which included add-on questions specifically 
about LDTs. 

Apart from the lack of detailed data for LDTs, there are more fundamental challenges for 
research on LDTs, such as a lack of a universal definition for LDTs. In some cases, trips 
greater than 100 miles are considered LDTs (as in the 1995 ATS24). Others use different 
distance thresholds, such as 50 miles in the 2010–2012 CHTS and 2001 NHTS.   

Even though LDTs have a relatively minor impact on the overall travel volume and lack 
appropriate activity data and clear definitions, LDTs are an essential part of the overall 
transportation system and its economic and environmental sustainability.25 Thus, more 
research is needed to gain a deeper understanding of the nature and impact of LDTs in a wide 
range of spatial and temporal scales. 

Research on LDTs is also relevant for vehicle electrification and corresponding charging 
infrastructure. Single-vehicle households will purchase a vehicle to serve a variety of use 
cases, not just short-distance travel. Therefore, lowering the barriers for electrified LDTs 
through means such as providing appropriate charging infrastructure and alleviating range 
anxiety is critical to promote EVs among mainstream consumers. Evaluating the expected 
impacts of electrified LDTs also allows relevant stakeholders like electric utilities to take those 
impacts into account for their asset management and planning processes. 

The Design (Siting and Sizing) of DCFC Station Network for LDTs 
Studies have tackled the challenge of designing a DCFC station network for electrified LDTs. 
When designing a network of DCFC stations, objectives include determining the location and 

21 Horowitz, A. J., & Farmer, D. D. (1999). Statewide Travel Forecasting Practice: A Critical Review. 
Transportation Research Record, 1685(1), 13–20. https://doi.org/10.3141/1685-03.   

22 NAS (National Academies of Sciences). (2012). Long-Distance and Rural Travel Transferable Parameters for 
Statewide Travel Forecasting Models. Washington, DC: The National Academies Press. 
https://doi.org/10.17226/22661.   

23 Kunzmann, M. and Masterman, V. (2013). 20102012 California Household Travel Survey Final Report. 
California Department of Transportation. June 14, 2013. Retrieved from: 
https://www.nrel.gov/transportation/secure-transportation-data/assets/pdfs/calif_household_travel_survey.pdf. 

24 Hwang, H -L, and Rollow, J. (2000). Data Processing Procedures and Methodology for Estimating Trip 
Distances for the 1995 American Travel Survey (ATS). Retrieved from: 
https://www.osti.gov/servlets/purl/763239-wnN0lB/native/.   

25 Aultman-Hall, L. (2018). Incorporating Long-Distance Travel into Transportation Planning in the United States. 
Retrieved from: https://escholarship.org/uc/item/0ft8b3b5. 

https://doi.org/10.3141/1685-03
https://doi.org/10.17226/22661
https://www.nrel.gov/transportation/secure-transportation-data/assets/pdfs/calif_household_travel_survey.pdf
https://www.osti.gov/servlets/purl/763239-wnN0lB/native/
https://escholarship.org/uc/item/0ft8b3b5
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size of DCFC stations. This “location problem”26 has been a classic topic in the field of 
operations research, computer science, and other areas. 

Historically, the traditional location model framework to address this problem has been divided 
into three categories – node-based p-median (node-based), path or flow-based, and a hybrid 
of the two. The p-median approach determines the locations of facilities so that total weighted 
distance, maximum distance, and/or access costs between the nodes of demands (for 
example, consumers) and facilities (for example, grocery stores) can be minimized, or covered 
demands (by the facilities) can be maximized.27 One of the limitations of the node-based 
approach is that the location of facilities is determined only based on the set of nodes of 
demands or facilities, so internal and external flows between or through the nodes are not 
accounted for. In contrast, the path or flow-based facility location approach incorporates flow 
into the location determination process by maximizing the number of flows (for example, trips) 
served by facilities. The two approaches require different forms of input data. For example, 
population or other demand metric and road network information could be used for the node-
based approach, while traffic count and Origin-Destination data28 could be used for the 
path/flow-based method.29,30 Facility location problems need to consider both nodes and flow. 
The hybrid approach could be used for both node-based and flow data. 

From the standpoint of DCFC station siting for LDTs, a flow-based or hybrid method would be 
more useful than the node-based p-median approach, since it is important to account for 
vehicle activities along and around the corridors through which long-distance travelers move. 
However, Wood et al. argue that the node-based approach can also be useful for the DCFC 
station siting for LDTs.31 Another study shows that the best approach could depend on the 
geography for which the DCFC station network needs to be designed, as the flow or path-

26 Daskin, M. S. (1995). Network and Discrete Location: Models, Algorithms, and Applications. John Wiley & 
Sons, Inc. ISBN 0-471-01897-X.   

27 Church, R. L. and Revelle, C. S. (1976). Theoretical and Computational Links between the p-Median, Location 
Set-covering, and the Maximal Covering Location Problem. Geographical Analysis, Vol. VIII. 406-415. 

28 Origin-Destination data refers to travel surveys or other data formats recording the start and end points of trips 
that has been aggregated to show the number trips traveling from one location to another. 

29 Upchurch, C. and Kuby, M. (2010). Comparing the p-median and flow-refueling models for locating 
alternative-fuel stations. Journal of Transport Geography 18 (2010) 750–758. 
https://doi.org/10.1016/j.jtrangeo.2010.06.015.   

30 Ghamami, M., Zockaie, A., and Nie, Y. (2016). A general corridor model for designing plug-in electric vehicle 
charging infrastructure to support intercity travel. Transportation Research Part C 68 (2016) 389–402. 
http://dx.doi.org/10.1016/j.trc.2016.04.016.   

31 Motoaki, Y. (2019). Location-Allocation of Electric Vehicle Fast Chargers—Research and Practice. World Electr. 
Veh. J. 2019, 10(1), 12. https://doi.org/10.3390/wevj10010012.   

https://doi.org/10.1016/j.jtrangeo.2010.06.015
http://dx.doi.org/10.1016/j.trc.2016.04.016
https://doi.org/10.3390/wevj10010012
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based approach seems to produce more reasonable results than the p-median counterpart for 
larger geographical scales (for example, state vs. city).32 

DCFC station network studies have focused on various levels of geography. Some have 
investigated the DCFC needs along segments of highways,33,34 while others have tackled this at 
a larger geographical scale like the state level.35,36,37,38 

At the multi-state regional scale, M.J. Bradley and Associates (MJB&A) developed the Electric 
Vehicle Infrastructure Location Identification Tools, which identify suitable locations for public 
DCFC infrastructure along 14,000 miles of corridors from North Carolina to Maine.39 Notably, 
the MJB&A tools utilize a multi-criteria weighting approach incorporating factors like annual 
average daily traffic, peak traffic volume, population density, and commercial centers. This 
approach is unlike most of the other DCFC infrastructure network design studies that employ 
the traditional location model framework mentioned previously. 

Some studies have conducted national-scale analyses of the DCFC infrastructure requirements 
for electrified LDTs. Wood et al. assessed DCFC station network for LDTs for the contiguous 
U.S., based on a 70-mile station-to-station distance interval along the interstate highways.40 

The adoption of the 70-mile interval between the nodes may be categorized as a network 

32 Upchurch, C. and Kuby, M. (2010). Comparing the p-median and flow-refueling models for locating 
alternative-fuel stations. Journal of Transport Geography 18 (2010) 750–758. 
https://doi.org/10.1016/j.jtrangeo.2010.06.015.   

33 Nie, Y. and Ghamami, M. (2013). A corridor-centric approach to planning electric vehicle charging 
infrastructure. Transportation Research Part B 57 (2013) 172–190. http://dx.doi.org/10.1016/j.trb.2013.08.010.   

34 Ghamami, M., Zockaie, A., and Nie, Y. (2016). A general corridor model for designing plug-in electric vehicle 
charging infrastructure to support intercity travel. Transportation Research Part C 68 (2016) 389–402. 
http://dx.doi.org/10.1016/j.trc.2016.04.016.   

35 Li, S. and Huang, Y. (2015). Development of Electric Vehicle Charging Corridor for South Carolina. 
International Journal of Transportation Science and Technology. Volume 4, Issue 4, 2015, Pages 395-411. 
https://doi.org/10.1016/S2046-0430(16)30170-8.   

36 Li, S., Huang, Y., and Mason, S. (2016). A multi-period optimization model for the deployment of public 
electric vehicle charging stations on network. Transportation Research Part C 65 (2016) 128–143. 
http://dx.doi.org/10.1016/j.trc.2016.01.008.   

37 Zhang, L., Shaffer, B., Brown, T., and Samuelsen, G. S. (2015). The optimization of DC fast charging 
deployment in California. Applied Energy 157 (2015) 111–122. http://dx.doi.org/10.1016/j.apenergy.2015.07.057. 

38 Xie, F., Liu, C., Li, S., Lin, Z., and Huang, Y. (2018). Long-term strategic planning of inter-city fast charging 
infrastructure for battery electric vehicles. Transportation Research Part E 109 (2018) 261–276. 
https://doi.org/10.1016/j.tre.2017.11.014.   

39 MJB&A. (2021). Electric Vehicle Infrastructure Planning Tools. Available at: 
https://www.mjbradley.com/mjb_form/EV-tools. 

40 Wood, E., Rames, C., Muratori, M., Raghavan, S., and Melaina, M. (2018). National Plug-In Electric Vehicle 
Infrastructure Analysis. National Renewable Energy Laboratory. 

https://doi.org/10.1016/j.jtrangeo.2010.06.015
http://dx.doi.org/10.1016/j.trb.2013.08.010
http://dx.doi.org/10.1016/j.trc.2016.04.016
https://doi.org/10.1016/S2046-0430(16)30170-8
http://dx.doi.org/10.1016/j.trc.2016.01.008
http://dx.doi.org/10.1016/j.apenergy.2015.07.057
https://doi.org/10.1016/j.tre.2017.11.014
https://www.mjbradley.com/mjb_form/EV-tools
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location model. In contrast, discrete location models allow stations to be located with varying 
distances between nodes. He et al. also evaluated the DCFC infrastructure requirements for 
LDTs in the contiguous U.S. by utilizing the framework of a flow-refueling location model 
based on a network of nodes along the major U.S. highways, with about 60-miles between 
nodes.41 

Regardless of the station siting method used for various geographical scales, previous studies 
shed light on important factors that influence the results for DCFC infrastructure networks for 
LDTs. From the demand-side perspective of DCFC stations, travel volume and BEV types and 
their ranges are among the most important parameters identified in the existing studies. A 
higher LDT volume correlates to a larger number of required DCFC stations. Larger battery 
sizes (and thus longer ranges) result in decreasing the DCFC station network size, as less 
frequent charging during LDTs is required. BEV range is determined not only by battery size, 
but also vehicular energy consumption rate. As with assumptions related to battery size, the 
methods of estimating vehicle energy consumption vary from one study to another. Some rely 
on detailed vehicle dynamic simulation, while others adopt a fixed energy consumption rate. 

From the supply-side perspective, DCFC power is an influential factor. DCFC power (or speed) 
can be particularly important when evaluating the waiting time or queuing of BEVs in DCFC 
stations. Once it is assumed that BEVs can wait in the queue for charging, the required size of 
DCFC stations can decrease, compared to the case in which all BEVs are assumed to charge as 
soon as they arrive at the stations. 

Charging behavior and its impact has not been thoroughly examined in the existing body of 
literature on DCFC station network design for LDTs. Depending on the state of charge (SOC) 
at which drivers decide to plug or unplug their BEVs, the overall charging station network 
requirement and station utilization rate can change significantly.   

