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PREFACE 
The California Energy Commission’s (CEC) Energy Research and Development Division 
supports energy research and development programs to spur innovation in energy efficiency, 
renewable energy and advanced clean generation, energy-related environmental protection, 
energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 
Public Utilities Commission to fund public investments in research to create and advance new 
energy solutions, foster regional innovation and bring ideas from the lab to the marketplace. 
The CEC and the state’s three largest investor-owned utilities—Pacific Gas and Electric 
Company, San Diego Gas & Electric Company and Southern California Edison Company—were 
selected to administer the EPIC funds and advance novel technologies, tools, and strategies 
that provide benefits to their electric ratepayers. 

The CEC is committed to ensuring public participation in its research and development 
programs that promote greater reliability, lower costs, and increase safety for the California 
electric ratepayer and include: 

• Providing societal benefits.
• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost.
• Supporting California’s loading order to meet energy needs first with energy efficiency

and demand response, next with renewable energy (distributed generation and utility
scale), and finally with clean, conventional electricity supply.

• Supporting low-emission vehicles and transportation.
• Providing economic development.
• Using ratepayer funds efficiently.

This is the final report for the Advanced Statistical-Dynamical Downscaling Methods and 
Products for California Electricity System Climate Planning project (EPC-16-063) conducted by 
University of California, San Diego Campus’s Scripps Institution of Oceanography. The 
information from this project contributes to the Energy Research and Development Division’s 
EPIC Program. 
For more information about the Energy Research and Development Division, please visit 
the CEC’s research website (www.energy.ca.gov/research/) or contact the CEC at 
ERDD@energy.ca.gov. 

http://www.energy.ca.gov/research/
http://www.energy.ca.gov/research/
mailto:ERDD@energy.ca.gov
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ABSTRACT 
Global climate models provide important information regarding projected climate change, but 
they do not provide the necessary fine-scale data needed to fully evaluate and prepare for 
extreme or impactful events. Therefore, climate projections from the global climate models 
need to be translated to time-scales, and regional or local spatial scales, relevant to 
California’s electricity sector. California’s complex topography and hydrological features 
necessitate higher resolution depictions to illuminate local and regional trends and ultimately 
to support adaptation planning. This report describes the development of modeling techniques 
applied to generate high-resolution projections of California’s historical and future weather, 
climate, and hydrologic phenomena. The report addresses the following elements: statistical 
and dynamical downscaling of meteorological variables; hybrid downscaling techniques, using 
both statistical and dynamical methods to obtain more accurate downscaling results than 
would otherwise be possible, hydrological modeling, including surface and groundwater 
components, and more detailed groundwater modeling of selected aquifers. The report also 
describes complementary elements that either inform or stem from these downscaling and 
hydrologic modeling approaches. These include observed datasets that are used for model 
validation and analysis, and an assessment of variables of interest to California decision 
makers that can be expected from dynamical and statistical downscaling. Finally, lessons 
learned, including opportunities and challenges, are also summarized. 

Keywords: dynamical downscaling, statistical downscaling, hydrological modeling, climate 
variability, climate change, California. 

Please use the following citation for this report: 
Cayan, Daniel, David Pierce, Laurel DeHaan, Janin Guzman-Morales, Alexander Gershunov, 

Rachel Clemesha, Andrew Martin, Paul Ullrich, Lele Shu, Hoori Ajami, Adam Schreiner-
McGraw. Advanced Statistical-Dynamical Downscaling Methods and Products for 
California Electricity System Climate Planning. California Energy Commission. 
Publication Number: CEC-500-2024-012. 
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EXECUTIVE SUMMARY 

Introduction  
To assess system and infrastructure resilience in the face of present and future climate 
change, California’s electric investor-owned utilities, as well as other stakeholders, require 
spatially and temporally detailed historical and projected climate, weather, and hydrological 
data. These data support understanding of the historical variation and projected climate 
changes, as well as projected variations of temperature, precipitation, and other variables over 
California’s complex terrain and neighboring regions. Of particular importance for risk and 
adaptation planning, is the understanding of factors involved in extreme climatic events. 
However, the fine-scale data required to fully evaluate and prepare for extremes and other 
impactful events are not directly provided by global and some regional climate model histories 
and projections. Climate projections from the global climate models, therefore, need to be 
translated to time- and spatial-scales relevant to the electricity sector. This translation requires 
downscaled weather, climate, and hydrology data from multiple climate scenarios. The tech-
niques to produce the downscaled data are designed to simulate the range of regional climate 
changes and impacts that are contained in the growing set of climate projections. These 
techniques, on one hand, need to be sophisticated enough to represent complex regional 
climate structures, including extreme events, but also efficient enough that computational 
loads are not prohibitive. 

Project Purpose 
The purpose of this project was to develop downscaling techniques to provide improved reso-
lution of California’s highly variable meteorological conditions; and to conduct exploratory 
modeling of selected surface and ground water systems employing meteorological variables 
from downscaled weather and climate models. This report describes the development and use 
of a hybrid approach that leverages statistical and dynamical methods to improve accuracy of 
downscaling results and to provide improved resolution of variables of interest to a high-
renewables electricity sector. This includes improvements in a gridded observational dataset, 
hourly statistical downscaling, consideration of vector wind variables, evaluation of downslope 
wind model simulations; and possible improvements in physical processes included in dyna-
mical modeling of coastal clouds, including aerosol-aware techniques.  

Downscaling of global climate model projections and historical simulations can be accom-
plished using statistical or dynamical modeling, along with application of the multi-decade 
historical datasets needed to train and validate these models. This project therefore developed 
hybrid downscaling techniques, that use statistical and dynamical methods to obtain improved 
downscaling results. Some atmospheric variables that are needed by electricity sector stake-
holders, such as vector wind, do not have a sufficiently long observational record for training 
statistical models; and in many cases these variables are still not consistently observed. The 
output provided by dynamic models may provide a dataset that can fill this void and be used 
in statistical downscaling. The hybrid techniques make it possible to downscale multiple global 
climate models and backcast historical weather reanalyses, with a specific focus on statistical 
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and dynamical downscaling of meteorological variables, including winds and coastal cloudi-
ness. The hybrid techniques are needed to downscale multiple emission scenarios and time 
periods, which will help inform and prepare California for the downscaling of the broad suite of 
next-generation global climate model simulations currently being developed by the Coupled 
Model Intercomparison Project, Phase 6. The broad suite of global climate model simulations 
informs the Intergovernmental Panel on Climate Change and other international and national 
climate assessments.  

Climate projections developed to support prior California Climate Change Assessments focused 
primarily on daily data. However, some applications require sub-daily information such as 
hourly temperatures for energy applications, hourly winds for wildfire analysis, and hourly 
solar insolation for photovoltaic analyses. Consequently, in this project, statistical downscaling 
of selected variables was pushed to a sub-daily time resolution. To respond to this need, this 
project produced a dynamical downscaled historical weather reanalysis at hourly resolution 
and also pushed statistical downscaling to hourly time resolution for variables of importance to 
California’s electricity system. These variables over a 3-kilometer (km) x 3 km grid that covers 
California and Nevada, include temperatures at individual California station locations, vector 
wind, and relative humidity.  

This project also explored hydrologic phenomena using two hydrological-model systems. 
Policymakers and stakeholders have an ongoing and growing need for high-resolution and 
detailed information about stream flows and the temporal-spatial distribution of hydrologic 
fluxes in a watershed. Because water and energy systems are interdependent, it is expected 
that projected changes in water supply will impact hydropower production and energy use in 
the future, as with groundwater pumping. Therefore, assessments of climate change also 
require information on soil moisture and groundwater fluctuations, which both impact 
streamflow generation processes and reservoir management.  

Project Approach  
This project was managed by Dr. Dan Cayan of Scripps Institution of Oceanography at the 
University of California, San Diego, with teams of researchers from University of California San 
Diego, Portland State University, University of California Davis, and University of California 
Riverside carrying out work tasks associated with the development and exploration of com-
ponents involved in hybrid downscaling, specifically: 

• Localized Constructed Analogs Downscaling 
• Wind and Humidity Diagnostics 
• Modeling and Diagnostics of Marine Stratocumulus Cloud 
• Hydrological Modeling Using Simulator for Hydrologic Unstructured Domains and 

Machine Learning Techniques 
• Groundwater Modeling Using ParFlow.CLM software 

In this research, increased spatial and temporal resolution of localized constructed analogs 
statistical downscaling was developed and tested. The localized constructed analogs method is 
a statistical scheme that produces downscaled estimates suitable for hydrological simulations, 
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using a multi-scale spatial matching scheme to pick appropriate analog days from observa-
tions. This process reduces the averaging across analog cases, and thus, localized constructed 
analogs produce better estimates of extreme days, constructs a more realistic depiction of the 
spatial coherence of the downscaled field, and reduces the problem of producing too many 
light-precipitation days.  

Dynamical downscaling experiments were conducted to replicate historical climate conditions 
using a configuration of the Weather Research Forecasting model that is aimed at simulating 
Marine Stratocumulus Clouds along and above the California coast. The research team called 
this model “WRF-CA-CLC.” Coastal low clouds (CLC), including stratus, stratocumulus, and fog, 
are a persistent, seasonal feature of the region’s climate. A disproportionate fraction of 
California’s population lives within the coastal zone, and growing photovoltaic electrical 
generation is sited there. Skill in modeling coastal low clouds along and near the coast is vital 
for understanding the processes that drive coastal low clouds, and to plan for impacts of its 
variability on California’s electricity sector. 

Hydrologic phenomena explored by this research include surface and groundwater compo-
nents, and groundwater modeling of selected aquifers. These phenomena and aquifers were 
modeled using two distinct approaches. Where existing hydrologic modeling systems are 
unable to accommodate California’s rough topography, a simulator for hydrologic unstructured 
domains was designed to cope with this relatively extreme regime. The other approach used in 
this research relied on a model called ParFlow.CLM, which is designed for massively parallel 
computer systems, using distributed forcing and land-cover types with the capability to simu-
late impacts of groundwater pumping and irrigation on exchanges between surface water and 
groundwater. 

Project Results  
The research provided a nearly 11-year (2009-2019) dynamically downscaled reanalysis. 
Reanalyzed datasets provide a comprehensive description of the observed climate as it has 
evolved. The datasets compensate for inherent biases and inconsistencies of different 
instruments used to take measurements at different points in weather observation. (NOAA, 
accessed 2023). The reanalysis supports statistical downscaling experiments and various 
assessments of model skill and performance. The development and testing of increased spatial 
and temporal resolution of localized constructed analogs statistical downscaling techniques 
resulted in outputs of the variables that are of importance to the electricity sector (e.g., 
temperature, winds, and humidity). Overall, this hourly disaggregation technique provided 
hourly future projected temperature values that: match observations over the historical period, 
correctly replicate global climate-model projected trends, and preserve realistic variability on 
sub-daily time scales. The downscaling was conducted at an increased gridded resolution: to 
3km x 3km. This is a substantial advance from the 6km x 6 km resolution applied in the prior 
generation of downscaling that supported California’s Fourth Climate Change Assessment. The 
research also achieved downscaling of vector winds, not just wind speeds. 

As a test and demonstration of the hybrid downscaling procedure, historical fields of vector 
wind and humidity were downscaled. This was done using the global reanalyses Modern-Era 
Retrospective Analysis for Research and Applications, Version 2 (MERRA-2), and the European 
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Center for Medium Range Weather Forecasting Reanalysis, Version 5 (ERA5). The resulting 
historical wind and humidity records showed strong similarity with the high-resolution Weather 
Research and Forecasting model description of a selection of Santa Ana wind episodes, based 
on statistical characteristics that matched Weather Research and Forecasting model data; 
these data should be useful in describing other extreme events over four decades.  

Comparison of the dynamical modeled winds from WRF-CA-CLC with observed winds from the 
San Diego Gas & Electric weather stations in the San Diego County region showed that the 
modeled winds were not exceedingly sensitive to the details of the Weather Research and 
Forecasting model physics package chosen. However, the physical parameters in the packages 
had a greater effect in producing differing structures of coastal stratus clouds.  

WRF-CA-CLC was also used as the primary methodological tool to simulate both coastal low 
clouds and their brightening in response to increasing aerosol concentrations. Two simulations 
were run to represent both clean and polluted particulate-matter scenarios. The aerosol con-
centrations representing each scenario were drawn from previously published observations on 
the California coast and are representative of current climate and current particulate matter 
conditions in California. Aerosol susceptibility, defined as the relative change in albedo in 
response to an increase in aerosol concentration, was used as the primary metric to estimate 
the response in cloud brightness to particulate matter. The results indicate that polluted 
conditions increase warm season (May to September) coastal low clouds albedo by 15 percent 
to 20 percent along the California coast. Thinner clouds (by water path below 700 hPa1) are 
more susceptible to pollutant aerosols than thick clouds. Results indicate that this “aerosol 
aware” modeling, which allows dynamically varying cloud effective radius in response to 
changing aerosol concentration, produces more realistic relationships between cloud water 
amount and albedo. The default approach used before applying this project’s methods 
produced clouds that were too bright, even for many polluted clouds. The project’s results are 
expected to help inform future regional downscaling efforts whose aim is to investigate coastal 
low clouds and their impact on surface insolation. 

The Simulator for Hydrologic Unstructured Domains model was deployed for long-term 
hydroclimate simulations (1979-2018) in the Sacramento River watershed. The Simulator for 
Hydrologic Unstructured Domains model representation of Sacramento Basin output discharge 
and groundwater appeared to have the correct magnitude and spatial pattern. Based on the 
long-term groundwater storage variation, the groundwater has been decreasing since the 
1980s. 

A hydrological model system known as ParFlow.CLM, was configured for the Kaweah River 
watershed in the Southern Sierra Nevada and in the Central Valley in California. The research 
examined how uncertainty in the precipitation datasets propagates through the process-based 
hydrologic model and results in uncertainty in the simulated hydrologic outputs. Additionally, 
the research investigated how combined uncertainty in precipitation and air temperature im-
pact simulated hydrologic fluxes and states in the watershed. The primary factor that impacts 
water budget partitioning is the total amount of snowfall predicted by each combination of 

 
1 Hectopascal pressure unit 1 hPa is equal to one millibar. 
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datasets. These results highlight the need for developing gridded climate products that can 
accurately represent hydrologic processes of mountain catchments. 

Knowledge Transfer and Benefits to California 
The methods and results of various elements of this research have been transferred through 
numerous activities, including submission and publication of scientific manuscripts in peer-
reviewed journals, presentations at high-profile conferences such as at the Fall meetings of the 
American Geophysical Union, and frequent teleconferences with staff from the California 
Energy Commission regarding the project’s data, methodology, and findings.  

Access to the regional model dynamically downscaled historical reanalysis dataset produced 
using the WRF-CA-CLC version of Weather Research and Forecasting model described in 
Section 3.2. can be arranged by request to the project investigators.  

This project produced advances in dynamically informed statistical techniques to downscale 
relatively coarse scale climate-model simulations, which are useful for California’s electric 
utilities and a broad set of other stakeholders. The hydrological-modeling techniques are vital 
for translating meteorological data into impacts over land surfaces, including the quantitative 
characterization of floods, runoff, drought, and groundwater stocks. The datasets describe 
California’s surface weather and hydrology at the higher spatial (3 km x 3 km) and temporal 
(hourly) resolution, which are needed by California’s electric and other stakeholders to 
examine energy demand and supply, and to assess infrastructure resilience in a changing 
climate.  

The techniques developed in this project will advance the downscaling of projected climate 
data (available from a large set of global-climate models) to fine spatial and temporal resolu-
tions that will enable California to better prepare for climate changes, including high-impact 
extreme weather events and compound weather and hydrological events that can impact the 
state’s electric system. These data will also be important in disentangling long-term trends 
from natural variability and regional or local effects. Conclusions from development of these 
hybrid techniques are already being applied to two other California Energy Commission 
projects, which together with this and other projects will advance development of a robust and 
usable set of climate projections for California.  
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CHAPTER 1: 
Introduction 

California’s investor-owned utilities (IOU), other utility sectors, and numerous other stake-
holders in California need spatially and temporally detailed historical and projected future 
climate, weather, and hydrological data to assess resilience to present and future climate 
change. Of particular importance is the spatial and temporal makeup of extreme events. 
However, the fine-scale data required to fully evaluate and prepare for extremes and other 
impactful events is not directly provided by global (or by some regional) climate model 
histories and projections. Downscaled weather, climate, and hydrology data from multiple 
climate scenarios are needed to translate global climate model (GCM) climate projections into 
spatial and temporal details relevant to decision makers—to understand historical variation and 
future projected changes and variation of temperature, precipitation, and other variables. 
Specifically, this project leverages statistical relationships between larger-scale processes 
captured by GCMs and the smaller-scale weather and climate details and uses those 
relationships to support understanding of weather extremes and climate trends in a 
topologically and hydrologically complex area such as California. 

Downscaling tools and approaches are especially needed to help users process a growing suite 
of global climate models, most of which provide simulations for multiple future scenarios. This 
collection of models contains ranges of variability within and across models; the uncertainty 
that arises from different model constructs, from different scenarios of future climate drivers 
(such as emissions, aerosols, land use, and land cover), and from various forms of climate 
variability. Additionally, many GCMs provide an ensemble of model simulations for a given 
scenario, which is useful for disentangling the role of unpredictable and chaotic natural climate 
variations from trends produced by anthropogenic greenhouse gases and aerosols. Investiga-
tion of the range of regional climate changes and impacts contained in the growing set of 
climate projections requires regional downscaling techniques that are sophisticated enough to 
represent complex regional climate structure (including extreme events), yet sufficiently 
efficient that the computational load is not prohibitive.  

This research developed downscaling techniques that exploited hybrid dynamical-statistical 
elements to provide improved resolution of California’s highly variable (in space and time) 
meteorological conditions, including winds and coastal cloudiness. Also included in this 
research is exploratory modeling of selected hydrological systems, including surface and 
groundwater systems. 

This report describes the development of downscaling and hydrologic modeling techniques as 
they apply to California weather, climate, and hydrologic phenomena. Several elements were 
included: statistical and dynamical downscaling of meteorological variables; hybrid techniques 
using both statistical and dynamical methods to obtain improved downscaling results; hydrolo-
gical modeling, including both surface and groundwater components; and groundwater 
modeling of selected aquifers. Additional necessary and complementary elements are also 
presented, which either inform or stem from these downscaling and hydrologic modeling 
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approaches. These include observed datasets, which are needed to train some forms of 
downscaling techniques and evaluate results from all downscaling techniques. 
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CHAPTER 2: 
Project Approach 

This chapter describes the techniques and development of statistical, dynamical, and com-
bined statistical-dynamical hybrid downscaling of global climate and weather simulations for 
California. Additionally, it describes some hydrological model approaches that employ 
meteorological variables from downscaled weather and climate modeling. 

Some important components involved in statistical and dynamical methods to obtain improved 
downscaling results include improvements in gridded observational datasets; hourly statistical 
downscaling; consideration of vector wind variables; evaluation of downslope wind model 
simulations; and possible improvements in physical processes in dynamical modeling of coastal 
clouds, including aerosol-aware techniques.   