When sizing DCFC stations, most transportation infrastructure planning studies adopted a 
demand-centric approach – estimating the size of stations primarily based on projected 
charging demands (for example, total peak charging load). However, the size of a charging 
station can also vary with supply-side variables such as the cost associated with the station 
(capital, operating, maintenance costs) or financial incentives. This may become more 
important, especially when determining the size of individual stations, than estimating the 
overall fleet- or area-wide charging network requirement. Individual stations’ sizing can be 
impacted by numerous other factors contributing to the overall decision-making process, 
including on-site renewable electricity generation, energy storage, system architecture (for 
example, vehicle-to-grid), and control or operation strategy of charging events or activities (for 
example, smart charging). The size of a station can also be a function of the location, meaning 
that the size and location of a station are sometimes interdependent.   

41 He, Y., Kockelman, K. M., and Perrine, K. A. (2019). Optimal locations of U.S. fast charging stations for long-
distance trip completion by battery electric vehicles. Journal of Cleaner Production 214 (2019) 452–461. 
https://doi.org/10.1016/j.jclepro.2018.12.188. 

https://doi.org/10.1016/j.jclepro.2018.12.188
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Although there is no known standardized method that outlines how the optimal or maximum 
size of a station should be determined—including both the maximum power rating and the 
maximum number of chargers per station, increasing power and increasing numbers of 
chargers per station can be observed empirically. This may be due to economies of scale that 
can be achieved by grouping chargers together, possibly lowering the cost of installation and 
maintenance on a per-charger basis. The pressure for economies of scale is counterbalanced 
by the need to distribute station over the network so customers can conveniently find a 
charging station. The number of chargers per station in this report are illustrative and 
aggregation of demand between adjacent stations may be possible to decrease costs without 
negatively affecting the consumer experience. 

Grid Impact of DCFC for Electrified LDTs 
DC fast charging can impact the electric grid in numerous ways, such as by creating 
imbalances between power supply and demand, voltage deviation, power quality degradation, 
and reduced lifetime of distribution and transmission components.42   

Assessing potential grid impacts of DC fast charging on the electric grid requires a holistic 
analysis accounting for the dynamics and operation of the grid, charging stations, and EVs. 
One of the foremost challenges and knowledge gaps is the extent to which the existing 
distribution capacity is capable of managing the high-power demand from DC fast charging. 
Planners must identify how much additional capacity is needed at which locations by what 
time. To date, not much information or analysis on this topic is available in the literature. 
Metcalf et al. (2016) evaluated potentially ideal locations of DCFC stations accounting for the 
available distribution capacity of existing service transformers in Pacific Gas & Electric 
Company (PG&E) territory.43 Other than being used as a constraint for station site selection or 
identification, information related to net capacity additions required for the development of 
DCFC station networks to enable electrified LDTs is missing in the existing literature. 

Knowledge Gap 
As illustrated in Table 1, numerous approaches are applicable to the design of DCFC 
infrastructure networks for electrified LDTs on various geographical scales. The existing 
analyses tend to focus on methodological aspects (for example, optimization technique) of the 
DCFC infrastructure design. The methodological focus is valuable, particularly for operations 

42 Ashique, R. H., Salam, Z., Aziz, M., Bhatti, A. (2017). Integrated photovoltaic-grid dc fast charging system for 
electric vehicle: A review of the architecture and control. Renewable and Sustainable Energy Reviews. Vol. 69, 
1243 - 1257. https://doi.org/10.1016/j.rser.2016.11.245.   

43 Metcalf, M., Mohamed, S., McKenzie, L., Donadee, J., Cutter, E., Horvat, A., Jenks, R., Jariwala, A., Wiseman, 
M., Kollamthodi, S., Norris, J., Bubna, P., Nicholas, M., Tal, G., and Ji, W. (2016). Electric Program Investment 
Charge (EPIC). EPIC 1.25 – Develop a Tool to Map the Preferred Locations for DC Fast Charging, Based on Traffic 
Patterns and PG&E’s Distribution System, to Address EV Drivers’ Needs While Reducing the Impact on PG&E’s 
Distribution Grid. Available at: https://www.pge.com/pge_global/common/pdfs/about-pge/environment/what-we-
are-doing/electric-program-investment-charge/EPIC-1.25.pdf.   

https://doi.org/10.1016/j.rser.2016.11.245
https://www.pge.com/pge_global/common/pdfs/about-pge/environment/what-we-are-doing/electric-program-investment-charge/EPIC-1.25.pdf
https://www.pge.com/pge_global/common/pdfs/about-pge/environment/what-we-are-doing/electric-program-investment-charge/EPIC-1.25.pdf
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research. However, this emphasis on optimization methods may come at the expense of not 
fully accounting for critical variables influencing the DCFC network design. 

EVI-RoadTrip analysis presented in this paper takes a slightly different approach, putting less 
focus on network design methodology. This uses a simplistic heuristic approach and builds 
upon the list of factors that existing studies have identified as critical for DCFC infrastructure 
design. This work accounts for a wider range of BEV types and DCFC power levels. 
Researchers examined the impact of varying charging behavior, which was not explored in the 
existing analyses of DCFC network design for electrified LDTs. Leveraging detailed driving and 
charging simulations, this analysis also attempts to determine the latitude-longitude locations 
of DCFC stations using prioritized land use types for potential station sites. 
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Table 1: Key Relevant Previous Studies – Scope and Approach 

Geography Siting method BEV type/range 
Vehicle energy 
consumption 

DCFC 
power 

Waiting or 
queuing 

Grid impact 

Upchurch and 
Kurby (2010) 

Orlando (metro 
area); Florida 

(state) 

p-median; and flow-
based 

BEV100 N/A N/A N/A N/A 

Nie and 
Ghamami (2013) 

Chicago–Madison 
corridor 

Flow-based BEV50 to BEV200 
Fixed (0.4 
kWh/mile) 

20 to 300 
kW 

Considered N/A 

Zhang et al. 
(2015) 

California Set-covering 
BEV60, BEV100, and 

BEV200 
N/A N/A Considered N/A 

Ghamami et al. 
(2016) 

Chicago–Madison– 
Minneapolis corridor 

Flow-based BEV100 to BEV250 
Fixed (0.4 
kWh/mile) 

50 kW Considered N/A 

Metcalf et al. 
(2016) 

PG&E’s territory Flow-based BEV100 and BEV200 Fixed 65 kW N/A 
Distribution 

capacity 

Li et al. (2016) South Carolina Flow-based BEV100 and BEV150 N/A N/A N/A N/A 

Wood et al. 
(2018) 

Contiguous U.S. Flow-based BEV100 and BEV250 
Reduced form of 
vehicle dynamic 
simulation model 

50 to 150 
kW 

N/A N/A 

Xie et al. (2018) California Flow-based BEV75 to BEV300 N/A N/A Considered N/A 

He et al. (2019) Contiguous U.S. Flow-based BEV60 to BEV250 N/A 150 kW N/A N/A 

Jie et al. (2019) California Flow-based BEV80 to BEV300 N/A N/A N/A N/A 
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CHAPTER 3: 
EVI-RoadTrip Methods 

EVI-RoadTrip 
This analysis uses EVI-RoadTrip, a new charging infrastructure analysis model developed 
collaboratively by the CEC and NREL, to evaluate the DCFC infrastructure needs to support 
electrified LDTs for passenger vehicles within and across California’s borders. In contrast to 
the existing EVI-Pro model, which focuses on destination charging for short-distance travels, 
EVI-RoadTrip evaluates waypoint charging demands along the routes between origins and 
destinations for LDTs. This analysis assumes charging activity before and after LDTs, whether 
at origins or destinations, which is accounted for in EVI-Pro and thus not considered in EVI-
RoadTrip.   

EVI-RoadTrip takes a bottom-up approach consisting of four sequential steps: 1) trip data 
generation; 2) energy and charging simulation; 3) station design (siting and sizing); and 4) 
hosting capacity analysis. This analysis covers the state of California and includes results on 
five-year intervals from 2020 to 2035.   

The following sections describe the data and methods in detail for each of the four steps. 

Step 1 – Trip Data Generation 
Travel Volume and Routing between Origins and Destinations 
As charging demands inherently depend on vehicle movement and corresponding energy 
consumption, vehicle activity is one of the primary inputs for EVI-RoadTrip. This analysis uses 
the O-D matrix from the CSTDM Version 344 to understand the volume and spatial distribution 
of LDTs in California. 

The CSTDM estimates trips for every resident of California for a typical spring or fall weekday 
and is built upon a microsimulation activity-based choice demand model, accounting for a 
complete series or chain of trips made by a person over the course of the day. The travel 
behavior is calibrated based on the CHTS as well as the Census Bureau’s Journey to Work 
Survey, among others. The CSTDM divides the state into approximately 5,500 TAZs (Figure 1), 
assigns each person or household to a home TAZ, and forecasts travel activities of all residents 
and households within and between TAZs based on the person-by-person microsimulation. 
The CSTDM is validated against observed data, on various geographical and temporal scales, 

44 Caltrans (California Department of Transportation). (2020). Transportation Demand Modeling and Simulation: 
https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-
modeling/transportation-demand-modeling-simulation. 

https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-modeling/transportation-demand-modeling-simulation
https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-modeling/transportation-demand-modeling-simulation
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and in terms of travel times, congested speeds, vehicle miles traveled, vehicle flows, transit 
ridership, modal split, and more. 

Figure 1: TAZs and Gateways in the CSTDM45 

The CSTDM developed by Caltrans contains nearly 5,500 TAZs, which are sized to contain roughly equal portions of the 
population. In addition, the CSTDM contains 53 gateways (50 points in the road network and three ports) along the state 
boundary to track travel across the California border. Source: Caltrans 

To characterize state-wide LDT activity, we rely on the O-D matrix from the CSTDM that 
provides estimates of travel volume within and between TAZs for current and future years. 

45 Caltrans (California Department of Transportation). (2020). Transportation Demand Modeling and Simulation: 
https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-
modeling/transportation-demand-modeling-simulation. 

https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-modeling/transportation-demand-modeling-simulation
https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-modeling/transportation-demand-modeling-simulation
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TAZs in the CSTDM are defined only within the boundary of California. Thus, to account for 
out-of-state travel, the CSTDM incorporates 53 gateways (50 points in the road network and 
three ports) where vehicles cross the California border. 

The adoption of gateways in the CSTDM allows the estimation of LDT activity to and from out-
of-state locations. This is particularly important for California’s travel demand characterization, 
as more than half of California’s state-wide LDT activity is composed of out-of-state travel.46,47 

However, travel volume information is available only up to and from gateways along the state 
boundary, so exact locations of out-of-state origins and destinations are unknown. 

To achieve a detailed spatial analysis, the latitude-longitude GPS coordinates of trip origins 
and destinations from the 2012 CHTS48 are used to generate LDTs (Figure 2). In addition, 30 
meter by 30 meter land use data (residential, commercial, and recreational sites) is used from 
the national land use data (NLUD) set to determine where to site DCFC stations.49 The NLUD-
based coordinates data set shown in Figure 2 is much larger than CHTS and helps address 
sample size deficiencies in the CHTS-based coordinates. With this data, the model randomly 
samples the coordinates as many times as needed to match the travel volume for each TAZ. 

Using the set of sampled coordinates as geospatial reference points for origins or destinations, 
EVI-RoadTrip generates routes between origins and destinations by running trip simulations 
with the Open Source Routing Machine (OSRM).50 The output of OSRM contains detailed 
information of waypoints between origins and destinations, including total trip duration, 
vehicle coordinates, and trip distance. A time interval of one minute was selected to balance 
computational efficiency with spatial/temporal resolution. This interval allows, for example, the 
location of a vehicle driving 60 miles per hour to be observed every mile. 

46 Caltrans (California Department of Transportation). (2020). Transportation Demand Modeling and Simulation: 
https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-
modeling/transportation-demand-modeling-simulation. 

47 U.S. Department of Transportation, Bureau of Transportation Statistics, Transportation Statistics Annual 
Report 2017 (Washington, DC: 2017). 

48 Kunzmann, M. and Masterman, V. (2013). 20102012 California Household Travel Survey Final Report. 
California Department of Transportation. June 14, 2013. Retrieved from: 
https://www.nrel.gov/transportation/secure-transportation-data/assets/pdfs/calif_household_travel_survey.pdf. 

49 Theobald DM (2014) Development and Applications of a Comprehensive Land Use Classification and Map for 
the US. PLoS ONE 9(4): e94628. doi:10.1371/journal.pone.0094628.   

50 Open Source Routing Machine (OSRM): http://project-osrm.org/   

https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-modeling/transportation-demand-modeling-simulation
https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-modeling/transportation-demand-modeling-simulation
https://www.nrel.gov/transportation/secure-transportation-data/assets/pdfs/calif_household_travel_survey.pdf
http://project-osrm.org/


24 

Figure 2: Coordinates from 2012 CHTS51 (left) and NLUD52 (right) 

The left map shows the CHTS trip origin and destination coordinates while the right map shows the larger NLUD coordinate 
dataset, which is used to identify potential charging station locations. Source: CHTS and NLUD 

  

51 Kunzmann, M. and Masterman, V. (2013). 20102012 California Household Travel Survey Final Report. 
California Department of Transportation. June 14, 2013. Retrieved from: 
https://www.nrel.gov/transportation/secure-transportation-data/assets/pdfs/calif_household_travel_survey.pdf. 

52 Theobald DM (2014) Development and Applications of a Comprehensive Land Use Classification and Map for 
the US. PLoS ONE 9(4): e94628. doi:10.1371/journal.pone.0094628. 

https://www.nrel.gov/transportation/secure-transportation-data/assets/pdfs/calif_household_travel_survey.pdf
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Vehicle Electrification Rate 
The volume and spatial distribution of LDTs in the CSTDM are for all on-road light-duty 
personal vehicles, without consideration of vehicle technologies and powertrains. As 
summarized in Table 2, the CSTDM estimates that approximately 0.6 million LDTs occur 
throughout California in a typical fall or spring weekday. This total LDT volume is for ICEVs 
and EVs. Therefore, this raw travel volume is scaled down so the total daily volume of 
electrified LDTs with BEVs in EVI-RoadTrip matches projected activity of electrified LDTs. 

Table 2: Daily Volume of LDTs (Electrified and Non-Electrified) in the CSTDM 
Year Intra-State Out-of-State Total 

2020 215,150 344,100 559,250 

2025 211,700 362,300 574,000 

2030 210,800 372,900 583,700 

Source: Adapted from the TAZ-by-TAZ travel volume data in the CSTDM.53 Values are rounded to the nearest 50. 

Researchers used LDT electrification rates as scaling factors for California (intra-state), non-
California (domestic out-of-state), and Mexico (international out-of-state) to scale down the 
original LDT volume estimates from the CSTDM for electrified LDTs. Table 3 shows the various 
vehicle projections used to determine the number of California-based electrified LDTs (those 
made by BEVs registered in California). The Low case uses the CEC’s 2020 Integrated Energy 
Policy Report (IEPR) low forecast, which results in a BEV fleet share of about five percent by 
2030.54 The Mid case uses the CEC’s 2020 IEPR aggressive forecast, resulting in a BEV fleet 
share of about 10 percent by 2030. This forecast serves as a proxy for the five million ZEVs by 
2030 goal called for in EO B-48-18 and AB 2127. The High case uses the California Air 
Resources Board (CARB) Revised Draft 2020 Mobile Source Strategy planning scenario.55 While 
the CEC IEPR forecasts are based on consumer choice modeling, CARB’s Revised Draft 2020 
Mobile Source Strategy is a policy achievement scenario that identifies the level of ZEV 
adoption needed to meet climate, air quality, and transportation electrification goals. The ZEV 
adoption trajectory in this scenario achieves the EO N-79-20 target of 100 percent light-duty 

53 Caltrans (California Department of Transportation). (2020). Transportation Demand Modeling and Simulation: 
https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-
modeling/transportation-demand-modeling-simulation.   

54 Gee, Quentin, Stephanie Bailey, Jane Berner, Michael Comiter, Jim McKinney, and Tim Olson. 2021. Final 2020 
Integrated Energy Policy Report Update. California Energy Commission. Publication Number: CEC-100-2020-001-
V1-CMF. 

55 California Air Resources Board staff. 2021. Revised Draft 2020 Mobile Source Strategy. California Air Resources 
Board. 

https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-modeling/transportation-demand-modeling-simulation
https://dot.ca.gov/programs/transportation-planning/multi-modal-system-planning/statewide-modeling/transportation-demand-modeling-simulation
https://ww2.arb.ca.gov/sites/default/files/2021-04/Revised_Draft_2020_Mobile_Source_Strategy.pdf
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ZEV sales by 2035 and results in almost eight million ZEVs by 2030, with BEVs making up 17 
percent of the total fleet in 2030. 

This analysis also used Low, Mid, and High BEV adoption scenarios for LDTs based outside 
California. The U.S. Energy Information Administration (EIA) predicts that 2.5 percent of on-
road light-duty vehicles will be BEVs by 2030 in its baseline scenario,56 which is used for the 
Mid non-California BEV adoption rate in the U.S. For the Low and High scenarios, the EIA’s 
lowest (1.8 percent by 2030) and highest (3.9 percent by 2030) electrification projections are 
used. Researchers used the BEV adoption rate in Mexico estimated by the International Energy 
Agency57 for international out-of-state travels originated from or returning to Mexico. 
Electrification rates are summarized in Table 3. 

Table 3: LDT Electrification Rates 

Year BEV Adoption 
Scenario 

California 
(Intra-State) 

Non-California 
(Domestic Out-

of-State) 

Mexico 
(International 
Out-of-State) 

2020 Initial condition 2% 0.5% 0.002% 

2025 Low 3.4% 1% 0.01% 

2025 Mid 5.8% 1.4% 0.02% 

2025 High 6.7% 2.2% 0.03% 

2030 Low 4.8% 1.8% 0.02% 

2030 Mid 9.7% 2.5% 0.06% 

2030 High 17% 3.9% 0.08% 

Source: CEC, NREL, CARB, EIA, IEA 

Researchers assumed that 50 percent of the total LDT travel volume crossing California’s 
borders is a return trip for a vehicle coming back to its California home. For example, if 100 
personal light-duty vehicles left California, 50 of those vehicles are assumed to be registered in 
and originated from California, while the other 50 vehicles are assumed to be registered in and 
heading back to their origins in non-California home states. For each of those two categories, 
the appropriate electrification rates corresponding to each vehicle’s home state or country are 
applied. 

56 Energy Information Administration (EIA). 2020. Annual Energy Outlook 2020. Available at: 
https://www.eia.gov/outlooks/aeo/.    

57 International Energy Agency (IEA). 2019. Global EV Outlook 2019. Available at: 
https://www.iea.org/reports/global-ev-outlook-2019.   

https://www.eia.gov/outlooks/aeo/
https://www.iea.org/reports/global-ev-outlook-2019


27 

Table 4 shows electrified vehicle activity for different years under the High BEV adoption 
scenario, broken down by travel type. Researchers estimated that 8,000 LDTs are electrified 
per day in 2020, but the travel volume will increase to over 70,000 by 2030. Intra-state and 
out-of-state have almost the same share of overall LDTs on a given day, illustrating the 
importance of accounting for out-of-state LDTs. Due to the assumption that 50 percent of out-
of-state LDTs are return trips, travel volumes for inbound and outbound out-of-state trips are 
almost identical. The other two BEV adoption scenarios, Low and Mid, result in electrified LDT 
volumes of 21,000 and 41,000 per day in 2030, respectively. It is important to note that LDT 
activity may vary seasonally or by location, but current data limitations do not allow for this 
variation to be accounted for. 

Table 4: Number of Electrified LDTs Per Day – High BEV Adoption Scenario 

Year Intra-
State 

Inbound 
(US) 

Inbound 
(Mexico) 

Outbound 
(US) 

Outbound 
(Mexico) Through Total 

2020 4,230 1,140 730 1,140 730 18 8,000 

2025 14,270 4,380 2,640 4,430 2,670 90 28,480 

2030 35,500 10,490 6,820 10,460 6,870 170 70,310 

Source: CEC and National Renewable Energy Laboratory. Values rounded for simplicity. 

As shown in Figure 3, the average distance for intra-state LDTs is about 230 miles, whereas it 
is roughly 100 miles for out-of-state LDTs. This latter distance is only for the portion of the trip 
within the boundary of California. Average travel duration of intra-state LDTs is approximately 
270 minutes, and 120 minutes for out-of-state LDTs. Accordingly, the average trip speed for 
LDTs within California’s boundaries is 45–50 miles per hour. 
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Figure 3: Distribution of LDT Distance within the California Boundary – High BEV 
Adoption in 2030 

The average distance for intra-state and out-of-state LDTs is about 230 miles and 100 miles, respectively, in 2030. However, 
out-of-state LDTs only include the portion of the trip within California. Source: CEC and NREL 

Table 5 provides spatial distribution of LDTs, with San Diego and the Greater Los Angeles Area 
(including Los Angeles, Riverside, San Bernardino, Imperial, and Orange counties) accounting 
for about 60 percent of total LDTs. Origin-based trips are defined as those that start in the 
respective county, while destination-based trips end in that county. San Diego’s significant 
contribution of LDTs is attributed to out-of-state LDTs, particularly those going to or coming 
from Mexico. 
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Table 5: Electrified LDTs Per Day in California by County (Top 10) in 2030 – High 
BEV Adoption Scenario 

County Number of Origin-based Trips Number of Destination-based Trips 

San Diego 9,240 9,250 

Los Angeles 7,320 7,380 

Riverside 3,170 3,050 

San Bernardino 2,820 2,800 

Imperial 2,000 2,090 

Orange 2,000 1,970 

Sacramento 1,910 1,880 

Santa Clara 1,800 1,700 

El Dorado 1,580 1,560 

Placer 1,410 1,380 

Source: CEC and National Renewable Energy Laboratory 

Vehicle Assignment 
The next step in trip generation involves assigning the electrified LDTs to BEVs, which are 
grouped into three broad categories: 1) short-range cars and sedans (SR-Cars); 2) long-range 
cars and sedans (LR-Cars) and 3) sport utility vehicles (SUVs). Cars and sedans are 
differentiated by their range, as SR-Cars (e.g., Nissan Leaf) have about 150 miles per full 
charge in 2020 and LR-Cars (e.g., Tesla Model 3 Long Range or Tesla Model S) have around 
350 miles. SUVs, such as the Tesla Model X, are assumed to have approximately 320 miles of 
range per full charge in 2020. 

To account for vehicle technology advancements, model years (MYs) are differentiated by four 
MY groups – 2015, 2020, 2025, and 2030. MY2015 BEVs include those produced in 2015 or 
earlier, as well as those manufactured in bridge years such as 2016, 2017, and 2018. Similarly, 
the MY2020 group is for BEVs produced in 2020 as well as a few pre- and post-2020 years 
(2017, 2018, 2019, 2021, 2022, and 2023). To avoid double-counting, bridge years are 
assumed to be split evenly between the earlier and later MY group. This allows a relatively 
smooth transition of vehicle technology characteristics or attributes between different MY 
groups. 

The electric range is assumed to increase over time, reaching about 200 miles for SR-Cars, 
450 miles for LR-Cars, and 400 miles for SUVs by 2030. For the same battery capacity 
(kilowatt-hours, kWh), electric range can vary significantly depending on driving conditions 
(e.g., city vs. highway, ambient temperature, elevation gain), manufacturer, trim (e.g., 
standard vs. performance), MY, and more. The principal assumption used is battery capacity, 
rather than exact range in miles, shown in Table 6. Electric range, a byproduct of energy 
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consumption, is determined separately for individual trips, vehicle type, and model year, as 
described in Section 3.3. 