The Localized Constructed Analogs (LOCA) method is a statistical scheme that produces down-
scaled estimates suitable for hydrological simulations using a spatial matching scheme to pick 
appropriate analog days from an observational or model dataset. LOCA is designed specifically 
to produce better estimates of extreme days; it also provides a more realistic depiction of the 
spatial coherence of the downscaled field. Additionally, LOCA reduces the problem of produ-
cing too many light-precipitation days. It is computationally efficient and provides the capacity 
to downscale a selected set of climate variables including temperature, precipitation, and a 
few other variables for many global-climate model reanalyses or projections.  

Dynamical downscaling involves running numerical models representing atmosphere and 
climate dynamics at high-resolution over a regional, as opposed to a global, domain. Regional 
dynamical models typically employ lower-resolution climate model outputs as the boundary 
conditions that guide their solutions. These models use physical principles to reproduce local 
climates, including the time-varying three-dimensional atmospheric structure. Because they 
are computationally intensive and computer-resource expensive, dynamical modeling typically 
simulates a limited number of global-climate scenarios.  

The hydrological modeling component of this effort includes the development and exploration 
of two hydrological model systems, SHUD and ParFlow.CLM. The Simulator for Hydrologic 
Unstructured Domains (SHUD) is a multi-process model that represents major hydrologic pro-
cesses capable of simulating a broad range of spatial and temporal scales. ParFlow.CLM is a 
groundwater/land surface model that provides a more detailed simulation of surface hydrology 
and variably saturated subsurface is applied to specific aquifers. 

2.1 Localized Constructed Analogs Downscaling 
Most downscaling approaches fall into either dynamical or statistical methodologies for 
translating global and regional climate model outputs to finer-scale structures over complex 
landscapes such as in California. Of the statistical techniques, LOCA (Pierce et al., 2014; Pierce 
and Cayan, 2015) uses larger-scale climate patterns along with finer-scale historical weather to 
develop realistic estimates of fine-scale climate and weather that occur with modeled large-
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scale patterns. Scripps Institution of Oceanography at the University of California, San Diego, 
(UCSD) developed and used LOCA to downscale 32 GCMs from the Coupled Model 
Intercomparison Project, Phase 5 (CMIP5) archive at a 1/16th-degree spatial resolution 
(http://loca.ucsd.edu/, and Pierce et al., 2018). LOCA downscaling was implemented over 
various spatial domains, contingent on available historical training data for given variables of 
interest, ranging from California to most of North America, from central Mexico through 
Southern Canada. For California’s Fourth Assessment generation of LOCA, the historical period 
was 1950-2005, along with two future greenhouse gas emissions scenarios: Representative 
Concentration Pathway (RCP) 4.5 and RCP 8.5 over the period 2006-2100 (although some 
models stop in 2099). Variables produced for the Fourth Assessment were daily values of 
minimum and maximum temperature; precipitation; humidity; wind speed; and downward, 
short-wave radiation. 

The LOCA method is a statistical scheme that produces downscaled estimates suitable for 
hydrological simulations, using a multi-scale spatial matching scheme to pick appropriate 
analog days from observations. First, a pool of candidate-observed analog days is chosen by 
matching the model field to be downscaled to observed days over the region that is positively 
correlated with the point being downscaled; this leads to a natural independence of the down-
scaling results to the extent of the domain being downscaled. Then the one candidate analog 
day that best matches in the local area around the grid cell being downscaled is the single 
analog day used in that area. Most grid cells are downscaled using only the single locally 
selected analog day, but locations whose neighboring cells identify a different analog day use 
a weighted combination of the center and adjacent analog days to reduce edge discontinuities. 
By contrast, existing constructed analog methods typically use a weighted average of the 
same 30 analog days for the entire domain. By greatly reducing this averaging across analog 
cases, LOCA produces better estimates of extreme days, constructs a more realistic depiction 
of the spatial coherence of the downscaled field, and reduces the problem of producing too 
many light-precipitation days. The methods, algorithms, and validations of LOCA are available 
in a series of publications (Pierce et al., 2014, Pierce et al., 2015, Pierce and Cayan 2015, 
Pierce et al., 2018). Interested readers should consult those works for details of how the 
method works, which will not be repeated here. 

In this research, increased spatial and temporal resolution of LOCA downscaling were 
developed and tested as an advance to previous work. LOCA hourly temporal resolution 
downscaling applications were produced using observed hourly temperature records at 
individual weather stations, and another using 3 km x 3 km gridded hourly vector wind and 
relative humidity produced by a dynamically downscaled weather analysis dataset. Addi-
tionally, dynamical downscaling was applied to temperature, humidity, and wind at increased 
spatial resolution to the 3 km x 3 km grid, resulting in four times as many grid cells within a 
given area compared to previous downscaling efforts in California at 6 km x 6 km. 

Although the LOCA method is more computationally expensive than existing constructed 
analog techniques, LOCA is still practical for downscaling numerous climate model simulations 
with limited computational resources. LOCA downscaling can afford to be conducted over 
many GCMs, including outliers. (Note: Because of its high cost, Weather Research and 
Forecasting (WRF) dynamical downscaling should be limited to the minimum expected to 

https://polisci.ucsd.edu/undergrad/internships/index.html#Local-Internship-Research-Progr
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faithfully reproduce a range of expected climate variability.) Analysis shows that six 
downscaled members should be considered, at a minimum, to downscale for regional 
modeling purposes (Pierce et al., 2009), ideally selected from different GCMs to reduce the 
multi-model averaged error. Beyond this minimum, the research team considered that 
10 downscaled members will create an ensemble with mean and standard deviations expected 
to reasonably estimate the full suite of projections, if GCM projections are chosen carefully. 

2.2 Dynamical Model Downscaling  
Dynamical downscaling involves running high-resolution climate models on regional domains 
(usually a limited subdomain). Regional dynamical models typically employ low-resolution 
climate model output as boundary conditions. These models use physical principles to 
reproduce local climates but are computationally intensive model structures and physical 
parameterizations.  

Regional dynamical models such as global and regional reanalyses are employed as drivers of 
fine-scale dynamical or statistical downscaling models. Historical reanalysis using a dynamical 
model offers a way to develop a more complete, dynamically consistent set of observed 
records to investigate mechanisms controlling various forms of variability, including extreme 
events. Global and regional reanalyses results, which capture the larger-scale atmospheric 
environment, are used as input to finer-scale (downscaled) dynamical and statistical models, 
or, as stated on the European Center Copernicus website, (https://climate.copernicus.eu/
climate-reanalysis), “Climate reanalyses combine past observations with models to generate 
consistent time series of multiple-climate variables. Reanalyses are among the most-used 
datasets in the geophysical sciences. They provide a comprehensive description of the 
observed climate as it has evolved during recent decades, on 3D grids at sub-daily intervals.”  

Recent reanalyses (such as ERA5 global - hourly, ~31 km spatial resolution, 1979-present) 
from the European Center for Medium Range Forecasting (Hersbach, et al., 2020), Modern-Era 
Retrospective analysis for Research and Applications, Version 2 (MERRA-2) global (hourly, 0.5° 
× 0.625° grid, 1980-present) from the National Aeronautics and Space Administration (NASA) 
Goddard Space Flight Center (Molod, et al., 2015; Hinkelman, et al., 2019) and the North 
American Regional Reanalysis (NARR) (Mesinger, et al., 2006) over the continental United 
States (CONUS) (3-hourly, 32 km, 1979-present), from National Oceanic and Atmospheric 
Administration National Centers for Environmental Prediction (NOAA/NCEP) are available over 
the relatively modern satellite era. Although spatial resolution provided by the two global 
reanalyses (ERA5 and MERRA-2) has become finer than it was just a few years ago, their 30 to 
50 km gridding is still too coarse to capture important structures over California’s complex 
coastal and interior landscapes. In this research, dynamical downscaling experiments were 
conducted to replicate historical climate conditions aimed at simulating coastal low clouds 
(CLC), including marine stratocumulus clouds (MSc), stratus and fog, along and over the 
California coast, along with wind and humidity over the California region. 

Regional dynamical models are often customized to better replicate certain physical variables 
(for example, coastal stratus clouds) by tailoring model structure and physical parameterza-
tions. Like all methods, dynamical model output contains biases, which are often more than 
minor incremental offsets. Spatial resolution can be refined by nesting successively smaller 

https://climate.copernicus.eu/climate-reanalysis
https://climate.copernicus.eu/climate-reanalysis
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domains inside larger coarser domain simulations. Regional dynamical models are generally 
more computationally expensive than statistical methods but produce a full set of atmospheric 
variables—including those for which observational data may be sparse—that are dynamically 
consistent and can be sampled over high temporal resolution. Dynamical models generate a 
high-volume dataset and are usually confined to a limited set of climate model scenarios and 
sometimes over a restricted time period.  

Regional dynamical downscaling resulting from a one-size-fits-all model configuration may 
have limitations. Although the WRF mesoscale numerical weather model (Skamarock, et al., 
2008) has become a common dynamical downscaling tool, each WRF application must use a 
tailored configuration to reproduce target processes with the best possible accuracy. There are 
well-documented WRF configurations for hurricanes, severe convection, fire weather, air 
pollution meteorology, wind-resource forecasting, and atmospheric rivers. Each application 
requires trade-offs in model parameters that reduce biases in targeted variables but can 
increase biases in others. 

2.3 WRF Aerosol Sensitivity Simulations  
For this research, dynamical downscaling experiments were conducted to replicate historical 
climate conditions using a configuration of WRF that simulates MSc along and over the 
California coast. Coastal Low Clouds (CLC), including stratocumulus, stratus, and fog, are a 
persistent, seasonal feature of the region’s climate. The presence and variability of CLC has 
numerous effects. Most pertinent here is that CLC attenuate incoming solar radiation, deter-
mine available energy for solar photovoltaic cells, and modify energy demand by modulating 
coastal temperatures. Accounting for these clouds improves solar energy forecasting 
(Mathiesen et al., 2012). Iacobellis and Cayan (2013) demonstrated that summertime CLC is 
strongly associated with surface temperature variations along the coast. 

Atmospheric aerosols can modulate cloud reflectivity, and therefore, their impacts on incoming 
solar radiation through indirect aerosol effects (Twomey et al., 1977; Albrecht et al., 1989). 
A well-known form of this indirect effect may occur in the shallow, relatively warm MSc clouds 
that frequently form in the eastern North Pacific, off and along, the California coast. An 
increase in the concentration of aerosols creates more condensation nuclei, causing an 
increase in water droplets and greater cloud reflectivity. Aerosol indirect effects and other 
feedbacks caused by the interaction between clouds and aerosols are the largest source of 
uncertainty in the effort to estimate climate sensitivity to greenhouse gases (IPCC, 2013, 
Chapter 7, page 573).  

Most configurations of WRF, including the configuration chosen to perform the primary dyna-
mical downscaling task in this project, assume a fixed global background number of aerosols 
available to participate in cloud nucleation. In the real atmosphere, aerosol concentrations 
exhibit great spatiotemporal variability. Concentrations are also expected to change with 
population and economic activity in future climates. Therefore, simulations are needed to 
estimate the sensitivity of CLC reflectivity to aerosol concentration.  

The change in cloud albedo in response to the change in cloud droplet concentration (𝑁𝑁𝑐𝑐) is 
known as susceptibility. Broadly, it is expected that CLC albedo will be most susceptible when 
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cloud water amount is robust, free atmosphere humidity is high, drizzle rate is low, and base-
line aerosol concentration is low. The research team developed new WRF model code to vary 
𝑁𝑁𝑐𝑐 and to couple changes in simulated cloud top effective radius, to simulated cloud albedo,2 
thus allowing WRF to simulate CLC susceptibility. New WRF code was added to the final WRF-
CA-CLC configuration (Section 3.2.2), and sensitivity tests were performed by simulating warm 
seasons (May to Sept) for 2011 and 2015, with 𝑁𝑁𝑐𝑐 = 150 (clean) and 600 (polluted) cubic 
centimeter (cm-3) to estimate susceptibility and its effects on seasonal and diurnal cycles of 
CLC albedo.  

2.4 Hybrid Dynamical-Statistical Downscaling 
Hybrid downscaling exploits the ability and output of dynamical downscaling in capturing fine-
scale atmospheric features by combining a dynamical model’s high spatial and temporal 
resolution datasets, which are used for training the statistical model, with the bias corrections 
and computational savings of a statistical model. This technique can be applied to downscaling 
multiple GCMs and also to “backcast” historical climate data using a global atmospheric model 
reanalysis. Importantly, the efficiency of the hybrid technique allowed the team to downscale 
multiple emission scenarios and multiple time periods. For example, the ~40-yr, 3-km spatial 
resolution vector wind dataset, constructed via hybrid downscaling techniques, was generated 
using a 15-year high-resolution WRF model run as training data. Simply extending the WRF 
model run to 40 years rather than using the hybrid approach would have been prohibitively 
expensive. 

LOCA was used to perform sub-daily downscaling of vector winds and humidity, at hourly 
resolution. Previously, wind speed (but not wind direction) was downscaled using the LOCA 
technique. Vector wind downscaling required an extension of LOCA downscaling to consider 
vector fields along with an auxiliary variable, sea level pressure (SLP), used because of SLP’s 
key role in representing regional circulation patterns and in generating pressure gradients that 
drive wind. Specifically, U and V (the zonal and meridional components of the vector wind), 
and SLP are jointly downscaled by LOCA; then the wind speed from the downscaled U and V 
fields is computed and bias-corrected to the training data’s wind-speed field. This approach 
helps preserve the correct relationships between U and V in the downscaled data, while 
retaining wind-speed distributions that agree with the training data. 

The LOCA technique was extended to hourly time resolution by virtue of the availability of 
hourly gridded training data from the dynamical model as well as the global reanalysis being 
downscaled. Surface and near-surface winds are only sparsely measured, and those locations 
where winds are measured usually provide only limited time histories, which are often conta-
minated with spurious measurement errors, reinforcing the need for regionally modeled wind 
products (Guzman-Morales et al., 2016). The understanding of wind structure over California 
and surrounding regions is muddied by both lack of quality surface observations and differ-
ences presented by different model results.  For example, the climatology of annual mean 
wind speed from several reanalyses and observational datasets (Figure 1) indicates that the 

 
2 This change to WRF code was novel at the time research was being performed. In parallel, WRF code 
developers added a similar capability and released it with WRF version 4.3 on May 10, 2021. 
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broad range of magnitudes and disparate spatial patterns exist between different products. In 
this research, for a training dataset for the LOCA statistical downscaling scheme, a regional 
high-spatial-resolution wind record from a fine-scale atmospheric model was employed, 
making this a hybrid downscaling approach. The numerical model wind dataset from a WRF 
regional atmospheric model run by the Desert Research Institute (DRI) was employed; this 
model strongly corresponds to topographic features (Figure 1), and the model is used by the 
wildfire prevention and management community (Brown et al., 2016; Sapsis et al., 2016). The 
DRI-WRF product was analyzed onto a 3-km spatial grid and provided hourly temporal 
resolution. The DRI-WRF training data was bias corrected by DRI-WRF providers to available 
Remote Automated Weather Stations (RAWS) observations by computing errors between the 
observed and model winds at grid cells containing RAWS stations, then interpolating the errors 
between station locations, using an inverse-distance weighting approach. Errors were com-
puted separately for each season and hour of the day to account for the seasonal and diurnal 
variability of wind and its possible misrepresentation in the WRF model output. 

Figure 1. Climatology of Annual Mean Wind Speed from Several Reanalyses and 
Observational Datasets 

 
The images indicate that a broad range of magnitudes and disparate spatial patterns exists between 

different products. 

Sources: Groisman: observations from meteorological stations. MERRA2: A NASA reanalysis. Climate Forecast 
System: NOAA/NCEP Climate Forecast System. NARR: NOAA/NCEP North American Regional Reanalysis. VR-
CESM: Variable resolution Community Earth System Model (from the National Center for Atmospheric Research in 
Boulder, CO), courtesy of Paul Ullrich. Card10: California Reanalysis at 10 km, produced by M. Kanamitsu and H. 
Kanamaru. Alex Hall WRF: WRF model courtesy of Alex Hall at University of California, Los Angeles. ERA5: 
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European Center for Medium Range Weather Forecasting (ECMWF) Reanalysis version 5. Abatzoglou: GRIDMET 
data from J. Abatzoglou at the University of Idaho, based on NARR and station observations. DRI WRF: WRF run 
from the Desert Research Institute, courtesy of Tim Brown. 

A necessity in evaluating downscaled winds and other variables is the availability of observa-
tional data over time periods with sufficient representation of variability from daily extremes to 
interannual fluctuations. An observational dataset with increasing usefulness is weather data 
collected by state utilities. The IOU San Diego Gas & Electric (SDG&E) initiated installation of a 
meteorological station network in 2010, bringing a total of 174 stations by 2019 in the San 
Diego County region. The SDG&E network follows RAWS procedures and variable operational 
definitions but logs observations every 10 minutes instead of every hour (Cao & Fovell, 2016). 
Although less extensive in time and spatial coverage relative to the RAWS network, SDG&E 
finer time and spatial resolution observations allowed closer examination of WRF performance, 
at a scale relevant to wildfire weather. The produced WRF wind fields were evaluated with 
special attention to seasonal Santa Ana wind conditions. 

2.5 Hydrological Modeling 
Modelers, policymakers, and stakeholders have a growing need for high-resolution and 
detailed information about streamflow and the temporal-spatial distribution of hydrologic 
fluxes in watersheds. This need reflects the growing importance of matching climate and 
hydrologic research for detailed long-term predictions and projections of future water 
resources for ecological systems and the environment, agricultural development, and food 
security. While projected changes in precipitation are inconsistent among different GCMs 
depending on the radiative forcings and model physics (Chang et al., 2016), these differences 
are further influenced by the climate downscaling and hydrologic modeling methods. For the 
hydrologic modeling methods, the question arises of how future climate variability will propa-
gate through a hydrologic system where surface water and groundwater resources are coupled 
(Sulis et al., 2012). Since developed water and energy systems are interdependent (IAEA, 
2012), it is expected that projected changes in water supply will impact on production (e.g., 
hydropower) and energy use (e.g., groundwater pumping) in the future.  In this project, 
representations of hydrologic phenomena were developed and explored using two hydrological 
model systems: SHUD and ParFlow.CLM. Major characteristics are compared in Table 1.  

SHUD is a multi-process, multiscale, and multitemporal model that integrates major hydrologic 
processes and solves physical equations with the finite volume method (Shu et al., 2020). 
Governing equations are solved within an unstructured mesh domain consisting of triangular 
cells. The variables used for the surface, vadose layer, groundwater, and river routing are fully 
coupled together with a fine-time step. The SHUD uses 1D unsaturated flow and 2D ground-
water flow. River channels connect with hillslope via both overland flow and baseflow. The 
model, while using distributed terrestrial characteristics (from climate, land use, soil, and 
geology) and preserving heterogeneity, supports efficient performance through parallel 
computation. 