Table 6: BEV Battery Capacity (kWh) Assumption 
MY Group SR-Car LR-Car SUV 

2015* and 2020 40 100 100 

2025 45 125 125 

2030 45 125 125 

* For simplicity, MY 2020 values are used for MY 2015 due to the small share of pre-2020 MY BEVs 
in the vehicle population. 

Source: CEC, CARB, and NREL 

For some vehicle types, the battery capacity assumption may be high or low, especially for 
future model years. As the BEV market matures over time, it is possible that cheaper models 
with smaller battery capacity become more popular, decreasing the overall MY or fleet-wide 
average battery capacity. One the other hand, it is also possible that BEVs with larger battery 
capacities (100+ kWh) could dominate the entire market in the future. It is difficult to predict 
the exact future battery capacity for BEVs, but we consider the three BEV types and their 
combinations effectively capture the general mix and evolution of different vehicle types and 
their battery capacities. 

Table 7 shows the distribution of vehicle populations for each calendar year, model year, and 
vehicle type for the projections made by the CEC and used in this report. The distribution of 
BEV populations shown in Table 7 is applied to BEVs in both the U.S. and Mexico due to 
limited data availability. In 2020, SR-Cars and LR-Cars make up the majority of BEVs. The 
dominance of LR-Car continues over time, composing almost 50 percent of the total BEV 
population by 2030. However, the share of SR-Car diminishes significantly over time as these 
are replaced by SUVs, which become increasingly popular and represent about a third of the 
BEV population in 2030. These trends have important implications for the charging network 
requirements, as will be discussed later. For example, for the same travel distance, SUVs, 
which have longer ranges may need less frequent charging between origin and destination 
compared to SR-Cars, resulting in a smaller DCFC network. 
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Table 7: BEV Population Distribution – High BEV Adoption Scenario 

Calendar Model Year 
Group 

Short Range 
Car 

Long Range 
Car SUV 

2020 2015 8.5% 5.2% 1.0% 

2020 2020 23.4% 53.7% 8.3% 

2020 Total 31.9% 58.9% 9.3% 

2025 2015 1.2% 0.9% 0.1% 

2025 2020 4.3% 9.8% 1.6% 

2025 2025 13.0% 42.2% 26.9% 

2025 Total 18.5% 52.9% 28.6% 

2030 2015 0.3% 0.2% 0.03% 

2030 2020 1.2% 2.8% 0.5% 

2030 2025 4.2% 14.3% 9.3% 

2030 2030 9.3% 31.5% 26.4% 

2030 Total 15.0% 48.8% 32.3% 

Source: NREL and CEC 

Step 2 – Energy and Charging Simulation 
The second step in EVI-RoadTrip assigns departure times, estimates energy consumption 
along the route, and simulates on-route charging events for each trip generated in Step 1.   

Time Reference 
The trip data generated in Step 1 does not include any time-related information besides trip 
duration. As a result, it is necessary to determine when trips start and end before conducting 
charging simulations. While short-distance trips tend to have a two-peak pattern tied to 
morning and evening commutes, CHTS data indicates that LDTs have only one peak, centered 
around 10 a.m. as depicted in Figure 4. 

Each trip is assigned either a departure or arrival time depending on the LDT type. Departure 
time (Figure 4) is used as the time reference for intra-state and outbound (e.g., from 
California to Nevada) LDTs. However, since the out-of-state component for inbound trips is 
unknown, these trips are instead assigned an arrival time based on their departure time, 
travel/driving distance, and time spent for on-route charging (Figure 5) based on the statistics 
of the intra-state LDTs, assuming that travelers would prefer to arrive at their destinations 
around the same time as for intra-state LDTs. The distribution of departure times in Figure 5 is 
included for reference and matches the distribution shown in Figure 4. A uniform distribution 
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of entry time to the state gateways is used for through trips (e.g., Mexico to Canada), which 
account for a negligible share of the overall travel volume. 

Figure 4: Probability Distribution Function of LDT Departure Time in the CHTS 

Data from the CHTS shows a single departure time peak for LDTs around 10 a.m. Source: California Household Travel Survey.58 

58 Kunzmann, M. and Masterman, V. (2013). 20102012 California Household Travel Survey Final Report. 
California Department of Transportation. June 14, 2013. Retrieved from: 
https://www.nrel.gov/transportation/secure-transportation-data/assets/pdfs/calif_household_travel_survey.pdf. 

https://www.nrel.gov/transportation/secure-transportation-data/assets/pdfs/calif_household_travel_survey.pdf
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Figure 5: Simulated Departure and Arrival Time Distribution for the High BEV Adoption 
Scenario in 2030 

Simulated departure and arrival times show peaks at 10 a.m. and 2 p.m., respectively. Source: CEC and National Renewable 
Energy Laboratory 

Energy Consumption Estimation 
After determining the time reference, EVI-RoadTrip estimates energy consumption for each 
trip along its route. Since each trip is paired with a different vehicle type and MY, energy 
efficiency is differentiated by vehicle type and MY accordingly, as shown in Figure 6. 

BEV energy consumption rate (ECR, kWh/mile) is estimated based on NREL’s vehicle dynamic 
simulation model, FASTSim.59 ECR is calculated as a function of average road link speed60 to 
reflect varying driving conditions for different trips. For this, NREL’s Transportation Secure 

59 Brooker, A., Gonder, J., Wang, L., Wood, E. et al., "FASTSim: A Model To Estimate Vehicle Efficiency, Cost, 
and Performance," SAE Technical Paper 2015-01-0973, 2015, doi:10.4271/2015-01-0973. 

60 Average road link speed is different from average trip speed, as the former is for vehicles in motion along the 
road network (links), whereas the latter is a statistic for the total trip (entire route between origin and 
destination). Since the focus on this analysis is on waypoint charging, which depends on on-route energy 
consumption, average link speed was selected as more appropriate than average trip speed. 
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Data Center61 is used to simulate real-world drive cycles for different BEV types and MYs in 
FASTSim. Figure 7 shows the statistical distribution for different bins of link average speed. 

While vehicle age could affect ECR, for simplicity longitudinal efficiency degradation is 
assumed to be negligible (e.g., a MY 2020 vehicle does not become less efficient by simulation 
year 2030). As shown in Figure 6, ECR decreases for newer MYs, as technology improves from 
factors such as building vehicles that are lighter in weight. Larger and heavier vehicles (e.g., 
SUVs) consume more energy per mile than smaller and lighter vehicles (e.g., SR-Cars). 

ECR values are shown in Figure 6, with the 50th percentile representing typical passenger 
loading (2 to 3 people), ambient temperature (75 °F), and road grade (flat) conditions. 
However, the ECR of BEVs can change drastically depending on variations in these conditions. 
The impact of temperature is addressed as a sensitivity scenario in Section 4.5. The impact of 
road grade is assumed to be embedded in the uncertainty range (ranging from 25- to 75-th 
percentiles), inheriting road grade characteristics from the real-world drive cycles. 

61 National Renewable Energy Laboratory. Transportation Secure Data Center. Available at: 
https://www.nrel.gov/transportation/secure-transportation-data/   

https://www.nrel.gov/transportation/secure-transportation-data/
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Figure 6: Energy Consumption Rate (kWh/mile) as a Function of Vehicle Type, Model 
Year, and Average Road Link Speed 

FASTSim results show that energy consumption rate (kWh/mile) is lowest when vehicles are driving between 30 and 35 miles 
per hour. Vehicle efficiency improves over time, as seen by the trend comparing the solid bars for 2020 and dashed bars for 
2030. Short-range cars are most efficient, followed by long-range cars and then SUVs, which are much less efficient. Source: 
CEC and National Renewable Energy Laboratory 

Charging Simulation 
Charging events are triggered when the battery SOC falls below a certain threshold. Two 
layers are used for the minimum SOC threshold. First, it is assumed that drivers and vehicle 
manufacturers prefer to maintain SOC above five percent, which may translate to different 
distance values depending on battery capacity and other factors. Second, a five-mile distance 
buffer is enforced on top of the first layer so that vehicles can comfortably reach a DCFC 
station from the point that drivers realize they need to charge their vehicles on the road. 
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The SOC at time of departure for intra-state and outbound LDTs is determined based on an 
empirical relationship between travel distance and initial SOC, depicted in Figure 7. 62 This real-
world charging data indicates that longer trips begin with a higher SOC. 

Figure 7: The Relationship between Plug-Out (Departure) SOC and Travel Distance 

This figure shows that drivers tend to start longer trips with a higher SOC. Source: Lincoln Electric System 

As discussed previously, the CSTDM only includes information for the portions of trips within 
California’s borders. For inbound or through trips, the origins and routes leading up to the 
entry points (gateways) along the state boundary are unknown. For those cases, the same 
initial SOC approach cannot be used. Instead, these trips are simulated in EVI-RoadTrip to 

62 Lincoln Electric System. 2020. EV Study on Driving and Charging Behavior. Retrieved from: 
https://www.les.com/sites/default/files/ev-webinar-072020-study-results.pdf.   

https://www.les.com/sites/default/files/ev-webinar-072020-study-results.pdf


37 

estimate the SOC at the point where vehicles cross the state boundary.63 This entry SOC 
statistic is then used for initial SOC values at gateways for inbound and through LDTs. 

After the initial SOC is determined, the rest of the SOC evolution along the route depends on 
the energy consumption described in Section 3.3.2. SOC for each vehicle is traced along the 
route based on the ECR, and charging is triggered once SOC drops below the thresholds 
mentioned above. Once charging is triggered, vehicles are assumed to deviate from their 
original route along the road network and travel to charging stations. At charging stations, two 
factors, one technological (charging power) and one behavioral (charging behavior), are 
considered for charging simulations. 

Different BEVs can accept different levels of DCFC power at charging stations, which also 
varies by year as future BEVs become capable of more powerful charging. For this analysis, 
charge curves were developed with industry stakeholder input to capture the vehicle charging 
power (kW) as a function of battery SOC. As seen in Figure 8, charging power (kW) varies 
with the level of SOC, BEV type, and model year. One of the most significant effects of the 
relationship between SOC and charging power is charging speed. For the same initial and final 
SOC, a higher charging power will result in a shorter charging session. 
  

63 FHWA (Federal Highway Administration). (2013). Traffic Analysis Framework Part IIA - Establishing Multimodal 
Interregional Passenger Travel Origin Destination Data. Program Support for Highway Policy Analysis. Retrieved 
from: https://www.fhwa.dot.gov/policyinformation/analysisframework/docs/taf_final_report.pdf.   

https://www.fhwa.dot.gov/policyinformation/analysisframework/docs/taf_final_report.pdf
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Figure 8: DC Fast Charging Power (kW) as a Function of Battery SOC (%) 

Charge curves illustrate how the vehicle charging power (kW) changes as a function of battery state-of-charge (SOC). These 
DCFC charge curves were developed for three classes of vehicles on five-year intervals for model years. In general, charging 
power drops significantly around 80 to 85 percent SOC. Source: CEC and National Renewable Energy Laboratory 

In addition to charging technology and power level, charging behavior also plays an important 
role in charger utilization and charging speed. For example, some BEV drivers may choose to 
charge their vehicles up to 100 percent SOC, similar to the topping-off behavior that is 
common with ICE vehicles at gasoline stations. This behavioral scenario is referred to as 
Always Topping Off (ATO), and results in the longest charging time, as higher SOC (e.g., 80 
percent SOC or above) typically entails a lower charging power and thus much longer time for 
a marginal increase in SOC. Some drivers may opt to minimize their charging time, which we 
refer to as Time Penalty Minimization (TPM). Finally, it is also possible that drivers could use a 
combination of the ATO and TPM behaviors. We refer to this hypothetical scenario as the 
Hybrid behavior, where drivers adopt the ATO charging behavior for all charge events except 
the last one on their trip, when they then use the TPM charging behavior. 

Figure 9 illustrates the difference between the three different charging behaviors for the same 
trip from Eureka to San Jose. The total travel distance is 331 miles, and it takes 470 minutes 
to complete the trip for ATO, 445 minutes for Hybrid, and 435 minutes for TPM. Assuming a 
MY2025 SR-Car with 45 kWh battery, all three charging behaviors require two charging events 
between origin and destination. As can be seen in the SOC evolution chart, for the first 
charging event, TPM charges only up to 80 percent, whereas ATO and Hybrid charge up to 
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100 percent. For the second charging event, both Hybrid and TPM charge only up to the level 
that is required to make it to the destination, while ATO charges up to 100 percent. 

Figure 9: Example of O-D Pair, Route, Energy Use, and Charging 

This figure illustrates the energy use and charging under three different charging behaviors for the same trip from Eureka to 
San Jose. The Time Penalty Minimization behavior, where drivers minimize time spent charging, results in a total trip 
duration of 7 hours and 15 minutes, arriving at the destination with about 15 percent SOC remaining. The Always Topping 
Off behavior, where drivers always charge to 100 percent SOC, results in a total trip duration of 7 hours and 50 minutes, 
arriving at the destination with about 75 percent SOC remaining. In between these two scenarios is the Hybrid charging 
behavior, where drivers charge to 100 percent SOC for all charging events except the last one on their trip, at which point 
they only charge as much as is needed to reach the final destination. In this case, the total trip duration is 7 hours and 25 
minutes, reaching the final destination with about 15 percent SOC remaining. Source: CEC and National Renewable Energy 
Laboratory 

Step 3 – Station Design (Siting and Sizing) 
Once all electrified LDTs and their charging events are simulated, the next step is to design 
the charging station network capable of accommodating those individual charging demands. 
This includes determining both the location and size (number of chargers) of each DCFC 
station. 

Station Siting 
Based on the spatial distribution of charging demands along the road network determined in 
the previous step, points of demand are then clustered together. When doing so, it is assumed 
that a station can cover a five-mile radius range, absorbing charging demands within five miles 
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of the station. The five-mile range is based on the estimated average distance between 
highway exits and is also inherited from the five-mile distance buffer assumption used in the 
charging simulations above. 

A modified k-means clustering method is used to group charging events, starting with larger 
clusters and breaking these down until the average size of clusters (virtual bubbles around 
stations) becomes five miles. This clustering method generates centroids, which are used to 
select the locations of stations. However, there are no locational constraints on these centroids 
during clustering. For example, cluster centroids could wind up in a lake in an extreme case. 
To keep the centroids along the road network, the point of charging demand closest to the 
modeled centroid for each cluster is used. 

Once the location of charging demand that can represent each cluster is identified, two land 
use data sets are used to determine a reasonable location for a DCFC station: 1) national land 
use data (NLUD)64 and 2) OpenStreetMap’s retail gas station location data65 shown in Figure 
10. 

64 Theobald DM (2014) Development and Applications of a Comprehensive Land Use Classification and Map for 
the US. PLoS ONE 9(4): e94628. doi:10.1371/journal.pone.0094628. 

65 OpenStreetMap (OSM). https://www.openstreetmap.org/ 

https://www.openstreetmap.org/
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Figure 10: Retail Gas Station Locations in California 

Source: Adapted from OSM (OpenStreetMap)66   

Land use types (including gasoline stations) were grouped and prioritized as shown in Table 8. 
It is assumed that DCFC stations are most likely to be sited in commercial locations, and if not, 
co-located in gasoline stations. Based on the ranked preferences in Table 8, the area is first 
searched for the most preferred group of land use types. If those land use types are not 
available, the next most preferred group is tested and so on until a reasonable DCFC station 
location is found. 
  

66 OpenStreetMap (OSM). https://www.openstreetmap.org/   

https://www.openstreetmap.org/
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Table 8: Preferred Land Use Types for DCFC Stations 
Ranked Preference Group Land Use Type Code Land Use Type 

1 222 Retail/shopping centers 

1 224 Lodge 

2 - Gas stations 

3 251 Airports (developed) 

3 254 Port, train station 

3 411 Urban park 

3 410 General park 

4 421 Natural park 

4 414 OHV staging area/trailhead 

4 413 Motorized 

4 223 Entertainment (stadiums, 
amusement, etc.) 

4 422 Designated recreation area 

4 417 Campground/ranger station 

4 416 Marina 

4 415 Resort/ski area 

4 418 Picnic/trailhead 

Source: CEC and National Renewable Energy Laboratory 

Figure 11 illustrates the process for determining the location of a charging station in 
Healdsburg. Individual points of charging demand (white dots) are clustered, creating a center 
point near the highway. This point is then repositioned to a suitable location (blue star) 
according to the ranked preferences provided in Table 8. 
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Figure 11: Station Siting Example 

This figure illustrates the process of assigning a station location. White dots indicate the points where drivers realize that 
they need to charge their vehicles to continue their LDTs. These points are then clustered together, resulting in a center 
point that is re-positioned to the nearest commercial location (blue star) for the final DCFC station location. In this example, 
areas marked in red represent commercial sites, while black represents existing gas stations. Source: CEC and NREL 

Station Sizing 
After the preferred locations are determined for DCFC stations, the number of chargers at 
each station is estimated based on the profiles of charging events over the course of the day. 
Figure 12 illustrates an example station where the peak number of chargers simultaneously 
occupied during the day is nine. The lower bound of chargers at a station is determined by the 
highest hourly average number of charging events. In the example below, hour 14 to 15 
results in the highest hourly average utilization at six chargers occupied. Even though the peak 
utilization during the day is nine chargers, this is for a short moment in time, and the hourly 
average utilization approach allows stations to be sized more appropriately. Because long-
distance travel is especially common during certain times of year (around major holidays and 
weekends in the summer), it may be necessary to increase the number of chargers to ensure 
charging is available at peak times. To account for higher peaks, the upper bound is then 
calculated by multiplying the lower bound by two, resulting in 12 chargers for the example 
shown in Figure 12.   
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Lower and upper bounds are also applied to the number of stations in the network. The lower 
bound is a direct output from the model simulations and assumes no restrictions on the 
number of chargers at a station. However, the upper bound assumes no more than 10 
chargers can be located at a station. As noted above, the example station shown in Figure 12 
has a range of six to 12 chargers, which in turn results in a lower bound of one station and an 
upper bound of two stations (one with 10 chargers and the other with two). 

Figure 12: Simultaneous Charging Events and Total Charging Loads for Simulated 
Station 150 – 2030, High BEV Adoption, TPM Scenario 

Source: CEC and National Renewable Energy Laboratory 

In addition to the number of chargers required, the power level of each charger in a station is 
estimated. In this analysis, it is assumed that chargers will be capable of providing the 
maximum power that vehicles plugged into it can accept. For example, if two vehicles plug in 
to a charger over the course of the day, and one of them draws 150 kW, and the other 50 kW, 
the power rating of that charger is estimated to be 150 kW. 

Step 4 – Grid Impact 
With the DCFC station network designed at the site-level with latitude-longitude coordinates, 
the total maximum charging load is then aggregated by TAZ and compared with the existing 
grid hosting capacity, utilizing the CEC’s EVSE Deployment and Grid Evaluation (EDGE) model. 
EDGE is designed to combine inputs from several data sources and models within four 
assessment domains: grid conditions, air quality, travel demand, and equity considerations. 
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The comparison of projected charging load from EVI-RoadTrip with hosting capacity addresses 
the grid conditions and travel demand domains in EDGE. These results can indicate where and 
what level of grid upgrade may be necessary to accommodate charging load from LDTs. 

EDGE currently leverages investor-owned utility Integration Capacity Analysis (ICA) maps to 
identify available grid capacity. However, ICA maps only represent a monthly snapshot of a 
distribution system that frequently changes, and CEC staff is working to incorporate additional 
data from the Grid Needs Assessment Reports and pending updates to the Uniform Load 
results.67 As EDGE is still under development and limited by current grid data availability and 
quality, this analysis only examined the grid impacts of LDT charging in several utility 
territories, including Southern California Edison (SCE), Pacific Gas & Electric Company (PG&E), 
San Diego Gas & Electric (SDG&E), and PacifiCorp, as a proof of concept. 
  

67 CPUC. Administrative Law Judge’s Ruling on Joint Parties’ Motion for an Order Requiring Refinements to the 
Integration Capacity Analysis, Rulemaking 14-08-013, January 27, 2021, 
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M361/K810/361810169.PDF 

https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M361/K810/361810169.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M361/K810/361810169.PDF
https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M361/K810/361810169.PDF
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CHAPTER 4: 
Analysis and Results 

The main objective of this analysis is to evaluate future DCFC infrastructure requirements for 
electrified LDTs in California over the next decade, including the number of chargers and their 
spatial distribution and technological characteristics. In general, charging infrastructure is 
primarily determined by charging demands or events that are a function of travel activity. 

This chapter discusses simulated charging events first, followed by network size estimation 
results. Load profiles are then shown for the entire state along with hosting capacity analysis 
for SCE’s utility territory. 

Simulated Charging Events 
As discussed in the previous chapter, it is estimated that approximately 600,000 LDTs will 
occur on a typical day in California in 2030. Depending on the BEV adoption scenario, the total 
number of electrified LDTs will vary from 21,000 to 70,300 per day, as summarized in Table 9. 

Table 9: Total Number of Simulated Charging Events for Electrified LDTs in 2030 

BEV 
Adoption 
Scenario 

Total 
Number of 
Daily LDTs 

Total 
Number of 

Daily 
Electrified 

LDTs 

ATO 
Behavior 
Charging 

Events 

Hybrid 
Behavior 
Charging 

Events 

TMP 
Behavior 
Charging 

Events 

Low 583,700 21,000 7,020 7,090 7,860 

Mid 583,700 40,700 12,700 12,860 14,160 

High 583,700 70,300 18,750 19,100 20,600 

Source: CEC and National Renewable Energy Laboratory 

As Table 9 implies, not all electrified LDTs require charging along the trip route, depending on 
the initial SOC, battery capacity, travel distance, and other factors. This analysis indicates that 
about 40 percent of electrified LDTs require charging at least once between origin and 
destination in 2020. As battery capacity, and thus range, increases over time, it is predicted 
that only 24 percent of electrified LDTs would require charging in 2030. For the High BEV 
adoption scenario, this results in about 17,000 trips that require charging. Furthermore, as 
Table 9 shows, these trips lead to about 20,000 charging events across the state for the TPM 
charging behavior, indicating that for trips that do require charging, most only need to charge 
once to reach the final destination. 

In all BEV adoption scenarios, the different charging behaviors result in varying numbers of 
charging events. The ATO charging behavior always results in the fewest charging events, 
since this behavior results in charging to 100 percent SOC and thus reduces the potential need 



47 

to charge again during the remainder of the trip. The TPM charging behavior results in the 
largest number of charging events, since this optimizes charging duration by cutting charging 
off at a lower SOC. 

Another important consideration for the frequency and duration of on-route charging events is 
BEV type (Table 10). Looking only at trips that require charging shows that SR-Cars average 
1.3 to 1.4 charging events per trip, depending on charging behavior. In contrast, LR-Cars and 
SUVs average 1 charging event per trip, regardless of charging behavior. This variation of 
average charging frequency by BEV type is mostly due to the combined effect of battery 
capacity (Table 6) and energy consumption rate (Figure 6). 