As an intellectual descendant of the Pennsylvania State Integrated Hydrologic Model (PIHM), 
the SHUD model is a continuation of 16 years of PIHM model development in hydrology and 
related fields since release of the first PIHM version (Qu, 2004). The conceptual structure of 
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the two-state integral-balance model for soil moisture and groundwater dynamics was origi-
nally developed by Duffy (1996); the partial volumes occupied by unsaturated and saturated 
moisture storage were integrated directly into a local conservation equation. This two-state 
integral-balance structure simplified the hydrologic dynamics, while preserving the natural 
spatial and temporal scales that contribute to runoff response.  

SHUD’s many fundamental ideas and its conceptual structure from PIHM, including the 
solution of hydrologic variables using CVODE3. The code has been completely rewritten in a 
new programming language, with corresponding improvements to the underlying algorithms 
that have adapted new mathematical schemes and flexible input and output data formats. 
Although SHUD is forked (derived) from PIHM, it still uses CVODE for solving the ordinary 
differential equation system but modernizes and extends PIHM’s technical and scientific 
capabilities.  

SHUD is a robust integrated modeling system with the potential to provide scientists with new 
insights into their domains of interest, which will benefit development of coupling approaches 
and architectures that incorporate scientific principles. The SHUD modeling system can be 
used for applications in: hydrologic studies from hillslope scale to regional scale; model domain 
ranges from 1 m2 to 106 km2; water resource and stormwater management; coupling research 
with related fields such as limnology, agriculture, geochemistry, geomorphology, water quality, 
and ecology; climate change; and land-use change. In summary, SHUD is a valuable scientific 
tool for any modeling task associated with hydrologic responses. 

ParFlow.CLM is an integrated groundwater/land-surface model that simulates variably 
saturated subsurface flow by solving the 3D Richards equation using a cell‐centered finite 
difference scheme (Ashby and Falgout, 1996; Jones and Woodward, 2001; Kollet and Maxwell, 
2008). ParFlow has a fully integrated overland flow simulator that solves the kinematic wave 
equation of shallow water for runoff routing (Kollet and Maxwell, 2006), and is coupled to the 
Common Land Model (CLM 3.0) (Dai et al., 2003) to solve water and energy budgets at the 
land surface, at an hourly time step. Pre-defined river networks are not used in ParFlow, and 
streamflow is generated by the uniform application of kinematic-wave approximations. In 
ParFlow.CLM, surface and subsurface flow equations are solved simultaneously, and saturated 
and unsaturated zones are not explicitly defined by compartments of fixed size. As a result, 
unsaturated zone water content is controlled by infiltration and water-table dynamics.  

ParFlow.CLM model inputs are hourly meteorological forcings (precipitation, air temperature, 
atmospheric pressure, wind speed, specific humidity, and downward shortwave and longwave 
radiations), topography, subsurface hydraulic parameters (porosity, van Genuchten para-
meters, specific storage) and vegetation parameters. Model outputs are: soil moisture, depth 
to water table, pressure head and relative saturation in the subsurface, evaporation, transpira-
tion, snow-water equivalent, infiltration, and streamflow. The computational grid has a uniform 
horizontal spatial discretization with any desired grid size, and vertical discretization is variable 
with finer-resolution grids near the land surface to capture root-zone dynamics and coarser 
resolution grids at depth. ParFlow.CLM is designed for massively parallel computer systems 

 
3 CVODE is a solver for stiff and non-stiff ordinary differential equation systems. 
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using distributed forcing and land-cover types, with the capability to simulate the impacts of 
groundwater pumping and irrigation on surface water/groundwater exchange.  

ParFlow has been successfully implemented to simulate hydrologic processes at one kilometer 
scale across the entire CONUS (Maxwell et al., 2015). However, such applications are 
computationally intensive and require access to sufficient computational resources. Water-
management options such as reservoir operations have not been incorporated into the latest 
version of the model. Feasible applications are assessing the impacts of climate variability, 
irrigation and groundwater pumping on surface water-groundwater exchange, snowmelt, 
groundwater recharge and evapotranspiration processes, and understanding feedback pro-
cesses between groundwater and land-surface hydrologic systems. ParFlow is also coupled 
with the WRF model (Williams and Maxwell, 2011), and provides a compatible platform for 
regional climate downscaling, while embedding detailed hydrological processes in the modeling 
framework. However, a fully integrated climate-groundwater framework is computationally 
expensive.  

Table 1. Description of SHUD and ParFlow.CLM Hydrologic Models 

Specifics SHUD ParFlow.CLM 
Subsurface 
flow processes 

Two layers: unsaturated and saturated 
zone. The two layers are split by water 
content (groundwater table). 

3D subsurface flow as a continuum 
(no fixed size compartments for 
saturated and unsaturated zones)  

Subsurface 
physics  

1D and 2D Richard equation are 
applied in unsaturated and saturated 
layers respectively. 

3D Richards equation  

Land surface 
processes 

Interception, evaporation, 
transpiration, snow melt. 

Common Land Model (CLM) to 
solve water and energy budgets 

Overland flow  2D kinematic or diffusive wave 
approximation of the shallow water 
equations 

2D Kinematic wave approximation 
of the shallow water equations 

Stream 
network 

Pre-defined river, detailed geometry of 
river is required; kinematic or diffusive 
wave approximation. 

No pre-defined river networks. 
Streamflow develops as a result of 
uniform application of the 
kinematic wave approximation on 
a terrain. 

Numerical 
scheme 

Unstructured domain; Finite volume 
method 

Cell‐centered finite difference 

Horizontal 
discretization  

Flexible domain discretization Uniform grids of any size  

Vertical 
discretization  

Two layers split by water content Variable spacing 

Temporal 
resolution  

Self-adaptive time step based on 
convergence criteria. Second to hourly. 

Hourly  
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Specifics SHUD ParFlow.CLM 
Model inputs  Spatial: elevation, soil, geology, land 

use, hydrology, and weather station. 
Attribute: parameters for soil, 
geology, and land use. 
Time-series: precipitation, air 
temperature, wind speed, specific 
humidity, and downward shortwave 
radiation. 

Precipitation, air temperature, 
atmospheric pressure, wind speed, 
specific humidity, and downward 
shortwave and longwave radia-
tions, topography, subsurface 
hydraulic parameters (porosity, 
van Genuchten parameters, 
specific storage), and vegetation 
parameters 

Model outputs  State variables of hillslope: 
snowpack, surface ponding water, soil 
moisture, groundwater storage.  
Fluxes of hillslope: 
Evapotranspiration (ET), infiltration, 
groundwater percolation, overland 
flow, groundwater flow. 
State variable of river: river stage. 
Fluxes of river: flow from upstream, 
flow to the downstream, surface 
runoff, baseflow. 

Soil moisture, depth to water 
table, pressure head and relative 
saturation in the subsurface, 
evaporation, transpiration, snow 
water equivalent, infiltration, and 
stream flow 

Water 
management 
options 

Natural water system only. Extra 
coupling is necessary for water 
management. 

Pumping and irrigation, no 
reservoir option 

Parallel imple-
mentation  

Yes, OpenMP Yes  

Applications  Laboratory, watershed, and continental 
scale applications. 

Watershed and continental scale 
applications  

Sources: from analyses herein, see text for details. 

2.5.1 SHUD Simulation of the Sacramento River Watershed  
In the present study, SHUD was configured and employed for modeling of surface and ground-
water in several domains of various sizes: in the Wagon Creek and the Catchments Attributes 
and Meteorology for Large-Sample Studies watersheds, over the Sacramento River watershed 
(from the highlands to the delta) and over the entire state of California. With the ability to 
work across scales, SHUD allows hydrology to be studied in many possible contexts. Those 
contexts include the behavior of water in regions of rough topography, in light of water 
resource and stormwater management, and in conjunction with related fields such as limno-
logy, agriculture, geochemistry, geomorphology, water quality, and ecology, climatic and land-
use change. Whereas many existing hydrologic modeling systems are unable to deal with 
California’s rough topography and significant topographic variation, SHUD has been designed 
with this relatively extreme regime in mind.  
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The calibration of the SHUD model adopted the Covariance Matrix Adaptation Evolution 
Strategy (CMA-ES) (Hansen 2006, Auger and Hansen 2005). The automatic CMA-ES calibration 
is robust and able to converge to global optimization, at low computing cost. 

2.5.2 Integrated Surface Water-Groundwater Modeling Using ParFlow.CLM  
Several physically based integrated hydrologic models have been developed that couple 
surface water and groundwater processes (Maxwell et al., 2014; Paniconi and Putti, 2015). 
The research team configured an integrated groundwater/land surface model, ParFlow.CLM 
version 3.2.0, to simulate terrestrial hydrologic processes (Ashby and Falgout, 1996; Jones and 
Woodward, 2001; Kollet and Maxwell, 2008). ParFlow.CLM simulates variably saturated sub-
surface flow using the 3D Richards equation and is coupled to the Common Land Model (CLM 
3.0) (Dai et al., 2003) to solve water and energy budgets at the land surface at an hourly time 
step. Model inputs were hourly meteorological forcings (precipitation, air temperature, 
atmospheric pressure, wind speed, specific humidity, and downward shortwave and longwave 
radiation), topography, subsurface hydraulic parameters, and vegetation parameters.  

The ParFlow.CLM modeling approach provides multiple benefits compared to other existing 
coupled or integrated hydrologic models. The ParFlow.CLM model simulates the entire 
terrestrial hydrologic cycle from the top of the mountains to the deepest part of the aquifer 
system using a 3D discretization. Furthermore, the ParFlow.CLM is coupled to the WRF model. 
Such an integrated atmospheric-hydrologic modeling system (called ParFlow.WRF) can provide 
an ideal platform for regional climate downscaling while embedding detailed hydrological 
processes in the modeling framework. However, a fully integrated climate-groundwater 
framework is computationally expensive at this moment. The research team used the 
ParFlow.CLM model to simulate hydrologic processes at watershed scale because this model 
has the potential to simulate the impacts of groundwater pumping and irrigation on surface 
water-groundwater exchange. Improved understanding of these processes has potential 
impacts on energy needed for pumping and irrigation.  
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CHAPTER 3: 
Project Results 

3.1 LOCA Downscaling at Sub-Daily Resolution  
Some applications require sub-daily information, such as hourly temperatures for energy 
applications, hourly winds for wildfire analyses, and hourly solar insolation for photovoltaic 
analyses. Until now California’s climate change assessments have focused on daily data. This 
project’s analysis was pushed to more detailed sub-daily time resolutions.  

Two distinct approaches to sub-daily downscaling are addressed here. For some historical 
reanalyses, such as MERRA-2 (Molod et al., 2015; Hinkelman 2019) and ERA5 (Hersbach et 
al., 2020), hourly data is already available, albeit on a coarse spatial grid (~30 to 50 km). 
Likewise, some meteorological station observations are available at hourly resolution. When 
available, this hourly data can be used directly. For example, in historical hourly wind down-
scaling, each hour of the day was downscaled using hourly reanalyses and hourly training 
(described in more detail below). In other situations, primarily in future model projections, 
climate models saved only daily data; observed hourly data had to be combined with daily 
model projections to produce projections of hourly temperature. This methodology, which 
estimates hourly temperature for projected climate situations, was employed in producing 
hourly temperatures at selected meteorological stations of relevance to California energy 
applications. 

3.1.1 LOCA Hourly Temperature 
The first component of sub-daily downscaling was hourly time resolution temperature, which 
enabled investigation of energy-related temperature extremes. Existing techniques to 
disaggregate daily temperature minimums (Tmin) and daily temperature maximums (Tmax) to 
hourly values have important limitations. For example, a common approach is to fit a 
climatologically determined diurnal cycle to the Tmin and Tmax values and take the hourly 
values from this fitted curve. (For some applications, such as agricultural-degree days, a 
triangle is often fitted instead of a sinusoid.) The drawback of this approach is that it discards 
important aspects of sub-daily variability. In other words, two days can have very different 
progressions of hourly temperature even when they have the same Tmin and Tmax. This 
research devised a better method of disaggregating daily Tmin and Tmax to hourly values that 
retains realistic sub-daily variability, which can be important to energy-industry stakeholders. 

To retain realistic sub-daily variability, future model projections of daily Tmin and Tmax were 
disaggregated to an hourly time step at 29 meteorological stations using an analog-day 
matching technique similar to what the LOCA downscaling approach uses. (See Pierce and 
Cayan, 2019.) The hourly weather observations originate from the NOAA Integrated Surface 
Dataset database. The weather stations were chosen by the California Energy Commission's 
(CEC’s) Electrical Demand Forecast group to provide weather data for California’s electricity-
demand forecasting zones. Those zones are representative of both California’s electricity 
balancing authority areas and transmission zones. 
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Besides having application to demand forecasts and other energy utility concerns, this exercise 
provided the opportunity to devise and test an hourly disaggregation technique that translates 
to other applications (such as hourly wind and humidity downscaling) described in Section 
3.1.2. 

The approach to generating hourly temperatures (given that day’s Tmin and Tmax) follows. 
First, the three-day sequence of model Tmin and Tmax was constructed from the day before, 
the day of, and the day after the model day being disaggregated to hourly values. The best 
matching observed three-day sequence of Tmin and Tmax in the training data set, was then 
identified, subject to the constraint that the central matching analog day must be in a 
+/- 45 day-of-year window around the day-of-year being disaggregated.  

There are two reasons for using a three-day sequence of Tmin-Tmax rather than matching 
only the day being disaggregated. Matching six values provides a more accurate constraint 
than matching on two values, and the point of the exercise is to generate days with realistic 
transitions from one day to the next, which is better addressed by matching the days before 
and after the day being disaggregated. A weighted root mean square error (RMSE) was used 
to evaluate the quality of the match between the model Tmin/Tmax series and the historical 
observations. The weights are one for the central day, and 0.5 for the preceding and 
subsequent days. This emphasized the match in the day being disaggregated, while still taking 
into consideration information from both the previous and subsequent days. 

The research team’s analog day approach was compared to the more traditional method of 
using climatological diurnal cycles as described previously, which is called the climatological 
curve approach. The climatological diurnal cycles for this more traditional method were chosen 
based on station, month, and quartile of the diurnal temperature range for the day being 
disaggregated. The intent was to examine whether the analog-day approach captures 
observed sub-daily variabilities that the traditional climatological curve approach discards. 

Example hourly sequences produced by the analog-day method and the climatological-curve 
method appear in Figure 2(A). By construction, the climatological curve approach (dotted red 
line) generates a smooth solution with very little variability in the afternoon and nighttime 
hours, which is unlike what is seen in the observations (solid black line). The analog matching 
approach (broken blue line) captures realistic variability at all hours of the day.  

A comparison between the original hourly observations and cross-validated disaggregations 
from the analog-matching technique and climatological-curve techniques is shown in Figure 
2(B). As expected from the way the methods were constructed, an analog approach captures 
the observed variability extremely well. Histograms of the fraction of time that each hour is the 
warmest (red) or coldest (blue) hour of the day are shown, in winter (Dec-Jan-Feb), for the 
observations (top), analog-day disaggregation (middle), and climatological-diurnal cycle 
(bottom) methods. In comparison to the analogue approach, the climatological curve approach 
severely underestimates variability on time scales shorter than a day, reaching a deficit in 
variance spectral power of nearly two orders of magnitude at the highest frequencies. Based 
on these and other analyses (Pierce and Cayan, 2019) on hourly temperature downscaling, it 
was concluded that the analog-day matching approach to disaggregating daily Tmin/Tmax to 
hourly values does a much better job of capturing sub-daily variability than more traditional 
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approaches. Application of the analogue method to projected climate scenarios is shown in 
Figure 2(C), which illustrates the multi-model ensemble average projected change. This is the 
projected change in the number of hours either above (red and orange lines) or below (blue 
and green lines) the indicated temperature threshold in degrees Fahrenheit. The red and blue 
lines are for RCP 8.5; the orange and green lines are for RCP 4.5. The purple dot and whisker 
show the observed mean value and 95-percent confidence interval from the year 2000 to 
2018. These plots clearly indicate the simulated rise in frequency of hot hours, the decrease in 
the frequency of cold hours, and the marked divergence, in about 2040, of the upward (hot 
hour) trajectory or downward (cold hour) trajectory of the RCP 8.5 scenario relative to that of 
the RCP 4.5 scenario. Overall, the hourly disaggregation technique developed in this research 
achieves its goals of generating hourly future projected temperature values that match 
observations over the historical period, correctly replicate the global climate model projected 
trends, and preserve realistic variability on sub-daily time scales. 

Figure 2. Hourly Temperatures Obtained by a Statistical Scheme vs. Those From 
Airport Station Observations at Bakersfield, California (KBFL)  

 
A: Time series of the original observed hourly temperature values (black), the analog day disaggregation 
(blue), and the disaggregation based on fitting climatological diurnal cycles (dotted red).  

B: Histograms of the fraction of time that each hour is the warmest (red) or coldest (blue) hour of the day, 
in winter (Dec-Jan-Feb), for the observations (top), analog day disaggregation (middle), and climatological 
diurnal cycle (bottom) methods.  
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C: Multi-model ensemble average projected change in the number of hours either above (red and orange 
lines) or below (blue and green lines) the indicated temperature threshold in degrees F. The red and blue 
lines are for RCP 8.5; the orange and green lines are for RCP 4.5. The purple dot and whiskers show the 
observed mean value and 95 percent confidence interval from 2000 to 2018.  

Sources: See text for details and NOAA surface data.  

3.1.2 LOCA Hourly Vector Wind and Relative Humidity 
In downscaling the vector winds with LOCA it was found that a full multivariate downscaling 
process including vector winds, SLP, and relative humidity simultaneously in the analog 
selection process did not represent the relative humidity fields as well as when relative humi-
dity was independently downscaled without including winds and humidity. Adding more 
predictor fields to the LOCA process makes it progressively harder to find closely matching 
analog days, so there is a tradeoff between how many predictor fields are selected and the 
quality of the final downscaled field. While the gain in skill achieved by independently down-
scaling relative humidity was reckoned to outweigh any benefit of improved presentation of 
covariation between certain variables, the performance in modeling SLP and winds was 
relatively strong. Downscaling SLP and vector wind is dynamically compelling because of the 
important role of pressure gradients in determining wind fields. Thus, SLP and winds were 
downscaled together, but as explained above, relative humidity was downscaled separately. 
Note that the fields are all still connected through the physics of the driving GCM (both 
MERRA-2 and ERA5 were downscaled over their available time periods beginning 1980 and 
1979, respectively). The temporal consistency of different downscaled variables was vital for 
capturing phenomena that inflict compound impacts.  

Figure 3 shows a comparison of historical modeled winds (used as a surrogate for direct 
observations and taken from the LOCA training data, which is DRI-WRF here) to LOCA down-
scaled vector wind and humidity from ERA5. The data being downscaled (ERA5) has a native 
spatial resolution of 31 km x 31 km and is downscaled to 3 km x 3 km. LOCA captures the 
structure of the Santa Ana events reasonably well over land, though less so over the oceans, a 
deficiency the research team traced back to the original ERA5 data being downscaled. The 
strong winds in the three illustrated events are captured well, along with the dry relative 
humidity, with the exception of a band of extreme low relative humidity immediately adjacent 
to the coast that is seen in the observations but not in the LOCA downscaled fields. Neither 
the observations nor the downscaled data show signs of being steered by topographic gaps 
and hills in the region, in accordance with the current understanding of the meteorology of 
Santa Ana winds.  

It is important that any downscaled wind field realistically capture the magnitude of observed 
winds. Figure 4 shows the mean and 99.9th percentile of 4:00 p.m. local time wind speeds 
from winter (Dec-Jan-Feb) and summer (Jun-Jul-Aug). LOCA captures the magnitudes and 
spatial details of the observed wind distribution extremely well, not only in California but also 
over the adjacent ocean regions (including the somewhat complicated structure offshore in 
summer), and over Nevada. Although the Santa Ana wind events are critical to wildfire inci-
dence in the populous regions of Southern California, they are not the only wind phenomena 
of importance in the state.  
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Figure 3. A Comparison of LOCA Downscaled Winds and Relative Humidity vs. 
Those From the DRI High-Resolution Modeled Dataset Used as a Surrogate from 

Observations During Three Individual Strong Santa Ana Events  

 

 
These images show strong Santa Ana wind events in 10/22/2007, 10/26/2003, and 12/06/2017 at 0Z univer-
sal time produced by LOCA downscaled ERA5 reanalysis with that from DRI-WRF. Downscaled results 
were determined from portions of training dataset that do not include these cases. Colors show relative 
humidity anomaly (%) from long term average, while arrows show the vector wind speed (m/s) and 
direction. Observed and LOCA-downscaled wind vectors are subsampled for greater clarity; the native 
resolution is 3 km. 
Sources: See text for details.  
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Figure 4. A Comparison of Seasonal Wind Speeds in the Training Data and LOCA 
Downscaled Data Set 

 

 
The training data is marked as “Obs” – observations- here. Top row is winter (Dec-Jan-Feb [DJF]), lower 
row is summer (Jun-Jul-Aug [JJA]). In each row, the left two columns show the mean wind speed (m/s), 
while the right two columns show extreme (99.9th percentile) values. All analyzed data is hourly taken at 
4:00 p.m. local standard time. 

Sources: See text for details. 

Another key pattern is the delta breeze, a strong onshore flow in the Bay Area during spring 
and summer that ventilates the Central Valley and modifies both electrical demand (through a 
drop in air-conditioning use when the delta breeze is strong) and local air pollution. Figure 5 
(upper) shows a strong delta breeze event in the observations (left), reanalysis (middle), and 
LOCA downscaled fields (right). Wind vectors are at the native resolution in ERA5 (31 km) but 
subsampled from the LOCA native resolution of 3 km for greater clarity. LOCA wind speeds 
and directions are much more consistent with the observations than seen in ERA5, with a 
strong branch of the delta breeze flowing northeast in the Central Valley and another branch 
flowing south inshore of the coastal hills. Although ERA5 has a spatial resolution too coarse to 
capture these important local details, they are realistically reproduced in the LOCA downscaled 
field.  

The lower panel of Figure 5 shows a similar comparison for a Sundowner wind event in the 
Santa Barbara area of Southern California. These are gusty downslope winds often observed 
on the southern slopes of the Santa Ynez Mountains. Again, LOCA downscaling captures many 
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important local details of the Sundowner wind that the ERA5 analysis cannot due to its signi-
ficantly coarser resolution. For example, wind speed (color shading) is strongly influenced by 
the local topography. The observed and LOCA patterns of wind speed show many similarities, 
especially over inland topography, that ERA5 cannot capture. 

Figure 5. Comparison of an Individual Strong Delta Breeze Event and Sundowner 
Wind Event in the DRI-WRF Training Data from the ERA5 Reanalysis, and the ERA5 

Reanalysis Downscaled With LOCA 

 
The individual strong Delta Breeze event is shown in the top row, 2017/06/11 at 1:00 p.m. local standard 
time. The Sundowner wind event is shown on the bottom row, 2009/04/15 at 9:00 p.m. local standard time. 
The DRI-WRF training data is marked as “Obs” (Observations). LOCA downscaled winds and humidity 
was obtained from training dataset that did not include these cases. Colors show wind speed in m/s, 
while arrows show the vector wind speed and direction. Observed and LOCA-downscaled wind vectors 
are subsampled for greater clarity; the native resolution is 3 km.   

Sources: See text for details. 

3.1.3 The Crucial Role of Observations: A New Precipitation Training 
Dataset 
One example of the critical role played by historical observational datasets was instigated by 
the precipitation training dataset consisting of gridded observations from the Livneh 2015 
dataset used in the Fourth Assessment, which in some cases suggested that daily extreme 
precipitation might be too low. Work done as part of this research (Pierce, et al., 2021) 
demonstrated that using the standard Livneh (et al., 2015) daily precipitation dataset, the 
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method of time-adjusting daily precipitation called the “split” precipitation observations, which 
have a range of observation times (but most commonly 7:00 a.m.), produces substantially 
lower values than those from the non-split data. The new unadjusted gridded daily precipi-
tation generally produces a better match to daily station precipitation values. Furthermore, 
comparing the split and new (Pierce, at al., 2021) non-split precipitation, resulted in a 27 
percent reduction in annually averaged one-day maximum precipitation averaged over the 
continental U.S. This split precipitation could affect a hydrologic model’s representation of local 
flooding. When applied to the Variable Infiltration Capacity (VIC) land surface model, which 
was also used in Pierce et al.’s (2018) work for the Fourth Assessment to provide projections 
of land surface variables, the split precipitation results in annually averaged one-day maximum 
runoff that is 38 percent lower than that from the new non-split precipitation (Pierce, et al., 
2021). This difference is greater than the 27 percent increase in annually averaged one-day 
maximum precipitation because of non-linearities in the physics of runoff. Interestingly, the 
new version of the dataset that avoids the time adjustment also results in a 17 percent annual 
mean runoff increase over the continental U.S. This is because the prior split version of the 
precipitation data spreads extremes over two days and thus reduced the runoff efficiency of 
the surface. However, the effect is less pronounced in California than elsewhere in the conti-
nental U.S. (Pierce et al., 2021). The increase in runoff with a fixed precipitation obtained from 
the non-split precipitation mandates a decrease in evapotranspiration, which under a VIC land 
surface hydrological model comparison between non-split and split precipitation input, declines 
2.3 percent, and is associated with a decline in latent heat flux of 2.2 percent. Finally, the 
original split precipitation time-adjusted gridded precipitation increased the number of wet 
days beyond that in the underlying station data, which affects the parameterization of surface 
shortwave radiation. With more realistic wet day fraction provided in the revised non-split 
version of the Livneh dataset (Pierce, et al., 2021), the land surface model exercise indicates 
that annual average surface solar averaged over the continental U.S. increases 3.3 percent. 
Larger increases occurred over regions in the eastern half of the U.S. where daily precipitation 
frequency is higher, and smaller increases occurred in the western U.S., especially California 
and Nevada, where daily precipitation frequency is low. In general, the difference in the occur-
rence of daily precipitation could affect solar energy production and ecological simulations. 

3.1.4 Bias Correction 
In both dynamical and statistical models, the ideal bias correction procedure would jointly 
adjust multiple variables using a full multivariate approach. For example, a model may not pro-
duce uniform biases in T and P in simulating warm and cool precipitation events. The existing 
LOCA bias correction scheme (Pierce et al., 2015) addresses this using conditional bias correc-
tion; for example, the bias correction of temperature is conditional upon the presence or 
absence of precipitation so that the differing impacts of snow and rain are better captured in 
the final result. In addition, when selecting the analog days to use in the downscaling process 
the LOCA spatial downscaling process can jointly downscale multiple variables simultaneously 
by evaluating the match between observed days and the model day being downscaled across 
multiple variables. As part of this project, the research team evaluated different approaches to 
downscaling near-surface vector winds and relative humidity by jointly downscaling those 
fields with each other and sea level pressure. Optimal results were found when jointly 
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downscaling sea level pressure along with the meridional and zonal component of near-surface 
winds. It was found that adding relative humidity to this joint process degraded the results, 
likely because imposing too many simultaneous constraints when comparing the model fields 
to observed days resulted in too few matching analog days. This process was used for produ-
cing the downscaled surface vector winds. As part of the project, two fully multivariate bias 
correction techniques that have been developed and published (Cannon 2018; Guo et al., 
2019) were also examined. These methods come at a price in increased computational 
demand, up to a factor of 30. For the next generation of climate projections, it will have to be 
evaluated whether the up to 30-fold increase in time needed to do this form of multivariate 
bias correction is worthwhile and acceptable, given the need to process all of California for 
multiple models, ensemble members, and scenarios. This might largely be determined by how 
many models, ensemble members, and emissions scenarios are desired in forthcoming CMIP6 
downscaling effort. 

3.2 WRF Dynamical Modeling Results 
A regional model dynamically downscaled historical reanalysis dataset was produced using the 
WRF-CA-CLC version of the WRF model. The WRF downscaling was previously applied to a 
coarser (9km) WRF downscaled version of the NARR. This 9km WRF reanalysis was provided 
by Professor Alex Hall's group at University of California, Los Angeles (UCLA). For this 
research, the 3km spatial resolution WRF-CA-CLC was run for a rectangular domain approxi-
mately enclosing California (Figure 6) through a period spanning April 2008 to February 2019. 
The resulting full atmospheric dataset generated by WRF for this research is quite large (over 
30 terabytes [TB] for 11 years), which has been saved for the intermediate term, and access 
during this period will be considered upon request to the project investigators. Additionally, a 
post-processed subset of the WRF-CA-CLC dataset was extracted to provide variables that are 
relevant for low cloud processes, fire weather, and basic climate dynamics (for example, sea-
level pressure and 500 hPa geopotential height). The post-processed files, which in total 
amount to about 1TB, contain 80, 2-D variables, including temperature, precipitation, hub 
height wind, albedo, wind gust estimates, and inversion layer fields. The full list is shown in 
Table 2. The post-processed files are available every hour from April 1, 2008, to February 28, 
2019, on the 3-km WRF-CA-CLC grid. Grid coordinates and other supporting metadata are also 
provided in the post-processed files. Access to the post-processed files can be arranged upon 
request to the project investigators. 

3.2.1 Marine Stratocumulus in WRF 
Marine Stratocumulus clouds cover large areas of the North Pacific Ocean offshore California 
during the summer months, but the extent of their inland migration is both not-well-
characterized and critical for understanding energy supply and demand. Figure 7 shows the 
intra-seasonal extent of albedo by Geostationary Operational Environmental Satellite (GOES) 
satellite observations and an early test version of WRF-CA-CLC. Albedo is a measure of the 
reflection of sunlight by the combined effects of the atmosphere and the earth’s surface. For 
the region and season studied here, albedo is driven primarily by the presence of bright MSc 
over dark surfaces. Figure 7 shows the mean coverage of clouds, but also displays the daily 
variability of cloud coverage extent through the coefficient of variability. While WRF-CA-CLC is 
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able to simulate inland-penetrating clouds, this analysis indicates fine grain improvements 
needed to target in further model development. Such improvements may be critical for 
understanding fluctuating patterns in energy demand and anticipating solar energy resources 
on a regional scale. 

Figure 6. WRF Domains for Multi-Decade Dynamical Downscaling 

 
9 km and 3km domains shown by black and red outlines, respectively. 

Source: From project analyses and Professor Alex Hall’s research team at UCLA 

Figure 7. Mean Daily Summer Season (May – September) Albedo (%) 

 
On the Left: WRF-CACLC v0 and Right: GOES. The black line indicates where coefficient of variability 
(𝝈𝝈/𝝁𝝁) exceeds 1.0.   

Sources: See text for details. GOES-West satellite data provided by NOAA. 



 

29 

Table 2. Post-Processed WRF-CA-CLC Output Variables 

Variable Name 
(in output file) 

Variable long 
name Levels Description / Notes 

T2 2m temperature 2m above ground 
level (AGL) 

Temperature at 2m AGL 
(degrees kelvin) 

THETA1000, etc. potential 
temperature 

1000, 925, 850, 
700, 500, 300hPa 

 

Z1000, etc. geopotential 
height 

1000, 925, 850, 
700, 500, 300hPa 

Geopotential Height, in 
meters, mean seal level (m 
MSL) 

PREC precipitation surface 1-hr accumulated 
precipitation 

TPW total precipitable 
water 

column  

Q2, Q1000, etc. water vapor 
mixing ratio 

2m, 1000, 925, 
850, 700, 500, 300 
hPa 

Daily mean can be estimated 
from hourly output.  

U1000, V1000, 
etc. 

vector winds on 
pressure levels 

1000, 925, 850, 
700, 500, 300 hPa 

Vector Wind Components 
Rotated to Earth-Relative 
(Zonal and Meridional)  

U10, V10 vector winds at 
10m 

10 m  

Uhub, Vhub vector winds at 
80m 

80 m Diagnosed from standard 
WRF 3-D output 

Gust10min maximum wind 
speed last 10 
minutes 

10 m Maximum wind gust over last 
10 minutes of the hour. Only 
available for 2008, 2009 and 
2018 

Gust1hr maximum wind 
speed during last 
hour 

10 m Maximum wind gust over last 
hour 

GUST_UST wind gust estimate  Friction velocity estimate of 
wind gust 

GUST_TKE  wind gust estimate  Brasseur estimate of wind 
gust 

Wind1hr average wind 
speed 

10m Average wind speed in last 
hour 

Wind10min average wind 
speed 

10m Average wind speed in last 
10 minutes (only in 2008, 
2009 & 2018) 
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Variable Name 
(in output file) 

Variable long 
name Levels Description / Notes 

HainesLow, 
HainesMid, 
HainesHigh 

Haines index  Lower Atmosphere Stability 
Index 

AET actual 
evapotranspiration 
(AET) 

surface  

CAPE convective 
available potential 
energy 

 Moist unstable convective 
available potential energy 

CIN convective 
inhibition 

 Maximum convective 
inhibition experienced by any 
parcel 

Z0C  atmospheric 
freezing level 

 Altitude of first encountered 
temperature less than 0°C 

PSFC surface pressure surface Units: Pa 
ALBEDO_ALL ALBEDO column Total Albedo at top of 

atmosphere (TOA) 
ALBEDO_SFC ALBEDO_SFC surface Albedo of Land Surface 
ALBEDO_BCK ALBEDO_BCK surface Expected surface albedo from 

MODIS climatology 
CLDFRA_LOW cloud fraction low 500m AGL Fractional sky coverage by 

clouds near 500m AGL 
CLDFRA_MID cloud fraction mid 2000m AGL Fractional sky coverage by 

clouds near 2000m AGL 
CLDFRA_HIGH cloud fraction high 6000m AGL Fractional sky coverage by 

clouds near 6000m AGL 
PBLH boundary layer 

height 
 Depth of Boundary Layer (m 

AGL) 
QCLOUD_925 cloud water mixing 

ratio at 925 hPa 
925 hPa  

QCLOUD_700 cloud water mixing 
ratio at 700 hPa 

700 hPa  

QCLOUD_500 cloud water mixing 
ratio at 500 hPa 

500 hPa  

CWP / CWP700  cloud water path column / column 
below 700hPa 
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Variable Name 
(in output file) 

Variable long 
name Levels Description / Notes 

LWCLD_TKE  low cloud 
turbulent kinetic 
energy (TKE) 

 Mean TKE in low cloud layer 

LWUP longwave up surface Upwelling Longwave 
irradiance at the surface 

SWDOWN shortwave down surface Downwelling Solar irradiance 
at the surface 

SWTOA shortwave top of 
atmosphere 

top of atmosphere Downwelling Solar irradiance 
at the top of atmosphere 

SST sea surface 
temperature 

surface Sea-Surface Temperature 
(Bulk)   

SOLZEN solar zenith angle column Cosine of Solar Zenith Angle 
LCL lifting 

condensation level 
 Lifting Condensation Level 

Height (m MSL) 
IBH inversion base 

height 
 Altitude of Base of Lowest 

Inversion 
ISTR inversion strength  Temperature Change through 

Lowest Inversion 
ITH  inversion top 

height 
 Altitude of top of lowest 

temperature inversion 
IBP  inversion base 

pressure 
 Pressure at top of lowest 

temperature inversion 
LHF latent heat flux surface Upward-directed Latent Heat 

Flux at Surface  
SHF sensible heat flux surface Upward-directed Sensible 

Heat Flux at Surface 
CTT cloud top 

temperature 
column Temperature at Top of 

Highest Cloud 
SLP sea level pressure column Pressure reduced to mean 

sea-level 
SNOW snow water 

equivalent 
surface 1-hr Accumulated Snow-

water-equivalent 
SMOIS soil moisture surface Soil moisture at 5 cm depth 
XLAT latitude   
XLONG longitude   
XTIME time  Minutes since April 1 0z of 

given year 
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Variable Name 
(in output file) 

Variable long 
name Levels Description / Notes 

XLAND land mask  1 for land, 2 for water 
HGT terrain height   Height (m) 

Sources: From analyses herein, see text for details. 

3.2.2 Configuring WRF-CA-CLC 
At project start, it was not known how WRF should be configured to best capture important 
modes of climate variability in CLC. Hence, the project team proposed a series of configura-
tions, differing in their sub-grid scale physical process models and vertical resolution. The 
proposed configurations are depicted in Table 3. A baseline configuration (v0) was proposed 
based on team experience with WRF simulations of California weather and climate 
phenomena. Figure 7 shows the performance of v0 compared to observations. The other 
configurations in Table 2 focus on the treatment of the atmospheric boundary layer, including 
the method and degree of numerical closure for simulating turbulence (“BL Variables” column), 
and whether mixing and advection of cloud water (“Mix/Advect” column), or shallow 
convection were empirically included. Sensitivity analyses were performed by running each 
configuration in Table 3 during a typical MSc season: May to September 2010. Model bias, 
variability and temporal evolution of CLC were compared to upper-air and satellite observa-
tions. These analyses were used to choose the best configuration for simulating CLC without 
negatively impacting the accuracy of simulated vector winds. Based on the above measures, 
configuration v4 was chosen to simulate the full 2008 to 2019 timeseries. An additional 
configuration, not shown in the Table, tested the sensitivity of adding model vertical layers to 
the v4 test. It was found that additional vertical levels did not materially improve the above 
metrics. In the following two sections, select analyses are depicted to help the reader visualize 
the process of sensitivity experiments and ultimate WRF-CA-CLC configuration selection. 