Table 10: Average Frequency and Total Duration of On-Route Charging for Trips 
that Require One or More Charging Events in 2030 – High BEV Adoption Scenario 

BEV Type 

ATO 
Behavior 
Average 
Charging 

Frequency 

Hybrid 
Behavior 
Average 
Charging 

Frequency 

TPM 
Behavior 
Average 
Charging 

Frequency 

ATO 
Behavior 
Average 

Total 
Charging 
Duration 

Hybrid 
Behavior 
Average 

Total 
Charging 
Duration 

TPM 
Behavior 
Average 

Total 
Charging 
Duration 

Short 
Range Car 1.3 1.3 1.4 39.5 

minutes 
19.8 

minutes 
16.0 

minutes 

Long 
Range Car 1.0 1.0 1.0 43.6 

minutes 
7.5 

minutes 
7.4 

minutes 

SUV 1.0 1.0 1.0 32.0 
minutes 

7.0 
minutes 

7.0 
minutes 

Source: CEC and National Renewable Energy Laboratory 

Table 10 shows that average total duration of on-route charging events is a function of 
charging behavior, BEV type, model year, and charging power. For all BEV types, Hybrid and 
TPM behaviors significantly reduce the overall charging time in comparison with ATO. The 
average total duration of charging for ATO behavior ranges from 32 to 44 minutes, whereas it 
is 7 to 20 minutes for the Hybrid and TPM behaviors.   

Figure 13 shows the spatial distribution of charging events for electrified LDTs in California and 
its longitudinal evolution from 2020 to 2030. Charging events are mostly concentrated along 
interstate highways (e.g., I-5, I-80, I-15, and I-10) and around large metropolitan areas (Bay 
Area, Los Angeles, San Diego, and Sacramento). Charging activities along and around state 
highways (e.g., CA-101) tend to be sparse in comparison with those along the interstate 
highways, but the activity level increases notably over time. In addition, charging events are 
observed outside the state due to trips that start and end in California, but cross the state line 
due to route efficiency. 
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Figure 13: Spatial Distribution of Simulated Charging Events from 2020 (left) to 2030 
(right) – High BEV Adoption Scenario; TPM Charging Behavior 

The evolution of charging demand shows that charging events along interstates remain dominant through 2030, but 
continue to grow along state highways over time. Some charging events are outside the state due to trips that start and end 
in California, but cross the border for route efficiency. Source: CEC and NREL 

Figure 14 indicates that different charging behaviors simulated in this analysis generally do not 
make a significant impact on the spatial distribution of charging events. Despite the fact that 
the TPM behavior increases the total number of charging events by 10 percent in comparison 
with ATO, TPM and ATO behaviors generally result in similar numbers of charging events for 
each county. The spatial distribution of charging activities is largely correlated with travel 
activities that are not assumed to be affected by differing charging behaviors. 

A few counties represent a small portion of the state population, but account for a significant 
number of charging events due to the road networks passing through them. For example, San 
Bernardino County represents about 5.5 percent of the state population, but 14.5 percent of 
the road trip charging events due to its large size and number of highways connecting the 
county with California and neighboring states. Similarly, Kern County contains a little over two 
percent of the population, but nearly nine percent of road trip charging demand due to major 
highways like the I-5 and CA-99 running through it. In contrast, Los Angeles County, which 
makes up 25 percent of the California population, only represents 12 percent of total charging 
events in the state. 
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Figure 14: Simulated Charging Events per Day by County in 2030 – ATO vs. TPM 
Charging Behavior 

Comparing results for TPM and ATO charging behaviors shows minor spatial differences in charging demand, showing that 
spatial distribution is more correlated to travel patterns than to charging behavior. Furthermore, charging demand tends to 
depend more on the road networks in counties than the population of the county. Source: CEC and NREL 

Projected Network Size and Distribution 
The determination of DCFC infrastructure for electrified LDTs is based on the charging events 
presented above. Figure 15 illustrates the relationships between simulated charging events for 
each DCFC station throughout the day and both peak charging load and the maximum number 
of chargers occupied simultaneously. In general, more simultaneous charging events at a 
station results in higher peak charging loads and larger stations (in terms of number of 
chargers). 
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Figure 15: Station-by-Station Daily Total Charging Events, Peak Charging Load, and 
Peak Number of Chargers Occupied in 2030 – High BEV Adoption Scenario 

As shown on the left, stations with more total charging events generally result in higher peak charging loads. Similarly, the 
figure on the right shows that more total charging events leads to more chargers occupied simultaneously. Furthermore, the 
results show that the ATO charging behavior typically results in higher peak charging loads and more simultaneously 
occupied chargers. Source: CEC and NREL 

In theory, a single charger could serve many charging events throughout the day if those 
charging activities did not overlap. However, given the vehicle activity pattern for LDTs 
throughout the day, most stations will have multiple simultaneous charging events at certain 
times.   

Figure 15 demonstrates that charging behavior, particularly ATO, influences peak load and 
peak number of chargers simultaneously occupied for a DCFC station. As discussed previously, 
the ATO charging behavior generally leads to fewer charging events (Table 9) than Hybrid or 
TPM behaviors. However, since ATO results in longer charging sessions on average, there is a 
higher probability of charging events overlapping and occurring simultaneously at a station. 

On top of the maximum number of chargers simultaneously occupied, charger utilization rate 
is another major factor affecting the charging infrastructure requirement estimation. As 
described in Chapter 3, lower and upper bounds of network size are estimated and shown in 
Figure 16. By 2030, California is projected to need 1,039 to 1,119 DCFC stations composed of 
1,292 to 4,830 DC fast chargers to support electrified LDTs for more than 5 million BEVs, 
depending on charging behavior. The number of stations is relatively consistent across 
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charging behavior types, but the ATO behavior results in a 75 to 90 percent increase in the 
number of chargers compared to the Hybrid and TPM behaviors, respectively, in 2030. 

Figure 16: DCFC Infrastructure Requirements for Stations (top) and Chargers (bottom) 
by Simulation Year and Charging Behavior – High BEV Adoption Scenario 

The number of DCFC stations and chargers is expected to increase over time to meet growing BEV travel and charging 
demand. By 2030, California is projected to need anywhere from 1,039 to 1,119 DCFC stations composed of 1,292 to 4,830 
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chargers, depending on charging behavior. Under the ideal TPM charging behavior, the infrastructure requirements include 
an average of about 1,000 stations consisting of nearly 2,000 chargers. Source: CEC and NREL 

Along with DCFC infrastructure growth over time, the composition of chargers is also expected 
to evolve. Since each year is modeled independently, the DCFC infrastructure network is built 
from scratch each time. Figure 17 shows that later years are more heavily composed of 
higher-powered DC fast chargers to accommodate the increasing charging power of BEVs, 
enabling faster charging for the same amount of energy or replenishing more range for the 
same time spent charging. Moreover, charging behavior could impact the composition of the 
network. For example, in the 2030 High BEV adoption scenario, ATO leads to 9 percent 150 
kW, 32 percent 250 kW, and 59 percent 350 kW chargers, whereas TPM results in 4 percent, 
21 percent, and 75 percent, respectively. Thus, TPM suggests a shift in the charger 
composition towards slightly more powerful chargers. As noted earlier, TPM increases the 
frequency of on-route charging compared to ATO, increasing the probability of plugging in. If 
a station is visited by both SR-Cars and LR-Cars, to accommodate both types of BEVs, the 
charger will be rated for the larger charging power, which explains the shift towards more 
powerful plugs under the TPM behavior. 

Figure 17: The Composition of DCFC Chargers by Maximum Charging Power for Lower 
and Upper Charger Bounds 

Charger composition evolves over time to favor high-powered charging in parallel with the increasing charging power of 
BEVs. Charging behavior influences the share of power level distribution, with TPM resulting in fewer chargers overall, but a 
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larger share of high-powered chargers. Source: CEC and NREL 

Figure 18 illustrates how the projected chargers are distributed throughout the state, leading 
to some interesting observations. For example, in the TPM charging behavior, San Francisco 
County is estimated to require only 2 chargers for LDTs, whereas San Bernadino County would 
require over about 350 chargers. This model identifies a smaller need for chargers in some 
urban areas because it only assigns chargers along the routes of long-distance trips, rather 
than at the origin or destination, both of which are assumed to already have charging 
available. Areas like San Francisco are the origin and destination of many long-distance trips 
but have relatively few other long-distance trips passing through them, and as a result the 
model assigns relatively few chargers there. Similar to observations made in Figure 15 
regarding individual charging events, this is primarily due to the sizes of different counties and 
their road networks. In the case of San Bernardino County, LDTs from the greater Los Angeles 
area to Nevada and Arizona are the main driver for the large number of chargers required. 
Similarly, Sacramento County, while relatively small in terms of land area, is projected to 
require 320 DCFC chargers, owing to major roads (I-5, I-80, CA-50, and CA-99) crossing 
through the county.   
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Figure 18: Number of Chargers (Upper Bound) by County in 2030 – High BEV Adoption; 
TPM Charging Behavior 

Chargers are predominantly located in larger counties, especially those with major interstates and highways crossing 
through them. San Francisco County requires the fewest chargers (2) and San Bernardino County contains the most (about 
350). Source: CEC and NREL 

Comparing the projected 2030 DCFC station locations against existing stations published by 
the Alternative Fuels Data Center (AFDC) in Figure 19 yields several notable takeaways. 
Existing stations are largely concentrated in the major metropolitan areas of the state, with a 
sparser distribution along the major highways. This analysis suggests that stations need to 
more thoroughly cover California’s road network by 2030 to enable long-distance travel. In 
addition, many of the projected stations are in rural and less-traveled areas that have so far 
not been targeted in the market. One caveat is that an existing fast charging station on the 
AFDC list may not be a suitable substitute for a projected nearby EVI-RoadTrip station; for 
example, it may not have enough chargers. It will be important to consider the evolution, both 
in terms of the number of chargers at stations and related power levels, to support the travel 
demand modeled in EVI-RoadTrip. 
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Figure 19: Comparison between Existing DCFC Infrastructure and EVI-RoadTrip 2030 
Projections – Station Locations (left) and Charger Counts by TAZ (right) 

On the left, EVI-RoadTrip results for the TPM charging behavior in 2030 show that DCFC stations will need to cover 
California’s road network more thoroughly than existing stations do today. On the right, a TAZ-by-TAZ analysis shows that 
the largest projected gaps in charger counts are concentrated in more rural areas of the state that have not been targeted as 
much in the market. However, many areas have minimal or no charger deficit, especially in urban areas and along major 
corridors. That said, these results do not consider the power level of existing chargers compared to projected chargers in 
the future. Source: CEC and NREL 

Charging infrastructure for LDTs can be disproportionately large on a per-trip basis, in 
comparison with the corresponding infrastructure for daily or short-distance travel. According 
to the CSTDM, LDTs only account for around 0.5 percent of total daily light-duty personal 
vehicle trips in California. This analysis projects electrified LDTs would need 1,292 to 4,830 DC 
fast chargers by 2030, compared to about 30,000 projected by EVI-Pro 2 for short-distance 
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travels and 2,100 projected by WIRED for transportation network company operations.68 

Despite such a small share of LDTs in daily vehicle activity on the road, these trips demand 
anywhere from 4 to 13 percent of the total DCFC network. It is important to caveat that EVI-
RoadTrip and EVI-Pro 2 do not currently consider co-utilization of DCFC infrastructure for 
short- and long-distance travelers, which could decrease the required DCFC network size. 