3.2.3 Intra-Seasonal Variability of Saturation Simulated in the Coastal 
Boundary Layer 
The mechanisms responsible for moistening the subtropical marine boundary layer during 
extensive MSc episodes are well-documented (Wood 2012; Clemesha et al., 2017). Less well-
documented is the vertically resolved intra-seasonal variability in boundary layer, moisture and 
clouds. Figure 8 shows an analysis emerging from the active period created by comparing 
WRF-CA-CLC simulations to daily balloon-borne soundings, collected by National Weather 
Service observers and obtained from the University of Wyoming at: http://weather.uwyo.
edu/upperair/sounding.html. Both simulations and sounding observations are valid for cloudy 
mornings near 00 Universal Coordinated Time (UTC) and drawn from three California locations 
near the coast: Oakland, Miramar, and Vandenburg Air Force Base. Three configurations of 
WRF-CA-CLC from Table 3 are shown, to investigate effects of different model boundary layer 
parameterizations on clouds. The center panel in Figure 8 shows that all WRF-CA-CLC versions 
overestimate the daily variability of saturation in the lowest atmospheric layers but underesti-
mate saturation near the surface at pressures below 950 hPa. Crucially, these model 
disparities occur near the average top of the cloud layer, meaning all configurations regularly 

http://weather.uwyo.edu/upperair/sounding.html
http://weather.uwyo.edu/upperair/sounding.html
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produce much too dry boundary layers below the marine stratocumulus cloud deck. The far-
right panel shows that in these critical layers with pressure greater than 950 hPa, the total 
water mixing ratio is biased low in all versions of the model. In the far-left panel, the cloud 
water mixing ratio variability shows that model configurations with the Total Energy – Mass 
Flux (TEMF) boundary layer often produce much more cloud in lower atmospheric layers, 
despite the low bias in total water content. 

Figure 8. Profiles of Observed and WRF-CA-CLC Simulated Cloud Properties 
Morning (12 UTC) Lower Tropospheric Profiles During Summer 2010 Simulations   

 
On Left: cloud liquid water (g/m3) from WRF-CA-CLC versions v0, v4, v4L for all coastal national weather 
service sounding sites (NKX, VBG, OAK) where GOES albedo at 15 UTC indicated cloudy conditions. 
Horizontal lines drawn between lower/upper 10% values.   

In Center: As in the left panel, except profiles of saturation deficit: Qt – Qs (g/kg). Observed values 
calculated from National Weather Service sounding temperature and dewpoint. Bold black line indicates 
observational mean profile. The thin black vertical line indicates saturation. Where the quantity 
approaches saturation, there is water available to condense clouds.  

On Right: As in the center panel, but for total water mixing ratio (Qt – g/kg). A threshold albedo equal 
0.3 was used to detect cloudy conditions. Approximately 220 observations is the maximum number in any 
vertical layer.  

Sources: from analyses herein, see text for details, and GOES-West satellite and observed sounding data provided 
by NOAA. 
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Table 3. WRF-CA-CLC Sensitivity Tests   

 
These are the WRF versions considered for dynamical downscaling. Columns refer to parameterized 
processes a, b, c where the prognostic BL Variables TKE and TEMF are used, Mixing and advection 
(Mix/Advect) of cloud hydrometeors in the boundary layer, and shallow convection and turned on or off. 
Green highlighting shows tests that were performed for May to November 2010. 

Sources: from analyses herein, see text for details. 

In the versions considered for dynamical downscaling, as shown in Table 3, version v2 was 
proposed but not run. It is included in the table because it is part of the natural perturbations 
of BL Variables, Mix-Advect, Shallow Cumulus that one would arrive at. The Final configuration 
(WRF-CA-CLC) was chosen as v4 based on coastal low cloud accuracy during 2010 test period. 
Version 4 was the version that we employed in the multiyear reanalysis simulation because v4 
performed best in replicating stratocumulus clouds over the eastern North Pacific and along 
the California coast, and also produced reasonable simulation of Santa Ana winds in Southern 
California.   

3.2.4 Simulated MSc Are Limited by Boundary Layer Turbulent Mass Fluxes 
and Boundary Conditions 
Figure 9 shows the accuracy of MSc presence by two configurations (v0, v4, see Table 2) of 
WRF-CA-CLC by comparison to GOES satellite observations of albedo. In the mean, v4, a 
version of WRF-CA-CLC including the TEMF boundary layer model, is far more accurate than 
v0, the WRF-CA-CLC baseline version. This is true for all configurations using the TEMF 
boundary layer model (v4, v4L, v5) compared to all other versions. The TEMF model allows 
more vigorous development of turbulent mass fluxes, especially near boundary layer top 
where the other boundary layer models tested do not allow prognostic treatment of turbulent 
mass fluxes. Combined with the above result, this indicates that MSc in WRF-CA-CLC 
simulations are limited by turbulent mass fluxes in marginal saturation environments; for 
example, the amount of moisture that is transferred upward from the ocean surface to the 
level at which condensation occurs and clouds form. This result, along with the intra-seasonal 
variability result, is being developed for a peer-reviewed manuscript (Martin et al., in-prep.).  

These different parameterizations had significant influence on marine cloudiness, and 
ultimately the model version v4 (in this research’s tests, see Table 3) was selected by the 
research team because it produced greater marine cloudiness than the other versions, which 
were strongly biased toward unrealistically clear conditions. 

A crucial factor in the degree of fidelity of the dynamical downscaled historical results is the 
choice of the large-scale model used as boundary conditions for the fine-scale WRF simulation. 
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A comparison between downwelling solar radiation from different atmospheric reanalyses 
(Figure 10) makes this point; the ERA5 reanalysis produces patterns of marine and coastal 
cloud that are far superior to those from the NARR and MERRA-2 Reanalyses (as gauged by 
their comparison to observed cloud albedo from GOES data). It should be noted that ERA5 is a 
very new (~mid-2019) dataset, and dynamical downscaling using ERA5 as WRF boundary 
conditions is still nascent, both to the community and to this project. Future dynamical 
downscaling of MSc over coastal regions of California may benefit from using ERA5 as 
boundary conditions instead of the current NARR. 

Figure 9. July 2010 Mean Albedo At 15Z (7 a.m. PST) From WRF V0, and WRF V4 
vs. GOES Observations  

 
Sources: See text for details; GOES-West satellite data provided by NOAA. 

Figure 10. Daily Averaged Surface Downwelling Solar Radiation (W/M2) Over the 
West Coast of the United States  
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From left to right: GOES satellite observations, MERRA2 reanalysis, ERA5 reanalysis, and the NARR 
reanalysis. Each row shows one day, as per the panel title. Days are selected based upon having a strong 
land/sea contrast in values along the coast of Southern California. So, for instance, blue areas indicate 
heavy marine stratus clouds (low surface solar radiation), red colors indicate clear conditions (high 
surface solar radiation).  

Sources: GOES-West satellite data provided by NOAA. MERRA2: A NASA reanalysis. NARR: NOAA/NCEP North 
American Regional Reanalysis. ERA5: ECMWF Reanalysis version 5.  

3.2.5 Interannual Variability in Modeled MSc 
Year-to-year variability in MSc and other coastal low-cloud types along the Western United 
States has been linked to fluctuations in eastern North Pacific sea-surface temperatures 
associated with the Pacific Decadal Oscillation (Schwartz et al., 2014). A multi-year WRF 
simulation affords the unique opportunity to examine the fidelity of interannual variability in 
modeled MSc.  

A disproportionate fraction of California’s population lives within the coastal zone, and a 
growing amount of rooftop solar generation is correspondingly sited there. Skill in modeling 
CLC along and near the coast is therefore vital to understanding the processes that drive CLC 
and to plan for future variability and possible change. Morning albedo averaged over May to 
September for eight years is shown for locations along a transect in northern and southern 
California (Figure 11). From this examination, model skill at capturing interannual variability in 
cloudiness is mixed (and lowest) at the immediate coast. The model more skillfully tracks 
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observed interannual variability in albedo approximately 40 km inland from the coast, which 
represents the typical edge of inland penetration of CLC, although the model overestimates 
cloud presence. When the seasonal cycle over the warm season is preserved as shown by 
monthly (May to September) albedo from 2010 to 2018 (n = 40, Figure 12) the simulation of 
CLC at Oakland outperforms that at Vandenberg and San Diego. At the Oakland location the 
month-to-month changes in albedo are well captured, especially from 2013 to 2016 (r = 0.81, 
n = 20). 

Figure 11. Time Series of Observed (GOES) and Modeled (WRF) Albedo 

This figure shows the timeseries of observed (GOES) and modeled (WRF) albedo at 15Z (7 PST) averaged 
over May through September for 2010 to 2017 for a transect through Oakland (top) and through San Diego 
(bottom).   

Sources: See text for details; GOES-West satellite data provided by NOAA 
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Figure 12:  Time Series of Monthly Albedo for Each Warm-Season Month  

 
 

 
 

 
This figure shows the time series of monthly albedo for each warm season month (May through 
September) from 2010 to 2017 for grid cells at Oakland (top), Vandenberg (middle) and San Diego 
(bottom).   

Sources: See text for details and GOES-West satellite data provided by NOAA. 
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3.2.6 Validation of WRF Sea-Level Pressure and Temperature Fields 
As a means of checking the reasonableness of WRF-CA-CLC output, the research team com-
pared SLP and 500 hPa geopotential height to MERRA2 reanalysis. MERRA2 is a state-of-the-
art reanalysis product at approximately 50-km resolution. As an example of this test, Figure 13 
shows the RMSE and bias computed for July for the years 2011 through 2018. The small 
values of each (<20 hPa) indicate that there are no large-scale problems with the WRF-CA-
CLC runs. Alignment of the RMSE and bias with topography show the expected relationship for 
SLP between models of different resolutions, again confirming the validity of the WRF-CA-CLC, 
at a basic level. 

Having hourly temperature data from both the WRF run and hourly stations across California 
allows comparison between the two and to determine how well WRF reproduces this aspect of 
weather and climate. Hourly temperatures are important because they affect energy demand, 
human health through heat stress, and agriculture. The 29 stations used are the same as 
those used in Pierce and Cayan (2019) and described in Section 3.1.1 and were selected for 
their importance to California’s electric utilities. The period used for the comparison is mid-
2013 through the end of 2014, which was the entirety of the data available when this report 
was generated. Although relatively short, it includes many days so that model estimates are 
still useful. This enables accurately removing the seasonal cycle, which was done on the basis 
of removing the best-fitting annual and semi-annual harmonics using a fast Fourier transform-
based technique.  

Figure 13. Root Mean Square Error and Bias from Daily Sea-Level Pressure (Hpa) of 
WRF-CA-CLC Compared to MERRA2 Reanalysis 

 
Sources: See text for details, and MERRA2: A NASA reanalysis. 

Results comparing WRF to the observations for one of the stations (KBFL, Bakersfield 
Meadows Field, which is located centrally and provides a full set of data) are shown in Figure 
14. The scatterplots show both actual values (panel a) and anomalies (panel c); R2 values are 
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0.93 and 0.72, respectively, showing that WRF captures the time evolution of the hourly 
values well. The power spectra (panel d) show an interesting divergence, however; at high 
frequencies (periods less than 12 hours) WRF has systematically less spectral power than the 
observations, culminating at near an order of magnitude less power at the Nyquist frequency 
(0.5 cycles/hour). Panels e) through h) were chosen to display the eight-day sequence of 
temperature anomalies for the hottest period in the record (panel e), coldest (panel f), most 
variable (panel g), and least variable (panel h). Overall, WRF does reasonably well, capturing 
most of the time evolution seen in the observations. Two exceptions can be seen: 1) the 
strong warming seen in panel g) after January 22, 2014, is not captured at this particular 
station (but is not a systematic problem across different stations, not shown); 2) as noted 
from the power spectra, the observations have more high-frequency variability than seen in 
the observations. 

Figure 14. A Comparison of Hourly Temperatures (Degrees Centigrade) at 
Bakersfield Between WRF, and the Hourly Observations   
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The hourly temperatures (degrees C) at Bakersfield in WRF are in red, and the hourly observations in 
blue. Sections of the figure show: a) scatterplot of actual hourly values (not anomalies) between the two 
data sets; B) time series over the period analyzed; C) scatterplot of anomalous values; D) power spectra; 
E) eight-day time series of hottest period; F) time series of coldest period; G) time series of most variable 
period; and h) time series of least variable period. 

Sources: See text for details. 

Correlations between the observed and WRF-generated hourly temperatures at all stations are 
shown in Figure 15, for both the original temperatures including the seasonal and diurnal 
cycles (left panel), and the anomalies (right panel). Unsurprisingly, correlation values are 
higher (> 0.75 typically) when the seasonal and diurnal cycles are included but are still 
reasonable in the anomalies fields (> 0.65 typically). In both cases, values are highest in the 
Central Valley and inland areas, and lowest along the coast. Weather Station KSBA (Santa 
Barbara) is particularly poorly reproduced in both. 
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Figure 15. Correlation of Hourly Temperature Values Between WRF and the 
Observations 

 

The correlation of hourly temperature values between WRF and observations is shown from the actual 
temperatures (left) and anomalies (right). Values are plotted at 29 stations; each station is labeled by its 
call sign.   

Sources: See text for details. 

Although a deficiency in spectral power is seen in the WRF results at all stations, it is not even-
ly distributed across the domain (Figure 16). The model’s reproduction of hourly variability is 
weakest in the Bay Area and at some inland locations in Southern California, and highest in 
the Central Valley. The deficiency also raises the question of whether WRF has too little varia-
bility because it simulates an overly viscous boundary layer, which could both damp high-
frequency variability and perhaps increase the spatial coherence of the WRF temperature 
patterns. This is tested in Figure 17, which shows the correlation between every station and its 
closest neighbor, for both the observations (left column) and WRF, illustrated as a function of 
high-pass frequency to see how the correlation structure varies at the highest frequencies. In 
the observations at the highest frequencies (top row), neighbor correlations are low, generally 
between 0.2 and 0.4, and highest in the Central Valley and Southern California. WRF does 
have unrealistically high values, but only in certain locations: Northern California, and an arc 
from Las Vegas through Needles, Blythe, Imperial, and Thermal (weather station labeled as 
KTRM). Yet, in other regions such as the Central Valley and Los Angeles regions, WRF simu-
lates realistic values, while along the central coast from San Luis Obispo through Santa 
Barbara and Oxnard the modeled values are lower than observed. This geographical expres-
sion of differences persists at a high-frequency cutoff of 10 hours (middle row, Figure 17), and 
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the lower values from San Luis Obispo through Oxnard even persist at 24 hours. The research 
team concluded that there are some systematic geographical differences between observa-
tions and how WRF simulates spatial coherence. However, this is considerably more 
complicated than simply concluding that WRF is too spatially coherent, despite WRF’s 
systematic deficiency in variability on hourly timescales.  

Figure 16. Ratio of Hourly Temperature Spectral Power in WRF to That in the 
Observations  

 
 

 
The ratio of hourly temperature spectral power in WRF to that in the observations in four frequency bands 
are shown, as indicated in the panel title, at 29 meteorological stations. 

Sources: See text for details. 
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Figure 17. Correlation Between Temperature at Each Station and its Closest 
Neighbor 

 
 

 



 

45 

 
The correlation between temperature at each station and its closest neighbor (indicated by arrows drawn 
from a station to its neighbor), in the observations (left column) and WRF (right column). Data in each row 
has been high pass filtered as indicated in the title; 7 hours in the top row, 10 hours in the middle row, 
and 24 hours in the bottom row.   

Sources: See text for details. 

3.2.7 Santa Ana Wind Evaluation 
Comparison of the dynamical modeled winds from WRF-CA-CLC v4 against observed winds 
from the San Diego Gas and Electric (SDG&E) weather stations in the San Diego County region 
was performed for the overlapping period of August to November 2010. Figure 18 illustrates 
relatively good agreement over both longer and shorter periods during a Santa Ana wind 
event. Systematic bias in the modeled winds appears to exist. Biases are generally positive 
(modeled winds exceed observed SDG&E winds), and these overestimated speeds are largest 
in desert regions east of the local coastal mountains (Laguna Range) and to a lesser extent 
over the coastal regions. General agreement by month is best over the crest and on the 
western slopes of the coastal topography. For the Santa Ana wind event considered at a 
mountain crest location (Julian), the overestimation bias is strongest in the early afternoon 
and evening as well as in the longer temporal persistence of the modeled Santa Ana wind 
event. Results from the short modeling trials (Table 2) indicated that modeled winds are not 
exceedingly sensitive to the details of the chosen WRF physics package; these physical para-
meterization options had a greater effect in producing differing structures of coastal stratus 
clouds.   
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Figure 18. Wind Speed Mean Difference (WRF-v4-SDGE Obs) for Aug – Nov 2010 

 
The figure shows the wind speed mean difference for WRF-v4-SDGE obs (Observations from SDG&E) for 
August to November 2010. The differences are shown for the complete period (most left column) and for 
October and November (subsequent two columns). SDG&E’s 10 minute resolution observations are 
averaged to three hours to match WRF output resolution.   

Sources: See text for details. 

3.2.8 WRF CA-CLC Output 
A regional model dynamically downscaled historical reanalysis dataset was produced using the 
WRF-CA-CLC version of Weather Research and Forecasting (WRF) model described in Section 
3.2. The WRF downscaling was applied to a coarser (9 km x 9 km) WRF downscaled version of 
the NARR. This 9-km WRF reanalysis was provided by Professor Alex Hall’s group at UCLA. The 
3 km x 3 km spatial resolution WRF-CA-CLC was run for a rectangular domain approximately 
enclosing California (Figure 6) through a period spanning April 2008 to February 2019. The full 
atmospheric dataset generated by WRF is quite large (over 30 Tb for 11 years), which has 
been saved for the intermediate term. Additionally, a post-processed subset of the WRF-CA-
CLC dataset was extracted to provide variables that are relevant for low-cloud processes, fire 
weather, and basic climate dynamics (such as sea-level pressure and 500 hPa geopotential 
height). The post-processed files amounted to about one TB and contained 80, 2-D variables 
including temperature, precipitation, hub-height wind, albedo, wind-gust estimates, and 
inversion-layer fields. The full list appears in Table 2. 

The post-processed files are available every hour from April 1, 2008, to February 28, 2019, on 
the 3-km WRF-CA-CLC grid. Grid coordinates and other supporting metadata are also provided 
in the post-processed files. Access to the full dataset is arranged by request to project 
investigators, though more automated forms of access may be implemented in the future 
pending data-support funding. 
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3.3 WRF Aerosol Sensitivity Simulation Results 
The dynamical downscaling model, WRF-CA-CLC, (Section 3.2) was used as the primary meth-
odological tool to simulate both CLC and their brightening in response to increasing aerosol 
concentrations. Two simulations were run to represent clean and polluted particulate matter 
scenarios. The aerosol concentrations (150 cm-3/ 600 cm-3) representing each scenario were 
drawn from previously published observations at the California coast (Martin et al., 2017), and 
are, therefore, representative of both the current climate and current particulate matter regu-
latory structure in California. Aerosol susceptibility, defined as the relative change in albedo in 
response to an increase in aerosol concentration (see Methods, Appendix A) was the primary 
metric used to estimate the response in cloud brightness to particulate matter. The results 
obtained indicate that polluted conditions increase in the warm season (May to September) 
CLC albedo 15 to 20 percent along the California coast. This magnitude of increase is similar to 
the relative interannual variability in albedo found for the period 2009 to 2018, which was 
approximately 25 percent. The change in simulated albedo diurnal cycle in response to pollu-
ted conditions is small relative to its amplitude. CLC are most susceptible to polluted conditions 
in the month of July. Thinner clouds (by water path below 700 hPa) are more susceptible to 
pollutant aerosols than thick clouds (CWP700 > 0.1 millimeter [mm]) are, while the spatiotem-
poral variability in susceptibility is also greatest for thin clouds. The research team also 
demonstrated that the project’s modeling methods allowed dynamically varying cloud-effective 
radius in response to changing aerosol concentrations produce more realistic relationships 
between cloud water amount and albedo, and that the default approach used before applying 
those methods produces clouds that are too bright, even for many polluted clouds. These 
results helped inform future regional downscaling efforts to investigate coastal low clouds and 
their impacts on surface insolation. 

Figure 19:  Clean vs. Polluted Cloud Simulation Results 

 
a) relationship between coastal albedo and CWP700 for Clean (blue) and Polluted (red) simulations. Black 
lines show theoretical model of Han et al., (1998) for re = 35, 20, 10 μm and for maximum albedo (“max”). 
b) As in a), except for susceptibility. 

Sources: See text for additional details. 
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3.3.1 Relationship of Susceptibility to Cloud Water Amount 
Figure 19 shows the relationship between CWP700 and albedo for WRF-CA-CLC warm season 
CLC in the California coastal zone, for both clean and polluted simulations. The California 
coastal zone was defined as the set of model grid points nearest the land/sea boundary, while 
retaining a land-surface type. This analysis serves as a validation of the model procedure and 
experimental method used. (See “model susceptibility process” discussion in Appendix A, page 
A-5.) Overlaid on Figure 19(a) are lines from the theoretical model of Han et al. (1998), whose 
authors explored the global relationship between liquid water path and albedo for liquid 
clouds. The approximate boundaries that albedo can take for a given value of liquid water 
path (equivalent to CWP700) follow the line labelled “max” and the line for re = 35 
micrometers (μm). Figure 19(a) shows that WRF-CA-CLC clouds closely follow these bounds. 
Figure 19(a) further shows that the effect of exchanging clean aerosol (blue) for polluted 
aerosol (red) conditions is to restrict the majority of clouds such that re does not exceed 20 
μm. By contrast, clean conditions allow the albedo curve for clouds with re = 35 μm to be 
accessed in the model. Finally, both clean and polluted simulations produce clouds with albedo 
indicative of re > 10 μm for a given CWP700. Recall from the model susceptibility process 
section that the Goddard radiative transfer model assumes re = 10 μm. Figure 19(a) 
demonstrates that allowing dynamic variation of re within a dynamical downscaling model 
allows a more realistic range of albedos for a given cloud-water amount and less bright clouds 
to develop, even for polluted aerosol conditions. Thus, projects attempting to dynamically 
downscale CLC should consider using a dynamically varying cloud-effective radius, used here 
to produce realistic cloud albedos. Figure 19(b) shows the relationship between susceptibility 
and CWP700, essentially the fractional difference between the two populations in Figure 19(a). 
Thinner clouds experience a much higher range of susceptibility for a given value of CWP700 
than for thicker clouds, as expected by varying re within the Han et al., (1998) theoretical 
curves. However, on average, susceptibility is greater for thinner clouds than for thicker 
clouds, as shown in Figure 19. 

3.3.2 Mean Warm-Season Susceptibility 
The illustrations in Figure 20 show the mean clean condition albedo and low cloud suscepti-
bility for WRF-CA-CLC warm season (MJJAS) simulations, including cloudy (2011) and less 
cloudy (2015) years. During 2011 (Figure 20[a]), albedo is elevated (𝛼𝛼 >0.3) over nearly the 
entire coast, with pockets of very high (𝛼𝛼 >0.5) albedo. By contrast, elevated and very high 
albedo are confined primarily to the central and southern coasts in 2015 (Figure 20[c]). Low 
cloud susceptibility is higher in 2015, with a value of 0.21 compared to 0.16 in 2011. Han et 
al., (1998), discuss the relationship between cloud water path (CWP), 𝑟𝑟𝑒𝑒and 𝛼𝛼 (see their Figure 
1). Changes in 𝑟𝑟𝑒𝑒 impact 𝛼𝛼 more as CWP decreases. Thus, if coastal clouds were thinner on 
average during 2015, as suggested by Figure 20(c), then an increase in aerosol concentration 
from clean-to-polluted conditions would be expected to brighten clouds more, as shown in 
Figure 20(b, d). As seen in the main document, a susceptibility of 0.16 to 0.21 compares 
favorably to the relative interannual variability found in both WRF-CA-CLC and GOES (~0.25). 
Thus, the impact of polluted aerosol conditions on cloud brightening or reduction of solar 
insolation in the heavily populated California coastal zone may be approximately equivalent to 
the difference between a less cloudy warm season and a cloudier warm season. 
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Figure 20: Simulated 2011 and 2015 Cloud Results  

 

 
a) Mean warm season (May to September) albedo (%) from WRF-CA-CLC Clean simulation during 2011 
(cloudy year) daylight hours (14 - 01 UTC). b) As in a, except aerosol susceptibility. Black dots show 
coastal grid points used to calculate mean coastal aerosol susceptibility = 0.16. c) As in a, except during 
2015 (fewer clouds along California coast). d) as in b, except during 2015. Mean coastal aerosol 
susceptibility = 0.2.  

Sources: See text for additional details. 

3.3.3 Susceptibility by Month and Within the Day 
Figure 21 depicts the mean clean condition albedo and low-cloud susceptibility, by month, for 
WRF-CA-CLC warm-season simulations, including both 2011 and 2015. A clear seasonal 
pattern in coastal and offshore albedo is visible, where clouds (and elevated albedo) are 
widespread during May, confined to the south coast largely south of Point Conception in June, 
begin moving northward along the coast in July, reach their northernmost coastal extent in 
August, and retreat southward along the coast again in September. The widespread elevated 
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(𝛼𝛼 >0.3) albedo in May, including over the Central Valley and inland desert regions, could be 
indicative of deep, precipitating clouds driven by synoptic weather systems identified by 
previous authors (e.g., Clemesha et al., 2016).  

Figure 21: Mean Albedo (%) From WRF-CA-CLC Clean Simulation During Daylight 
Hours 

 

 
Daylight hours are 14 to 01 UTC (7AM to 6PM Pacific Daylight Time) for, top-left to bottom-center: May, 

June, July, August, September.   

Sources: See text for additional details. 
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Figure 22: Mean Aerosol Susceptibility From WRF-CA-CLC Clean Simulation During 
Daylight Hours 

 

 
Daylight hours are 14 - 01 UTC for, top-left to bottom-center: May, June, July, August, September.   

Sources: See text for additional details. 

Albedo susceptibility (shown in Figure 22) follows the mean albedo seasonal cycle since it is 
only calculated in the presence of CLC. However, the value of coastal mean susceptibility, 
where defined, shows no such marked seasonality. The exception is for May, where mean 
susceptibility is relatively less at 0.15, compared to 0.19, 0.2, 0.18, and 0.18 for June to 
September.  
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As discussed, aerosol susceptibility is larger for thinner clouds (by cloud water path [CWP]), 
and the potential for deep precipitating clouds in May to contain much higher CWP may 
explain why the May susceptibility is lower than in late summer. Heat waves and clear skies 
are less common during May for most of the populated coastal zone; thus, the impact of 
particulate matter in reducing insolation through cloud brightening may be greater later in the 
summer when low clouds are thinner and more susceptible. 

Similar mechanisms operate over the course of a day and there is also a diurnal cycle in aero-
sol susceptibility. Figure 23 shows the mean albedo diurnal cycle (daylight hours: 14 UTC to 01 
UTC [7AM to 6PM Pacific Daylight Time]) for the 2011 warm season WRF-CA-CLC clean and 
polluted simulations, alongside the diurnal cycle from GOES observations of albedo in the 
California coastal zone (shown in Figures 20 to 22). Visually following the differences between 
the curves for clean and polluted simulations reveals that there is very little diurnal cycle in 
susceptibility except for that which may be caused by the variation in clean albedo (for exam-
ple, the denominator of the susceptibility equation). In other words, polluted clouds show no 
systematic increase in reflectivity based on time of day. Also seen in Figure 23, the amplitude 
of the WRF-CA-CLC warm season diurnal cycle is significantly less than the GOES diurnal cycle 
(12 percent compared to 18 percent), and the model simulations prescribe a rebound of 
cloudiness in the evening, while the observational data does not show a systematic rebound. 
It should also be noted that the higher albedo level at all times of day (shown in Figure 23) is 
consistent with the high 2011 albedo shown in the interannual timeseries in Figures 11 and 12. 
Not shown in Figure 23 is the mean albedo diurnal cycle derived from 2015 warm season 
simulations, which are very similar in shape and amplitude, but differ somewhat in albedo 
absolute value. In particular, WRF-CA-CLC mean warm season albedo was less than GOES in 
2015 (instead of more, as in 2011). 

Figure 23: Mean Diurnal Cycle of CLC Albedo From WRF-CA-CLC Polluted, Clean, 
and GOES   

 
Mean diurnal cycle of CLC albedo (%) from WRF-CA-CLC Polluted (red), Clean (orange) and GOES (blue).   

Sources: See text for additional details. 
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3.4 SHUD Model Results 
The Sacramento River watershed (SW), shown in Figure 24, is the largest watershed in 
California and an invaluable source of fresh water for communities, agriculture, and ecosys-
tems within the state. Nonetheless, this watershed is susceptible to dramatic shifts in water 
storage, which relate to changes in both snowpack and groundwater. Over the next century, 
groundwater withdrawals and precipitation variability are anticipated to put significant stress 
on this resource. Historical drought has also had a pronounced effect on groundwater tables in 
this watershed, and recovery following a drought tends to be slow. An accurate assessment of 
past water levels would be invaluable in preparing for the impacts of future drought. 

The Sacramento River flows from Southern Oregon to San Francisco Bay. The total drainage 
area is about 72,000 km2 while elevation ranges from 0 to 4,200 m. The climate in SW is a 
semi-arid hot Mediterranean. The spatial climatic characteristics are not only affected by 
latitude, terrain, and snow coverage but also by ocean wind and current; the climate varies 
spatially and temporally. Dramatic seasonal and annual climatic variations exist as well as 
substantial spatial heterogeneity. The eastern and northern mountains with greater rainfall 
and snow are significant contributors to groundwater for the entire watershed.  

Figure 24. Location and Terrain of the Sacramento River Watershed 

 
Sources: See text for details. 
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As shown in Figure 25, annual precipitation ranges from 400 mm/year to 1,500 mm/year; 
extreme annual precipitation was more than 4,000 mm/year in the northern mountainous area 
in 1983. In the severe drought of 2013, the mean precipitation was less than 270 mm/year, 
and maximum precipitation in the mountainous area was less than 650 mm/year.  

The SHUD model was deployed for long-term hydroclimate simulations (1979-2018) in the 
Sacramento River watershed. The number of cells in the simulation domain is 6,841, with a 
mean area of ~10 km2. Total length of the river network is ~13,550 km. The model ran with a 
single thread configuration, and it took about 70 hours to complete the 40-year simulation. 
The following paragraphs describe the results of that deployment for sub-catchments in- and 
for the entire Sacramento River watershed. 

Figure 25: Annual Precipitation Variation From 1979 To 2017 and Monthly Mean 
and Variation (Bars and Whiskers) in Sacramento River Watershed  
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Sources: See text for details, based upon NLDAS data. 

3.4.1 Sub-Catchments in Sacramento River Watershed 
The heterogeneity of watershed characteristics is so dominant in spatial and temporal patterns 
that numeric solvers tend to be slow and unstable. This research, therefore, began with pre-
experiments on sub-catchments. With the same input datasets, the calibration and analysis of 
11 headwater sub-watersheds (Figure 26) were done where managed reservoirs are not pre-
sent since modeling of these headwaters does not require knowledge of reservoir operations. 
From these results, calibrated parameters were applied to the entire Sacramento River water-
shed. Modeled discharge and groundwater depth for selected sub-catchments are shown in 
Figures 27 and 28 and show how the model produces the seasonal and episodic nature of 
discharge and the channelized groundwater structures observed in nature. The calibration of 
the model used the CMA-ES (Hansen, 2006; Auger and Hansen, 2005). The automatic CMA-ES 
calibration is robust and able to converge to global optimization with low computing cost. 

At some sub-catchments in the Sacramento River watershed, the discharge data from the 
United States Geological Survey (USGS) gage stations were not highly associated with North 
American Land Data Assimilation System (NLDAS) precipitation data (Figure 29). This issue 
made it difficult for either the physically based SHUD model or statistical machine learning to 
capture the correct hydrograph; because of the poor physical relationship, calibration on those 
sub-catchments is not optimistic. The higher the correlation between appreciation and dis-
charge, the better goodness-of-fitting that models can reach (such as sub-catchments 1, 3, 5, 
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7, 8, and 9), illustrating the general increase of discharge with increased precipitation, albeit in 
the midst of a complex non-linear relationship. 

Figure 26: Eleven Sub-Catchments of Sacramento River Watershed Used for SHUD 
Model Calibration 

The 11 sub-catchments used for model calibration in the Sacramento River are headwater areas without 
any reservoirs.  

Sources: See text for details. 
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Figure 27. SHUD Simulated and Observed Discharge at the Outlets of Sacramento 
River Watershed Sub-Catchments 

SHUD simulated and observed discharge at the outlets of Sacramento River watershed sub-catchments. 
#5 (top left), #7 (top right), #8 (bottom left), and #9 (bottom right). 

Sources: See text for details. 
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Figure 28. Annual Mean Groundwater Depth Simulated by SHUD in Sacramento 
River Sub-Catchments 

 

 
Annual mean groundwater depth simulated by SHUD in Sacramento River sub-catchments. #5 (top left), 
#7 (top right), #8 (bottom left) and #9 (bottom right).  

Sources: See text for details. 
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Figure 29. Normalized Comparison of NLDAS Precipitation vs. Discharge of USGS 
Gage Station Data in 11 Sub-Catchments in the Sacramento River Watershed   

 

 

 
The seasonal categorization per sub catchment (nos. 1 to11) identifies the possible contribution from 
snow melt.  

Sources: See text for details. 

3.4.2 Simulation of Whole Sacramento River Watershed 
In this research the SHUD model was deployed for long-term hydroclimate simulations 
(1979 to 2018) in the Sacramento River watershed. The number of cells in the simulation 
domain is 6,841, with a mean area of ~10 km2. Total length of river network is ~13,550 km. 
The model ran with a single thread configuration; it took about 70 hours to finish the 40-year 
simulation. 

The output discharge (Figure 30) and groundwater (Figure 31) appeared to have the correct 
magnitude and spatial patterns. The strong variation of precipitation determined the variation 
of streamflow. The streamflow in the watershed followed the seasonal variation of 



60 

precipitation. During drought, the base flow from groundwater depletion contributes to 
streamflow, and the excess infiltration replenishes groundwater in wet seasons.  

The groundwater distribution follows the terrain and river network. Steep regions in the 
mountainous area tend to hold less groundwater, while the valleys have a built-up 
groundwater table. 

Based on long-term groundwater-storage variations (Figure 32), groundwater has been 
decreasing since the 1980s. During the very dry 2013 to 2014 period, groundwater storage 
decreased by an average of 0.2 meters although the following years were relatively wet.  

As an important natural reservoir for water storage, snowpack also influences water availability 
in the watershed. The variation of snowpack (Figure 33) follows the fluctuation of annual 
precipitation. Dry years show less snowpack storage, and the decline in snowpack over the 
period considered quite clearly contributed to the decline in groundwater storage. 

Figure 30. Long-Term Hydrograph (Monthly) at the Outlet of the Sacramento River 

Sources: See text for details. 
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Figure 31. Average Groundwater Storage Within 30-Meter Aquifer, Integrated from 
SHUD Simulation  

 
Figure 31 shows the Sacramento River watershed 

Sources: See text for details. 

Figure 32. Long-Term Trend of Average Groundwater Storage in the Sacramento 
River Watershed 

 
The difference in the mean groundwater level between the wet period in the early 1980s and the 2013 to 
2014 dry period was 0.5 meter. 

Sources: See text for details. 
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Figure 33. Snowpack in the Sacramento River Watershed, Simulated by SHUD  

 
Sources: See text for details. 

3.5 Parflow.CLM Results  
The project examined how uncertainty in the precipitation datasets propagates through a 
process-based hydrologic model, resulting in uncertainty in the simulated hydrologic outputs. 
It was investigated how combined uncertainty in precipitation and air temperature forcings 
impacts simulated hydrologic fluxes and states in the Kaweah River watershed.  

3.5.1 Assessing the Impacts of Precipitation and Temperature Uncertainty 
on Hydrologic Response in ParFlow.CLM 
ParFlow.CLM was configured for the Kaweah River watershed in the Southern Sierra Nevada 
and Central Valley California (Figure 34). The study domain encompassed an area of 
12,276 km2 with highly variable terrain. The domain included the relatively humid Sierra 
Nevada mountain range and the semi-arid agricultural regions of California’s Central Valley. 
Selecting a mountain catchment for this project was important for two primary reasons: 
1) mountain catchments provide between 20 percent and 90 percent of streamflow worldwide 
(Viviroli and Weingartner, 2004), and 2) the Sierra Nevada watersheds are the main sources of 
streamflow and natural recharge to the Central Valley aquifer system. Furthermore, ground-
water recharge and streamflow generation processes are poorly understood in high-elevation 
mountain ranges.  

The Kaweah River watershed model has a horizontal grid resolution of 1-km2 resulting in a 
computational grid with 124 columns and 99 rows. The total thickness of subsurface in the 
Kaweah River watershed model is set to 622 m. The subsurface consists of a 2-m-thick soil 
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layer (Chaney et al., 2016) overlaying weathered saprolite, fractured bedrock, with less 
fractured bedrock at depth. The thicknesses of these layers varies with depth, resulting in 
15 layers with variable hydraulic properties.  

Figure 34. (a) Location of The Parflow.CLM Study Domain Within the State of 
California. (b) Digital Elevation Model Used to Generate Slope Parameters for the 

Parflow.CLM Model 

 
The watershed boundary and stream network derived from the four-directional routing scheme used 
within ParFlow.CLM are shown, as well as locations of urban development. 

Sources: See text for details. 

To reduce the impact of model initialization on simulated hydrologic fluxes, a two-step spin-up 
process was implemented until subsurface storage reached dynamic equilibrium with 
meteorologic forcings. In the first step, a constant net precipitation flux (P – ET) was applied 
to the initially dry ParFlow model to fill subsurface storage (Livneh et al., 2013). Next, the 
coupled ParFlow.CLM model ran recursively over a one-year period of hourly meteorological 
forcing for water year 2016, until the model reached dynamic equilibrium. Dynamic equilibrium 
is defined as when the absolute percentage change in subsurface storage becomes less than 
0.1 percent in recursive simulations (Ajami et al., 2014). Water year 2016 is representative of 
average precipitation and air temperature conditions in the Kaweah River watershed.  