Load Profiles 
Figure 20 shows the statewide aggregated charging load profiles for the High BEV adoption 
scenario and the longitudinal change from 2020 to 2030. The scale of charging load profiles 
tends to be proportional to the assumption of electrification rates, which varies between 
simulation years and BEV adoption scenarios. In addition, regardless of simulation year, the 
network-wide load peaks during the early afternoon around 2 p.m. and can take advantage of 
solar generation. This is a result of the temporal pattern of LDT activity over the course of the 
day mentioned previously. In 2030, LDT charging demand is expected to peak around 60 MW. 

Figure 20: Longitudinal Evolution of Network-Wide Charging Load Profiles for 
Electrified LDTs – High BEV Adoption Scenario; TPM Charging Behavior 

Charging load is generally proportional with electrification rates, growing over time as the BEV population increases. The 
timing of the peak load remains consistent around 2 p.m. due to travel patterns, and by 2030 the peak load is estimated to 
reach nearly 60 MW. Source: CEC and NREL 

68 Alexander, Matt, Noel Crisostomo, Wendell Krell, Jeffrey Lu, and Raja Ramesh. July 2021. Assembly Bill 2127 
Electric Vehicle Charging Infrastructure Assessment: Analyzing Charging Needs to Support Zero-Emission Vehicles 
in 2030 – Commission Report. California Energy Commission. Publication Number: CEC-600-2021-001-CMR. 
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Charging load profiles are also a function of BEV classification and LDT type, as shown in 
Figures 21 and 22, respectively. SR-Cars account for 41 percent of total energy from charging, 
followed by SUVs at 32 percent and LR-Cars making up 27 percent in 2030. The dominance of 
SR-Cars in load profiles is attributable to their battery capacity, which is smallest among the 
BEV types considered and requires more frequent charging for the same travel distance. SUVs 
consume more energy than LR-Cars principally due to their lower energy efficiency. While LR-
Cars make up a larger share of the 2030 BEV fleet, and both LR-Cars and SUVs are assumed 
to have the same battery capacity, SUVs consume roughly 40 percent more energy than LR-
Cars for highway driving, leading to increased charging. 

Figure 21: Network-Wide Charging Load Profiles by BEV Type in 2030 

SR-Cars, which have the smallest battery capacity, contribute the most charging load (41 percent), followed by SUVs (32 
percent) and LR-Cars (27 percent). Despite LR-Cars making up a larger fraction of the BEV population than SUVs, SUVs are 
modeled to consume roughly 40 percent more energy, requiring more charging. Source: CEC and NREL 

Figure 22 illustrates the load profiles broken down by LDT type. Intra-state LDTs account for 
the majority of charging load (55 percent) throughout the day, followed by out-of-state 
inbound trips (41 percent). Load profiles for intra-state trips peak between 3 and 4 p.m., 
whereas the peak load for out-of-state inbound trips occurs around midday. This is mainly due 
to the assumption about timing of trips. Most LDTs start around 10 a.m., and it is assumed 
that out-of-state inbound trips will arrive at their destinations in the afternoon, based on the 
travel survey data. The other two types of out-of-state LDTs, out-of-state outbound and 
through, represent a very small share of charging load: 4 percent and less than 1 percent, 
respectively. Although out-of-state outbound trips are not expected to require much charging 
inside California, these vehicles are very likely to require charging along the rest of the route, 
indicating the importance of regional and national approaches to electrifying corridors. While 
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out-of-state through trips have much longer travel distances than the other three types of 
LDTs, their overall travel volume is very small, contributing to their insignificant contribution to 
the load profiles. 

Figure 22: Network-Wide Charging Load Profiles by LDT Type in 2030 

Intra-state LDTs account for the most charging load (55 percent) followed by out-of-state inbound trips (41 percent). Out-of-
state outbound trips are not expected to require much charging in California but are very likely to charge along the rest of 
their routes. Source: CEC and NREL 

Finally, Figure 23 highlights the impact of charging behavior on the load profiles. The ATO 
behavior can more than double the peak load compared to the TPM and Hybrid behaviors, due 
to the increased coincidence in charging from longer charging session durations. The 
insignificant difference between TPM and Hybrid load profiles is primarily because most LDTs 
only require one charging event. Since the Hybrid scenario adopts the TPM behavior for the 
last charging event of a trip, trips with only one charging event will exhibit no difference 
between the Hybrid and TPM scenarios. The impact of charging behavior on load profiles also 
affects the local load profiles at destinations. For example, the ATO behavior results in a 
higher average SOC at the final destination than the Hybrid or TPM scenarios, meaning that 
charging load at destinations would be lower. 
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Figure 23: Network-Wide Charging Load Profiles by Charging Behavior in 2030 

Charging behavior can have a significant impact on charging load, as the ATO scenario results in more than doubling the 
peak load compared to TPM. Source: CEC and NREL 

Electric Grid Hosting Capacity Analysis 
Figure 24 shows the results of TAZ-by-TAZ hosting capacity analysis using the EDGE model to 
evaluate net capacity deficits in MW for lower and upper charger bounds. Positive values 
indicate that the existing hosting capacity would not be enough to support increasing DCFC 
demand from electrified LDTs. Note that some TAZs (shown as blank) are removed due to 
data availability or quality issues. 

Two key takeaways can be drawn from the hosting capacity analysis results. First, most of the 
TAZs are estimated to have enough capacity to host increasing DCFC demand for electrified 
LDTs. However, TAZs in rural or suburban areas along the popular interstate highways, 
including those near the eastern and southern state borders, may require capacity upgrades to 
meet the increasing DCFC demand for electrified LDTs. Critically, this analysis does not 
account for other charging demand from other use cases such as local travel and may not fully 
reflect hosting capacity constraints. 
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Figure 24: Net Capacity Deficit by TAZ in 2030 – Lower (left) and Upper (right) Charger 
Bounds 

Integrating the EVI-RoadTrip load results with the CEC’s EDGE model allows net grid capacity deficits by TAZ to be 
evaluated for lower (left) and upper (right) bounds on chargers. Positive values indicate a capacity deficit. The results 
suggest that most LDT charging load could be accommodated by the current grid infrastructure, though more rural regions 
on the eastern and southern borders of the state may require grid upgrades. Source: CEC and NREL 

Sensitivity Analysis 
The results presented thus far are based on a specific set of assumptions, although different 
scenarios were considered for BEV adoption (Low, Mid, and High) and charging behavior 
(ATO, Hybrid, and TPM). To evaluate the impact of different assumptions from those used in 
previous sections, nine cases (described in Table 11) were adopted for sensitivity analysis. 
DCFC network size and characteristics (e.g., plug composition), as well as load profiles, for all 
nine sensitivity cases (except gas station-centric siting) are compared with the baseline case. 
Since the gas station-centric siting approach is primarily related to station siting, only the 
change in land use types is shown. 
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Table 11: Sensitivity Analysis Cases69 

Sensitivity Case Name Description 

Cold Temperature Decrease ambient temperature from 75° F to 35° F. 

ECR: Low 
Vehicles are assumed to be more efficient and follow the lower bound of ECR in 
Figure 7. 

ECR: High 
Vehicles are assumed to be less efficient and follow the upper bound of ECR in 
Figure 7. 

Station Buffer: 2 Miles 
Decrease distance buffer between the point where drivers realize they need to 
charge and DCFC stations from 5 miles to 2 miles. 

Station Buffer: 10 Miles 
Increase distance buffer between the point where drivers realize they need to 
charge and DCFC stations from 5 miles to 10 miles. 

BEV Fleet: Equal The BEV fleet is composed of equal shares of SR-Cars, LR-Cars, and SUVs. 

BEV Fleet: LDV 
The BEV fleet composition is the same as the overall light-duty vehicle (LDV) 
fleet composition. 

SUV Battery Capacity SUVs are assumed to have 180 kWh batteries in 2030 instead of 125 kWh. 

kW-SOC Curves 

Use alternative kW-SOC curves that are similar to Tesla Version 3 
supercharging.70 This type of charging is unique and includes an initial spike at 
lower SOC, followed by a linear decrease afterwards, while maintaining the 
same charging speed as in Figure 9. 

Gas Station-Centric Gas stations are the most preferred land use type for DCFC stations (Table 8). 

Source: CEC and National Renewable Energy Laboratory 

Figure 25 illustrates the impact of these scenarios on the number and power level of chargers 
required to support electrified LDTs in 2030. All values are relative to the baseline scenario 
with Mid BEV adoption and TPM charging behavior. There is a wide range of differences in the 
results, varying from a 1 percent change to 88 percent. Among the nine sensitivity cases, cold 
temperature leads to the largest increase in network size, at 88 percent. Vehicle efficiency has 
the second-largest impact, increasing or decreasing network size by 50 or 45 percent, 
respectively, as efficiency decreases or increases. Modifying the distance buffer for stations 
has the third largest impact, increasing or decreasing the network size by 40 percent and 21 
percent, respectively, as the distance buffer is decreased to 2 miles or increased to 10 miles. 

69 Lee, D.-Y. and Wood, E. 2020. DC Fast Charging Infrastructure for Electrified Road Trips. Available at: 
https://www.energy.ca.gov/event/workshop/2020-08/session3-modeling-and-projecting-charging-infrastructure-
commissioner.    

70 Tesla. Introducing V3 Supercharging. https://www.tesla.com/blog/introducing-v3-supercharging. 

https://www.energy.ca.gov/event/workshop/2020-08/session3-modeling-and-projecting-charging-infrastructure-commissioner
https://www.energy.ca.gov/event/workshop/2020-08/session3-modeling-and-projecting-charging-infrastructure-commissioner
https://www.tesla.com/blog/introducing-v3-supercharging
https://www.tesla.com/blog/introducing-v3-supercharging
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Splitting the BEV fleet composition evenly between the three vehicle types results in a 23 
percent increase in the network size due to a shift towards SR cars that require more charging. 
Distributing the BEV fleet to reflect the composition of the overall light-duty fleet results in a 2 
percent decrease in the network size. Increasing the battery capacity of SUVs from 125 kWh 
to 180 kWh results in a 3 percent decrease in the network size. The use of alternative kW-SOC 
curves leads to almost no difference in terms of the overall number of chargers, though the 
composition by power level could change drastically. 

Figure 25: Percentage Change in Network Size and Charger Composition by Sensitivity 
Analysis Case in Year 2030 

The sensitivity analysis shows a wide range of increases and decreases in the network size. Cold temperatures results in the 
largest change, increasing the network size by 88 percent. The ECR of BEVs also makes a noticeable impact, emphasizing 
the importance of vehicle efficiency. Modifying the station buffer demonstrates the effect of driver decision-making for when 
to seek out a charger on the network size. Doubling the station buffer, which could reflect more proactive planning amongst 
drivers, results in a 21 percent decrease in the network size. Other scenarios result in more modest changes. Chargers 
above 350 kW are only present in the kW-SOC Curve scenario. Source: CEC and NREL 

Charging load profiles fluctuate over the course of the day, but the overall impact of these 
sensitivity scenarios is similar to the network size results. Once again, cold temperature makes 
the largest impact, increasing load by up to 250 percent. Vehicle efficiency has the second-
largest impact, increasing load by 50 to 150 percent in the low efficiency case and decreasing 
load by 50 to 100 percent in the high efficiency case. All other sensitivities lead to smaller 
impacts within a 50 percent increase or decrease. 

The gas station-centric sensitivity scenario primarily altered the locations of projected DCFC 
stations. Figure 26 shows how this re-prioritization results in existing gas stations hosting 
about 70 percent of the required DCFC stations. Furthermore, this transition alters the 
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composition for the remaining DCFC stations as well, as the gas stations primarily absorb 
demand from commercial locations and general parks. 