The project focus was on the Kaweah River watershed while the team was learning how to 
implement this modeling approach and developing an approach with reasonable simulation 
times. The correct parameter sets that facilitated rapid simulation of the domain were 
determined. To simulate hydrologic processes of the Kaweah River watershed, 35 computa-
tional cores were used. The slowest simulations took 12 hours of simulation time (~420 CPU 
hours) per year of simulation. 
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After validating the model against a range of in situ (streamflow) and remotely sensed obser-
vations (evapotranspiration and snow water equivalent), the impact of uncertainty in model 
forcing datasets was assessed, focusing on precipitation and air temperature uncertainty. 
Gridded precipitation and air temperature datasets were used as historical records for 
downscaling climate projections but suffered from high levels of uncertainty. ParFlow.CLM 
simulations were performed for the Kaweah River watershed using precipitation and air 
temperature from four common gridded products: NLDAS-2, PRISM, Daymet, and Gridmet. An 
additional air-temperature dataset from the TopoWx product was used to represent 
topographically corrected air temperatures in the watershed.  

As dense weather stations were not available in mountain catchments, it is not possible to 
quantify the accuracy of gridded meteorological products. To quantify the impact of uncertain-
ty in meteorological forcings on the simulated water budget, the three-cornered hat method 
(Premoli & Tavella, 1993) was used to calculate the relative uncertainty of model-forcing data 
and simulated hydrologic fluxes and states. It was recognized that this was not a total mea-
sure of uncertainty, since it does not account for uncertainties created by the model structure 
and parameters.  

First, uncertainty was calculated in basin averaged-time series of precipitation (P), streamflow 
(Q), ET, SWE, soil moisture (ϴ), and potential groundwater recharge (R) for ParFlow.CLM 
simulations forced with different precipitation products was calculated, while keeping the rest 
of meteorological forcings the same (Figure 36). It was found that the datasets with the high-
est uncertainty in precipitation (P) did not result in the highest uncertainty for all output 
variables. It is particularly interesting to note that although the Gridmet forcing had the high-
est uncertainty in precipitation (P), it had the lowest uncertainty in streamflow (Q). Hydrologic 
models are typically calibrated and validated using only streamflow estimates. Project results 
suggest that this may not be an adequate approach if scientists are interested in the rest of 
the water budget, where the Gridmet dataset has greater uncertainty (ET, soil moisture, or 
potential groundwater recharge) than other products.  

The spatially distributed uncertainty was calculated in each of the simulated water-balance 
components. It was demonstrated that although the greatest uncertainty in precipitation 
inputs is at the highest elevations of the Sierra Nevada, the highest uncertainty in simulated 
fluxes is found in the mid-elevation regions along the transition zone between the Sierra 
Nevada range and the Central Valley (Figure 36). This transformation of uncertainty was 
attributed to the impact of topography (Schreiner-McGraw and Ajami, 2020; 2022).  
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Figure 35. Uncertainty in Domain Average Time Series of Multiple Hydrologic 
Variables 

 
For each variable the uncertainty has been normalized by the dataset with the largest uncertainty to allow 
different variables to be displayed in the same chart. Precipitation (P), root zone soil moisture (ϴ), 
evapotranspiration (ET), potential recharge (R), snow water equivalent (SWE), and streamflow (Q).  

Sources: See text for details. 

Figure 36. Root Error Variance (Σ) in Surface Water Budget Components, Averaged 
Across 100-Meter Elevation Intervals 

 
Precipitation (P), root zone soil moisture (ϴ), evapotranspiration (ET), and potential recharge (R) are from 
models with variable precipitation using NLDAS-2 (a), PRISM (b), Gridmet (c), and Daymet (d) precipitation 
forcings. 

Sources: See text for details. 
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Two additional numerical experiments were performed to assess impacts of uncertainty in air 
temperature as well as combined precipitation and temperature datasets on the water budget. 
Figure 37 shows the partitioning of the simulated annual water budget for the Kaweah River 
watershed upstream of the Terminus Dam. Uncertainty in the precipitation forcings created 
considerable uncertainty in the simulated water budget. For example, the simulated ground-
water (GW) flux to the Central Valley aquifer ranges from 29 percent to 43 percent of annual 
precipitation in the Kaweah Terminus watershed. When the ParFlow.CLM model is forced with 
the mean of the multiple-precipitation datasets, but with variable air-temperature datasets, the 
groundwater flux ranges from 34 percent to 43 percent of precipitation. Combined variability in 
precipitation and air temperature forcings results in a higher range of simulated groundwater 
flux (27 percent to 50 percent of the water budget) to the Central Valley aquifer. 

Figure 37. Water Balance Partitioning for Watershed Average Time Series of 
Multiple Hydrologic Variables   

Simulation scenarios include variable precipitation (P) with NLDAS-2 air temperature (TA), variable air 
temperature from multiple datasets with mean of precipitation forcings (NLDAS-2, Daymet, Gridmet and 
PRISM), and variable temperature-precipitation simulations. 

Sources: See text for details. 

The combined impacts of uncertainty in precipitation and air temperature on hydrologic fluxes 
are not linearly additive, and a complex set of processes controls the watershed response to 
uncertainty in meteorological datasets. The primary factor that impacts water-budget 
partitioning is the total amount of snowfall predicted by each combination of forcing datasets 
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(Figure 38). These results highlight the need to develop gridded climate products that can 
accurately represent the hydrologic processes of mountain catchments.  

Quantifying the uncertainty of simulated hydrologic fluxes caused by climate forcing is 
important because these gridded climate products are used to train or validate downscaled 
climate projections for climate-change impact studies.  

Figure 38: Relation Between Total Annual Snowmelt and Water Budget Partitioning 

Snowmelt is calculated as the total negative changes in snow water equivalent (SWE) for each of 
13 model scenarios. 

Sources: See text for details. 

3.5.2 Quantifying Groundwater Response Time to Droughts via 
Parflow.CLM 
In addition to the observational study, synthetic numerical experiments were developed over a 
9.3 km2 watershed using ParFlow.CLM. The model was forced by two synthetic 30-year climate 
realizations to estimate groundwater lag and recovery times using a number of drought classi-
fication metrics in aquifers with a range of hydraulic conductivities. The model allowed the 
research team to precisely quantify changes in groundwater storage to ensure that drought 
classification metrics are reliable (Schreiner-McGraw et al., in prep.). 

An important consideration for water management under drought conditions is how long it 
takes the meteorological droughts to propagate through the hydrologic system and cause 
groundwater drought. Results of this continental scale analysis indicate that average lag times 
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between precipitation drought and groundwater drought is about 15 months, and lag time can 
increase up to 15 years in some wells. On average, groundwater recovery time is about three 
years, and the groundwater recovery time increases with increasing drought severity. These 
results have important implications for sustainable groundwater management in California.  

Quantifying groundwater response time and recovery to climate change and droughts is one of 
the main objectives of this CEC project and has important implications for groundwater 
management under the California Sustainable Groundwater Management Act and energy use 
for groundwater pumping. This focus is on using groundwater observations as well as idealized 
simulation domains to quantify these impacts while developing new metrics to quantify 
groundwater response time to droughts. To explore the groundwater response time to climate 
change, the research team used droughts as examples of meteorological changes imposed on 
the hydrologic system.  

A key challenge in quantifying groundwater response time to droughts is associating observed 
changes in groundwater levels with corresponding observed changes in precipitation that 
caused the groundwater drought. Through this project, precipitation observations from the 
PRISM dataset and groundwater-level data from the Climate Response Network were used to 
test the efficacy of different drought classification methods on quantifying the groundwater 
response time to droughts. The research team found that the previously used lagged-
correlation between the standardized precipitation index (SPI) and the standardized 
groundwater index (SGI) is a reliable method (Bloomfield and Marchant, 2013) to quantify the 
impacts of aquifer properties on the groundwater response time, while other metrics are 
required to understand the impact of precipitation properties on groundwater drought 
(Schreiner-McGraw and Ajami, 2021). The performance of these metrics was examined across 
634 observation wells in unconfined aquifers that are not impacted by human activities.   
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CHAPTER 4: 
Technology and Knowledge Activities 

4.1 Technology and Knowledge Transfer Activities 
The methods and results of various elements of this research have been transferred via 
numerous activities: Undergraduate, graduate, and postdoctoral scholars have been trained 
(partially) via funding of this research; scientific manuscripts have been published and are in 
review; presentations (oral and poster) have been held at conferences such as Fall Meetings of 
the American Geophysical Union; and teleconferences have been held with CEC staff on the 
project’s data, methodology, and findings. These activities are described in the following 
sections. 

Additionally, some of the project’s results have been shared so that other researchers could 
benefit from its preliminary findings. For example, two interim reports to the CEC are publicly 
available—the first two listed in Section 4.3. The hourly vector-wind fields are currently used 
by Alex Syphard, chief scientist at Sage Insurance Holdings and adjunct professor in the 
Department of Geography at San Diego State University, and Jon Keeley, research scientist 
with the U.S. Geological Survey Western Ecological Research Center and adjunct professor in 
the Department of Ecology and Evolutionary Biology at the University of California, Los 
Angeles, to examine the role of wind in destructive California wildfires. 

Access to the regional model dynamically downscaled historical reanalysis dataset can be 
arranged by request to the project team. This full atmospheric dataset, generated by WRF is 
quite large (over 30 Tb for 11 years), has been saved for the intermediate term. The WRF 
downscaling was applied to a coarser (9km x 9 km) WRF downscaled version of the NARR. 
This 9 km WRF reanalysis was provided by Professor Alex Hall's group at UCLA. The 3 km x 
3 km spatial resolution WRF-CA-CLC was run for a rectangular domain that approximately 
enclosed California (Figure 6) from April 2008 to February 2019.   

A post-processed subset of the WRF-CA-CLC dataset is also available. This subset was 
extracted to provide variables relevant to low-cloud processes, fire weather, and basic climate 
dynamics such as sea-level pressure and 500 hPa geopotential height. The post-processed 
files: 

• Amount to about 1 TB.
• Contain 80, 2-D variables including temperature, precipitation, hub-height wind, albedo,

wind-gust estimates, and inversion layer fields. The full list appears in Table 2.
• Are available every hour from April 1, 2008, to Feb 28, 2019, on the 3-km WRF-CA-CLC

grid. Grid coordinates and other supporting metadata are also provided in the post-
processed files.
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4.2 Training Opportunities 
This project provided partial support for advising undergraduate intern Alexis Harris (Portland 
State University’s Center for Climate and Aerosol Research Experience for Undergraduates 
program) from June to August 2019. It also provided funding for one postdoctoral scholar at 
the University of California, Riverside. Partial support was provided to train one undergraduate 
and one master student in data analysis and integrated hydrologic modeling. This project also 
supported Shiheng Duan, graduate student researcher at the University of California, Davis, 
and provided funding for one postdoctoral scholar at the University of California, Riverside.  

An undergraduate student was trained under the direction of Dr. Martin in climate-model 
evaluation methods using the WRF-CA-CLC dataset to evaluate the seasonal progression of 
lower tropospheric stability along the California coast against published works and existing 
model reanalyses. Ms. Harris participated through the National Science Foundation-funded 
Center for Climate and Aerosol Research at Portland State University, a research site for 
undergraduates.  

Postdoctoral scholar Sweta Das was trained under the direction of Dr. Martin to verify WRF 
model cloudiness and albedo using satellite (GOES) data. Dr. Das is applying this training 
toward research contributions to CEC Project PIR-19-007. 

4.3 Manuscripts Published 
Cayan, Daniel, David Pierce, Laurel DeHaan, Janin Guzman-Morales, Alexander Gershunov, 

Rachel Clemesha, Andrew Martin, Paul Ullrich, Lele Shu, Hoori Ajami, Adam Schreiner-
McGraw. 2020. “Downscaling Using Dynamical and Statistical Methods.” White paper for 
the CEC, part of EPC-16-063, available at: https://efiling.energy.ca.gov/GetDocument.
aspx?tn=232882 
Note: These research results were made available so that all applicants for the CEC’s 
Grant Funding Opportunity GFO-19-311: Climate Scenarios and Analytics to Support 
Electricity Sector Vulnerability Assessment and Resilient Planning could benefit from 
preliminary findings of this CEC-funded research. 

Duan, S., P.A. Ullrich, and L. Shu. 2020. “Using Convolutional Neural Networks for Streamflow 
Projection in California.” Frontiers in Water. Available at: https://www.frontiersin.org/
article/10.3389/frwa.2020.00028 

Gershunov, A., Guzman Morales, J., Hatchett, B. et al. 2021. “Hot and cold flavors of Southern 
California’s Santa Ana winds: their causes, trends, and links with wildfire.” Clim Dyn 
57, 2233–2248. Available at: https://link.springer.com/article/10.1007/s00382-021-
05802-z 

Pierce, D.W., L. Su, D.R. Cayan, M.D. Risser, B. Livneh, and D.P. Lettenmaier. 2021. “An 
Extreme-Preserving Long-Term Gridded Daily Precipitation Data Set for the 
Conterminous United States.” J. Hydrometeorology, 22(7) 1883-1895. 

Pierce, D. W., and D. R. Cayan. 2019. “Future projections of hourly surface temperature in 
California.” A report in partial fulfillment of a grant by the CEC: 48 pages available at: 
https://cirrus.ucsd.edu/~pierce/tmp/Hourly_data_interpolation_2019-05-23.pdf 
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Schreiner-McGraw, A.P., H. Ajami. 2021. “Delayed Response of Groundwater to Multi-year 
Meteorological Droughts in the Absence of Anthropogenic Management.” Journal of 
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Schreiner-McGraw, A.P., H. Ajami. 2020. “Impact of Uncertainty in Precipitation Forcing 
Datasets on the Hydrologic Budget of an Integrated Hydrologic Model in Mountainous 
Terrain.” Water Resources Research, Available at: https://doi.org/10.1029/
2020WR027639 
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Droughts Across the United States.” European Geosciences Union, 2020 online meeting. 
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Processes from Headwaters to Groundwaters.” Invited Presentation. American 
Geophysical Union, 2019 Fall Meeting, San Francisco, California.   

• Ajami, H., A. Schreiner-McGraw. 2019. “Characterizing Mountain System Recharge 
Processes and Variability - A recent synthesis.” Invited Presentation. Geological Society 
of America 2019 Annual Meeting, Phoenix, Arizona. 

• Ajami, H., A. Schreiner-McGraw. 2019. “Quantifying Groundwater Response Time to 
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CHAPTER 5: 
Conclusions/Recommendations 

California’s investor-owned electricity utilities need greater specificity in climate and weather 
events that drive both trends and extreme impacts on energy supply, demand, and reliability. 
Additionally, IOUs and decision makers in a variety of sectors need improved information on 
deliveries of water and other vital resources to the state. Key findings that underpin 
California’s Fourth Climate Change Assessment follow.   

It is widely recognized that regional dynamical model downscaling of high volumes of GCM 
simulations can be impractical because of high computational resource costs. The quality of 
dynamical and statistical downscaling is dependent upon the availability of global or regional 
modeling output to provide large-scale guidance on projected or historical patterns and high-
resolution historical data for either validation or training statistical models. Input data may be 
sets of direct observations, analyzed observations, or model generated data such as global and 
regional reanalyses. Even statistical downscaling of the broad emerging suite of CMIP6 
simulations will require substantial computer resources and data storage. Procuring necessary 
computer resources for comprehensive hybrid dynamical/statistical downscaling is a critical 
requirement for such an effort.  

Observed training or validation data is represented with varying quality and uneven spatial and 
temporal coverage for different variables. Observational datasets invariably contain some 
degree of sampling and instrumental errors. As described in Section 3.1.3, the precipitation 
training dataset used for LOCA downscaling in the Fourth Assessment used a technique of 
adjusting for different stations’ time of observation, which decreased the maximum 1-day 
precipitation, increased the wet-day fraction, and decreased the mean precipitation on wet 
days. The reduction in daily extreme precipitation is an important limitation because, for 
example, it would cause hydrological model estimates of flooding to be under-predicted. A 
new version of the gridded precipitation training dataset constructed to avoid this time 
adjustment resulted in a 27 percent greater annual maximum for one-day precipitation (area 
averaged over the conterminous U.S.). When applied to the Variable Infiltration Capacity land 
surface/hydrological model, annual maximum one-day runoff increased 38 percent, annual 
mean runoff increased 17 percent, evapotranspiration dropped 2.3 percent, latent heat flux 
dropped 2.2 percent, and the surface shortwave insolation increased 3.3 percent.  

Some observational datasets are relatively short or confined to a limited domain (such as the 
winds and humidity datasets obtained from SDG&E), and thus may be inadequate for region-
wide statistical downscaling training datasets. However, such data should not be dismissed 
because it may provide extremely valuable evaluation or calibration of downscaled methods 
and results. 

There are a number of variables for which statistical downscaling procedures have not been 
developed (here and elsewhere), because these variables are not routinely observed and, in 
some cases, do not have wide ranges of use cases. A noteworthy example is a set of variables 
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of interest to the wildfire prevention and management community that may be available from 
regional dynamical models but not from statistical downscaling techniques. This underscores 
the value of dynamic models, via atmospheric reanalyses, climate GCMs, and dynamic down-
scaling in producing a full suite of dynamically consistent atmospheric variables. Since some 
atmospheric variables have not been and are currently not consistently observed, the output 
provided by dynamic models may provide a dataset that can be employed in statistical down-
scaling. This research provided an 11-year dynamically downscaled reanalysis from which 
statistical downscaling experiments and various diagnoses can be conducted. Dynamical 
modeling of some phenomena (for example, marine boundary layers and coastal clouds) is 
problematic with standard regional-model codes (Section 3.2). The effects of influences such 
as aerosols on California’s coastal marine clouds are furthermore not well understood and new 
modeling and diagnostics studies are ongoing and needed. Sensitivity tests allowed selection 
of a WRF configuration that best represents the observed magnitude of cloud cover, while 
accurately preserving other key climate properties of California climate such as sea-level pres-
sure and temperature. This configuration nonetheless suffers from significant biases in the 
inland extent, seasonal and interannual cycles of cloud cover that require further refinement. 
In part, these deficiencies are related to fundamental physics such as turbulent moisture fluxes 
in the boundary layer. But cloud-cover deficiencies may also be partially remedied by addres-
sing lateral boundary conditions or the impact of aerosols on cloud albedo. These potential 
updates might improve future versions of WRF-CA-CLC. However, as with clouds simulated by 
any dynamical model, important biases are likely to remain. As suggested in Section 3.2.2, 
bias correction can effectively increase skill in modeling weather variables, and should reduce 
biases in downwelling shortwave radiation, a variable strongly related to CLC presence. WRF-
CA-CLC may thus benefit from similar statistical bias corrections when applied to projections of 
California’s future climate.  