Figure 26: Change in DCFC Station Locations from Default Station Siting Strategy (left) 
to Gas Station-Centric Siting Strategy (right) 

Prioritizing gas stations for DCFC station siting shows that existing gas stations can host about 60 percent of the required 
DCFC stations. Furthermore, the new gas station locations primarily displace DCFC stations at commercial locations and 
general parks. Source: CEC and NREL 

  

Gas 
stations 

Retail or 
shopping 
centers 

Park or 
natural 
area 

Transportation facilities 

Gas 
stations 

Retail or 
shopping 
centers 

Park or 
natural area 

Transportation facilities 



64 

CHAPTER 5: 
Conclusions and Future Work 

This novel model and analysis address an under-researched, but increasingly important use 
case for transportation electrification: personal on-road long-distance travels. To accelerate 
and maximize the transition to EVs, it is critical to have a fast charging network connecting 
regions within and outside California to reduce range anxiety and the desire to keep ICE 
vehicles. 

The results of this analysis show the potential infrastructure network requirements to achieve 
this vision. Assuming drivers optimize charging behavior, an average of 1,041 DCFC stations 
and nearly 2,000 DC fast chargers are projected to support the electrified interregional travel 
of more than 5 million BEVs in 2030. Charging from electrified LDTs in this scenario is 
projected to result in a peak load of about 60 MW around 2 to 3 p.m. and aligns with solar 
generation. However, this analysis highlighted how these results can significantly vary 
depending on vehicle population, charging behavior, and other conditions.   

Policy Implications 
Several policy implications emerge from this work: 

1) Investments should be targeted in under-served areas to support electrified 
interregional travel. 
As shown in Figure 19, existing DCFC stations are largely concentrated in the major 
metropolitan areas of the state, with a sparser distribution along major highways. The 
EVI-RoadTrip results indicate that by 2030, stations will need to cover California’s road 
network more thoroughly, particularly in rural and less-trafficked areas that have so far 
not been targeted in the market. However, the assumption that drivers will proceed 
until their batteries are nearly depleted and will need to charge very soon afterwards 
leads to a denser network in Figure 19 than may be realistically needed or feasible. This 
assumption will be revisited in future work. 

2) Future-proofing infrastructure and encouraging interoperability of charging 
connectors should be a priority. 
Even with a growing BEV population, EVI-RoadTrip finds that technology improvements 
such as longer-range vehicles and higher charging power moderate the growth in the 
needed number of stations and plugs over time. Since each analysis year is simulated 
independent of the others, later years show low-powered DC fast chargers replaced 
with higher-powered infrastructure. Given the lifetime of DC fast chargers, this suggests 
that installing high-powered chargers should be prioritized today to meet the needs and 
capabilities of future BEVs. The model also assumes perfect interoperability, where any 
BEV can plug into any charger and successfully charge. Since this is not the case in 
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practice today, EVI-RoadTrip may underestimate the DC fast charging needs if a 
fragmented infrastructure network persists. 

3) Further research and collaboration are needed to fully understand potential 
grid impacts. 
The proof-of-concept SCE case study using EDGE (discussed in the “Electric Grid 
Hosting Capacity Analysis section of Chapter 4) indicates that road trip charging 
demand may not be accommodated by the current grid infrastructure depending on the 
region. It is critical for state agencies to continue working and engaging with utilities 
and researchers on the EDGE tool to accurately reflect grid conditions and the impact of 
future load and to proactively plan for increased ZEV penetration. 

4) Optimized charging and driving behavior can minimize grid impacts and 
infrastructure requirements. 
As the ATO charging behavior illustrated, always charging to 100 percent SOC creates 
ripple effects that could more than double peak load and require significantly more 
chargers due to the increased coincidence in charging from longer charging sessions. 
Educating drivers about charging behavior or proactively limiting plug-out SOC for DC 
fast charging through vehicle or charger controls could minimize grid impacts and 
infrastructure requirements. 
Furthermore, the sensitivity analysis demonstrated the impact of driver decision-making 
on the network size. Doubling the maximum distance from when a driver needed to 
charge to the station site from 5 to 10 miles resulted in a 21 percent decrease in the 
network size. 

5) Infrastructure in neighboring states and countries is needed to fully support 
electrified interregional travel. 
EVI-RoadTrip identifies several station sites in neighboring states to accommodate 
routes that include out-of-state travel. However, these are only for trips that begin and 
end in California. As noted in previous sections, the model does not consider charging 
demand outside of California for trips that begin or end outside the state. To fully 
enable electrified interregional travel, a sufficient DC fast charging network will be 
needed across states and in countries such as Mexico and Canada. Regional 
collaboration has the potential to accelerate and improve deployment of this network. 

Future Work 
Although this analysis represents a significant step forward for charging infrastructure 
modeling, there are some limitations and refinements that will be addressed in future work. 

EVI-RoadTrip will be combined with EVI-Pro 2, which focuses on intraregional travel and 
community charging infrastructure needs. Since these two models are currently separate, it is 
possible that the DC fast charging infrastructure modeled in each could overlap. For example, 
chargers designed in EVI-RoadTrip for long-distance travel could also be used for local travel, 
or vice versa. The development of EVI-Pro 3 will aim to bridge this gap either through co-
simulating the travel and charging needs of both use cases or through post-processing. Also, 
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EVI-RoadTrip does not currently generate charging loads at origins or destinations. Including 
these in a single model will provide a more accurate and holistic depiction of LDT charging. 

In addition, the independent nature of simulation years is an area that will be investigated. As 
mentioned previously, the charging infrastructure designed in one year is not assumed to still 
exist in a later year. This results in a model that may not reflect infrastructure planning and 
installations in practice. Capturing these real-world properties may better illustrate costs and 
benefits, such as future-proofing equipment mentioned above. 

Further integration with the EDGE model as it is refined will be a critical step towards 
understanding grid impacts and properly planning for growing charging load. While this 
analysis presented a case study demonstrating the value of EDGE, there are still notable data 
gaps and uncertainties that will require continued coordination between state agencies, 
utilities, and researchers. 

Several assumptions about travel demand, driver behavior, vehicle characteristics, and 
charging session characteristics were made in this analysis. Higher-quality data on travel 
behavior (including multi-day LDTs) and detailed charging session data will be needed to more 
accurately estimate infrastructure requirements and charging load. Also, relationships between 
vehicle characteristics and LDTs (e.g., bias towards longer-range or larger BEVs, pulling 
trailers) could be incorporated to improve the realism of the analysis. As mentioned above, the 
assumption on trip planning and when drivers decide to charge makes a significant impact on 
the network size and design and will be investigated more robustly in future work. 

Future analysis should continue to consider market evolution and policy goals to reevaluate 
infrastructure needs. These include factors such as vehicle attributes, charging technologies, 
consumer behavior and preferences, BEV adoption trajectories, sales goals, and more. As the 
different fleet scenarios and sensitivity analyses showed, the infrastructure results can vary 
depending on the specific conditions, and it will be necessary to continue benchmarking 
infrastructure needs for this use-case as part of the CEC’s AB 2127 assessments.   
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Glossary 

ALTERNATING CURRENT (AC) — Flow of electricity that constantly changes direction. Almost 
all power produced by electric utilities in the United States moves in current that shifts 
direction at a rate of 60 times per second.   

BATTERY-ELECTRIC VEHICLE (BEV) — Also known as an “all-electric” vehicle, BEVs use 
energy that is stored in rechargeable battery packs. BEVs sustain power through the batteries 
and therefore must be plugged into an external electricity source to recharge. 

CALIFORNIA AIR RESOURCES BOARD (CARB) — The state's lead air quality agency consisting 
of an 11-member board appointed by the Governor and more than 1,000 employees. CARB is 
responsible for attainment and maintenance of the state and federal air quality standards, 
California climate change programs, and motor vehicle pollution control. It oversees county 
and regional air pollution management programs. 

CALIFORNIA ENERGY COMMISSION (CEC)—The state agency established by the Warren 
Alquist State Energy Resources Conservation and Development Act in 1974 (Public Resources 
Code, Sections 25000 et seq.) responsible for energy policy. The CEC's five major areas of 
responsibilities are forecasting future statewide energy needs; licensing power plants sufficient 
to meet those needs; promoting energy conservation and efficiency measures; developing 
renewable and alternative energy resources, including providing assistance to develop clean 
transportation fuels and infrastructure; and planning for and directing state response to 
energy emergencies.   

CALIFORNIA PUBLIC UTILITIES COMMISSION (CPUC) — A state agency created by a 
California constitutional amendment in 1911 to regulate the rates and services of more than 
1,500 privately owned utilities and 20,000 transportation companies. The CPUC is an 
administrative agency that exercises legislative and judicial powers; its decisions and orders 
may be appealed only to the California Supreme Court. The major duties of the CPUC are to 
regulate privately owned utilities, securing adequate service to the public at rates that are just 
and reasonable to customers and shareholders of the utilities; and the oversight of electricity 
transmission lines and natural gas pipelines. The CPUC also provides electricity and natural gas 
forecasting, and analysis and planning of energy supply and resources. Its headquarters are in 
San Francisco. 

DIRECT CURRENT (DC) — A current of electricity that flows in one direction and is the type of 
power that comes from a battery.   

DIRECT CURRENT FAST CHARGER (DCFC) – Electric vehicle charging that uses direct current 
anywhere from 200 to 1000 volts and can reach a maximum power output of 450 kilowatts. 

ELECTRIC VEHICLE (EV) — A broad category that includes all vehicles that can be fully 
powered by electricity or an electric motor. 
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ELECTRIC VEHICLE CHARGING STATION — A location where one or more EVSEs are installed 
to charge EVs. 

ELECTRIC VEHICLE SUPPLY EQUIPMENT (EVSE) -- Equipment designed to supply power to 
EVs. Most EVSEs can charge BEVs and PHEVs.   

GREENHOUSE GAS (GHG) — Any gas that absorbs infrared radiation in the atmosphere. 
Greenhouse gases include water vapor, carbon dioxide (CO2), methane (CH4), nitrous oxide 
(NOx), halogenated fluorocarbons (HCFCs), ozone (O3), perfluorinated carbons (PFCs), and 
hydrofluorocarbons (HFCs). 

KILOWATT (kW) — One thousand watts, a measure of power. On a hot summer afternoon, a 
typical home — with central air conditioning and other equipment in use — might have a 
power demand of 4 kW. 

KILOWATT-HOUR (kWh) — One kilowatt of electricity supplied for one hour, that is, a measure 
of energy. It is the most used unit of measure telling the amount of electricity consumed over 
time. 

MEGAWATT (MW) — A unit of power equal to 1 million watts. 

NITROGEN OXIDES (OXIDES OF NITROGEN, NOx) — A general term for compounds of nitric 
oxide (NO), nitrogen dioxide (NO2), and other oxides of nitrogen. Nitrogen oxides are typically 
created during combustion and are major contributors to smog formation and acid deposition. 
NO2 is a criteria air pollutant and may result in numerous adverse health effects. 

PLUG-IN ELECTRIC VEHICLE (PEV) — A general term for any car that runs at least partially on 
battery power and is recharged from the electricity grid. There are two types of PEVs: pure 
battery-electric and plug-in hybrid electric vehicles. 

PLUG-IN HYBRID ELECTRIC VEHICLE (PHEV) — PHEVs are powered by an internal combustion 
engine and an electric motor that uses energy stored in a battery. The vehicle can be plugged 
107 into an electric power source to charge the battery. Some can travel nearly 100 miles on 
electricity alone, and all can operate solely on gasoline (like a conventional hybrid).   

TRAFFIC ANALYSIS ZONE (TAZ) 

VEHICLE-GRID INTEGRATION (VGI) — Methods to align electric vehicle charging with the 
needs of the electric grid. To do this, electric vehicles must have capabilities to manage 
charging or support two-way communication between vehicles and the grid.228   

ZERO-EMISSION VEHICLE (ZEV) — Vehicles that produce no emissions from the onboard 
source of power (for example, hydrogen fuel cell vehicles and electric vehicles). 
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