From Section 3.2.5, WRF hourly temperatures are closely matched to observations over the 
limited time period available for comparison, although with a systematic underestimation of 
hourly timescale variability. When compared to the station observations, the WRF simulations 
are not much better or worse in simulating hot extremes, cold extremes, periods of large vari-
ability, or periods of small variability. The spatial coherence of hourly temperature variability in 
the WRF simulation is similar to observations in the Central Valley, the Bay Area, and parts of 
near-coastal Southern California. It is greater than observed in Northern California and the 
extreme interior southeast part of the state. It is less than observed along the coast between 
San Luis Obispo and Oxnard. These geographical patterns of similarities and differences are 
not sensitive to the exact timescale of hourly variability. 

The evaluation carried out here showed a general overestimation in the magnitude of the WRF 
simulated winds that vary by month (bias increases towards later months in the year) and 
location (larger bias concentrated on the most eastern locations). Wind speed overestimations 
are also observed during the inspected Santa Ana wind event. In addition, WRF simulations 
exhibits diurnal differences and longer event duration relative to observations. Nonetheless, 
the complete assessment of systematic bias should be carried over a longer simulation period 
as well as over a larger number of Santa Ana wind events. 
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In both dynamical and statistical models, the ideal bias correction procedure would jointly 
adjust multiple variables using a full multivariate approach. In other words, a model may not 
produce uniform biases in T and P in simulating warm and cool precipitation events. The 
existing LOCA bias correction scheme (Pierce et al., 2015) addresses this using conditional bias 
correction. For example, the bias correction of temperature is conditional upon the presence or 
absence of precipitation so that the differing impacts of snow and rain are better captured in 
the final result. Also, as described in section 3.1.3, it was found that the addition of sea level 
pressure to regional wind patterns added skill when LOCA downscaling wind over the 
California region. Because of the complex dynamics governing many atmospheric variables 
such as precipitation and wind, bias correction using a multivariate bias approach would ideally 
be conducted. However, this requires computational resources, amounting to an increase by 
about a factor of 30 over single variable bias correction; and thus, is not feasible for high 
volume downscaling under present computational constraints. There is no clear path forward 
to reduce the large time demands of the multivariate bias correction. Since it is an iterative 
process, it is accepted that there may be no way around this, and it will have to be evaluated 
whether the 30-fold increase in time needed to do this form of multivariate bias correction is 
worthwhile and acceptable given our need to process all of California for multiple models, 
ensemble members, and scenarios. This might largely be determined by how many models, 
ensemble members, and emissions scenarios are desired in forthcoming CMIP6 downscaling 
effort.  

Hydrologic models contain another set of techniques, advantages, and drawbacks. Tradeoffs 
between model sophistication and model simplicity and efficiency arise because of limitations 
in computational resources. Surface water and groundwater resources, which are often treated 
as separate systems in climate impact assessments, ideally should be treated as linked 
components of the same hydrologic system. In Section 3.4 a fully coupled surface-subsurface 
hydrologic model was developed (SHUD) that was specifically designed for the challenging 
hydrologic environment in California. Since only two model layers are used to represent the 
subsurface, the computational expense of the model is substantially less than a fully coupled 
3D hydrologic modeling system. Further, this system uses advanced numerical methods that 
enable relatively large time step sizes even in regions of steep slopes and a shallow subsur-
face. Nonetheless, as with any hydrologic modeling system, substantial calibration is needed to 
ensure good results as a result of surface and subsurface heterogeneity. As a process-based 
model, this model has the potential to provide deep insight into California’s hydroclimate 
system. Work is now underway to employ it for modeling of the entire Sacramento River 
watershed, and future work will extend it for use over the entire state of California. 

The primary application targeted in the hydrological modeling component of this study is 
future projection of streamflow in California. With historical precipitation and streamflow for 
calibration, and future precipitation from CMIP5/6 models, our coupled hydrologic modeling 
system can be used to project future streamflow response. These simulated stream flows can 
then be used for training an advanced statistical model for downscaling of streamflow (for 
instance, using machine learning and deep neural networks). Nonetheless, many challenges 
remain on this front, the most significant of which being the fact that precipitation, tempera-
tures, and radiation in the future are not in the same regime as the historical period. 
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Consequently, this research builds up tools and techniques for validating that the models are 
performing reasonably even when the input data is outside of the input data used in the 
training period. 

In a related part of this study, sensitivity of water-budget partitioning was quantified to 
variable precipitation and temperature forcings as simulated by an integrated surface water-
groundwater model. Results indicate that topography exerts a large impact on propagating 
uncertainty in simulated hydrologic fluxes. Analysis of model performance metrics indicates 
that merging multi-source precipitation products improves simulated hydrologic fluxes com-
pared to averaging simulated hydrologic fluxes from multiple models. Uncertainty in air 
temperature forcings amplifies the impact of uncertain precipitation forcings on the simulated 
water budget. This amplification is caused by air temperature controls on the rain/snow 
precipitation partitioning.   

Although the ParFlow.CLM modeling approach, both in general and more specifically as applied 
to the Kaweah watershed in this project (Section 3.5), is computationally expensive relative to 
simpler hydrologic models commonly applied for climate change impact assessment, there are 
important advantages. Using a process-based integrated modeling approach to simulate the 
climate change impacts on water resources has the advantage that the model performance is 
not tied to historical conditions. By representing the processes via which water moves through 
a landscape, changes in meteorological conditions will be propagated through the system via 
physically based equations that describe shallow surface water and subsurface flow, rather 
than empirical methods derived from the statistical analysis of historic data. The second 
advantage of the approach used in this research is that it uses a 3D representation of ground-
water, coupled with a land-surface model. This allows the impacts of hydrologic connectivity 
between the Sierra Nevada mountains, where most of the precipitation falls, and the Central 
Valley aquifer, where most of the water use is being studied. Furthermore, it is possible to 
assess the impacts of pumping, irrigation, and snowmelt processes in a fully integrated 
manner.  

Modeling groundwater variation and change statewide using integrated groundwater-land 
surface models is possible via the project approach. The benefits of such an approach are in 
capturing hydrologic processes from the atmosphere to the bottom of the aquifer, removing 
the need for implementing multiple hydrologic models to capture different aspects of the 
system. Assuming that climate projections require 2,500 years of simulation time (25 GCMs 
with 100 years of data), this would require ~1 million CPU hours. This equates to about one 
month of run time on 1,500 computational nodes. Therefore, this approach is feasible for the 
entirety of California with sufficient computational resources. A tradeoff could be to use fewer 
than 25 scenarios of 100-year duration. If 100 years of simulation for a historical period were 
run in addition to three projected climate (representing low, median, and high) precipitation 
projections, fewer computational resources would be needed. 

Landcover types and irrigation practices vary considerably over California’s complex landscape, 
and in some areas are changing rapidly. However, while such land-use impacts produce sub-
stantial impacts in surface and subsurface hydrology (Levy, et al., 2020), landcover para-
meters and irrigation practices are not commonly represented in most hydrologic models 
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suited for climate impact assessment and would require further development. ParFlow.CLM 
has the irrigation scheme of CLM but further refinements are needed to represent crop 
parameters, irrigation types, and scheduling relevant to California agriculture. Other human 
manipulations such as dams, diversions, and managed flows furthermore affect the hydrology 
of many catchments in California yet are not represented broadly across California’s landscape, 
so separate models are used to represent them. These water management options should be 
incorporated in integrated hydrologic models like ParFlow.CLM to represent hydrologic 
processes of intensively managed watersheds in a fully integrated manner.  
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CHAPTER 6: 
Benefits to Ratepayers 

This project produced advances in dynamically informed statistical techniques to downscale 
relatively coarse-scale climate model simulations, which are of use to California’s electrical 
utilities and a broad set of other stakeholders. The hydrological modeling techniques are vital 
to translate the meteorological data into impacts over the land surface, including quantitative 
characterizations of floods, runoff, drought, and groundwater stocks that feed into the supply 
and demand of electricity, and thus, the well-being and maintenance of the state’s electrical 
infrastructure. The datasets describing California’s surface weather and hydrology require 
higher spatial (3 km x 3 km) and temporal (hourly) resolution as needed by California’s elec-
trical utilities and a broad set of other stakeholders. Projected climate data, available from a 
large set of global climate models, needs to be downscaled to fine spatial and temporal 
resolution to prepare for climate changes including high-impact extreme weather events and 
compound weather-and-hydrological events that potentially lead to extreme impacts on the 
electrical system. Such data will also be important in disentangling long-term trends resulting 
from global anthropogenic climate change from those resulting from natural variability, 
regional, or local effects. 

The techniques developed as part of this project will help advance the downscaling of pro-
jected climate data, available from a large set of global climate models, to find spatial and 
temporal resolutions that enable the state to prepare for extreme climate changes that could 
impact the electrical system. Learnings from the development of the hybrid techniques in this 
project are also being applied to another CEC-funded project, EPC-20-006: Development of 
Climate Projections for California and Identification of Priority Projections. That project will 
integrate the latest bias correction and downscaling approaches (dynamical and hybrid 
statistical-dynamical) to application of the recently produced GCMs from CMIP6, together with 
an engagement process involving IOUs and other key California stakeholders. As part of EPC-
20-006, some key observed datasets that were developed or explored in this project, such as 
precipitation, cloud albedo, and wind records, will provide important resources for validation, 
bias correction, and statistical model training. This linked set of activities will develop a robust, 
usable, set of climate projections for California.  

Conclusions from development of the hybrid techniques are already being applied to two other 
CEC projects, which will advance development of a robust and usable set of climate projec-
tions for California. The first, PIR-19-007: Development and Evaluation of a 2-km hourly 
historical climate dataset for California, will build on this project’s findings on dynamical 
modeling of coastal clouds and winds and will incorporate validation techniques and observed 
datasets employed here. Using a modern global atmospheric reanalysis dataset, PIR-19-007 
will produce a 2km x 2km hourly simulation of historical weather and climate over California 
and the surrounding region that can be used to describe past weather and climate events. The 
second project, EPC-20-006: Development of Climate Projections for California and 
Identification of Priority Projections, will integrate the latest bias correction and downscaling 
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approaches (dynamical and hybrid statistical-dynamical) applied to the recently produced 
GCMs from CMIP6 with an engagement process to develop a robust, usable, set of climate 
projections applicable for California.  
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GLOSSARY AND LIST OF ACRONYMS 
Term  Definition  
AET  Actual evapotranspiration  
AGL Above ground level 
BL  Boundary Layer  
CCN Cloud condensation nuclei 
CEC California Energy Commission 
CLC  Coastal Low Clouds  
CLM 3.0 Common Land Model 
CMA-ES  Covariance Matrix Adaptation - Evolution Strategy  
CMIP 5/6 Coupled Model Intercomparison Project, Phase 5/Phase 6 
CONUS Continental United States 
CPU The central processing unit of a computer 
CVODE A solver for stiff and non-stiff ordinary differential equation systems  
CWP Cloud water path 
Daymet   Daily gridded meteorological data at 1 km spatial resolution covering North 

America. Variables are: precipitation, Tmax, Tmin, downward surface 
shortwave radiation, water vapor pressure  

DJF December, January, and February 
DRI  Desert Research Institute  
ECMWF European Center for Medium Range Weather Forecasting  
ERA5 European Center for Medium Range Weather Forecasting Reanalysis, 

version 5  
ET Evapotranspiration  
Fourth 
Assessment 

California’s Fourth Climate Change Assessment 

GCM Global Climate Model 
GOES   Geostationary Operational Environmental Satellite  
Gridmet  Daily 4-km surface meteorological data covering the contiguous US from 

1979. The dataset includes the following variables: precipitation, Tmax, 
Tmin, downward shortwave radiation, and vapor pressure.  

GW Groundwater 
hPa Hectopascal pressure unit 1 hPa is equal to one millibar  
IOU Investor-owned Utilities 
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Term Definition 
JJA June, July, and August 
KBFL Symbol for the Meadows Field Airport in Bakersfield, California 
LOCA Localized Constructed Analogs 
LWP Liquid water path 
MERRA2 Modern-Era Retrospective analysis for Research and Applications, Version 2 
MJJAS May, June, July, August, and September 
mm Millimeter 
MSc Marine Stratocumulus clouds 
NARR North American Regional Reanalysis 
NASA National Aeronautics and Space Administration 
Nc The number of cloud droplets per unit volume of the atmosphere 
NCAR National Center for Atmospheric Research 
NLDAS North American Land Data Assimilation System 
NLDAS-2 
meteorology 

North American Land Data Assimilation System provides hourly metrological 
forcing and fluxes over central North America. 

NOAA/NCEP National Oceanic and Atmospheric Administration National Centers for 
Environmental Prediction 

ParFlow ParFlow is a parallel, integrated hydrology model that simulates spatially 
distributed surface and subsurface flow, as well as land surface processes 
including evapotranspiration and snow. 

ParFlow.CLM An integrated groundwater-land surface model that simulates surface water 
and groundwater flow processes at large scale. It is ParFlow coupled to 
CLM, the Community Land Model. 

ParFlow.WRF An integrated groundwater-land surface model coupled to the Weather and 
Research Forecasting model.  

PIHM Pennsylvania State Integrated Hydrologic Model 
PRISM Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

daily gridded dataset at 4 km resolution for precipitation, temperature, and 
dew point temperature.    

RAWS Remote Automatic Weather Stations 
Reanalysis In this project, a dynamical weather model rendition of historical weather 

that is produced over the global atmosphere using an array of historical 
weather observations. 

RCP Representative Concentration Pathway 
RMSE Root Mean Square Error 
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Term Definition 
rSHUD SHUD R Toolbox 
SDG&E San Diego Gas & Electric 
SGI Standardized groundwater index is an index for characterizing groundwater 

droughts using groundwater level observations.  
SHUD Simulator for Hydrologic Unstructured Domains 
SLP Sea level pressure 
SPI Standardized precipitation index is a precipitation-based index for 

characterizing meteorological droughts.   
SW Sacramento River watershed 
SWE Snow water equivalent 
TB terabyte 
TEMF Total Energy – Mass Flux 
TKE turbulent kinetic energy 
Tmin/ Tmax Minimum and maximum daily temperature 
TOA top of atmosphere 
TopoWx ‘TopoWx ('Topography Weather') dataset at 800-m resolution includes daily 

minimum and maximum topo climatic air temperature for the CONUS from 
1948-present.  

U,V Zonal and meridional components of the wind near the surface 
UCLA University of California, Los Angeles 
UCSD University of California, San Diego 
USGS United States Geological Survey 
UTC Universal Coordinated Time 
v0, v2, v4 Refer to versions of WRF-CA-CLC labeled and examined during this research 

(see Table 2 in report) 
VIC Variable Infiltration Capacity land surface/hydrological model. 
WRF Weather Research and Forecasting model, from the National Center for 

Atmospheric Research (NCAR) in Boulder, CO.   
WRF-CA–CLC WRF - California - Coastal Low Clouds: The standard WRF configuration that 

was used in the project to dynamically downscale coastal low cloud amount 
in the historical climate period. 

WRF-Chem WRF coupled with predictive models for atmospheric chemistry and aerosols 
(https://ruc.noaa.gov/wrf/wrf-chem/). Herein, only the code module 
“mixactivate” is used to predict given a prescribed aerosol cloud 
condensation nuclei concentration. 

https://ruc.noaa.gov/wrf/wrf-chem/
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APPENDIX A:  
WRF Aerosol Sensitivity Simulations 

Susceptibility of Coastal Low Clouds to Particulate Matter 
Pollution 
Atmospheric aerosols can modulate cloud reflectivity through aerosol indirect effects (Twomey 
et al., 1977; Albrecht et al., 1989). Aerosol indirect effects and other feedback caused by the 
interaction between clouds and aerosols are the largest source of uncertainties in the effort to 
estimate climate sensitivity to greenhouse gases (IPCC, 2013, e.g., Chapter 7, p. 573). 
WRF-CA-CLC assumes a fixed global background number of aerosols available to participate in 
cloud nucleation, but aerosol concentration in the real atmosphere exhibits great spatiotem-
poral variability. Concentrations are also expected to change with population and economic 
activity in future climates. Therefore, simulations are needed to estimate the sensitivity of CLC 
reflectivity to aerosol concentration.  

The change in cloud albedo (α_c) to the change in cloud droplet concentration (N_c) is known 
as susceptibility. Broadly, it is expected that MSc will be most susceptible when baseline liquid 
water path (LWP) is robust, free atmosphere humidity is high, drizzle rate is low, and baseline 
aerosol concentration is low. In general, doubling of N_c (75 to 150 cm-3 at constant LWP 
~ 150 g m-3) leads to a 0.06 increase in cloud albedo.  In this research experiments were 
performed to estimate susceptibility in WRF by enabling dynamic evolution of α_c for 
N_c=70 cm-3, 300 cm-3 (marine, polluted conditions). Observational data (Martin et al., 2017) 
for marine cloud albedo susceptibility in the northern California coastal zone were used to 
verify that the model preserves correct relationships.  

Particulate matter (atmospheric aerosols) can modify cloud properties and the radiative prop-
erties of clouds through the so-called aerosol-indirect effects. The most well-known of these is 
the aerosol indirect effect, first described by Twomey (1977), whereby increasing aerosol con-
centration causes clouds to become more reflective to sunlight (a.k.a. “brightening”). Other 
aerosol indirect effects exist, and feedbacks between aerosol concentration and cloud dyna-
mics can cause unexpected or hard to measure changes (e.g., Han et al., 1998). As a result, 
the net impact of aerosol concentration on CLC albedo is unknown. This project attempts to 
develop methods to estimate the impact of pollutant aerosols on CLC albedo, and thus the 
reduction of downwelling solar radiation in the California coastal zone as part of the larger 
hybrid downscaling effort (EPC-16-063).  

The dynamical downscaling model, WRF-CA-CLC, (Section 3.2) was used as the primary 
methodological tool to simulate both CLC and their brightening in response to increasing 
aerosol concentrations. Two simulations were run to represent clean and polluted particulate 
matter scenarios. The aerosol concentrations (150 cm-3/ 600 cm-3) representing each scenario 
were drawn from previously published observations at the California coast (Martin et al., 2017) 
and are, therefore, representative of the current climate and current particulate matter 
regulatory frame in California. Aerosol susceptibility, defined as the relative change in albedo 
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in response to an increase in aerosol concentration (see Methods section below) was used as 
the primary metric to estimate the response in cloud brightness to particulate matter. The 
results obtained, described below, indicate that polluted conditions increase warm season 
(MJJAS) CLC albedo 15 to 20 percent along the California coast. This magnitude of increase is 
similar to the relative interannual variability in albedo found for the period 2009 to 2018 of 
~25 percent. The change in simulated albedo diurnal cycle in response to polluted conditions 
is small relative to its amplitude. CLC are most susceptible to polluted conditions in the month 
of July. Thinner clouds (by water path below 700 hPa) are more susceptible to pollutant 
aerosols than are thick clouds (CWP700 > 0.1 mm), while the spatiotemporal variability in 
susceptibility is also greatest for thin clouds. It was also demonstrated that the modelling 
methods used herein to allow dynamically varying cloud effective radius in response to chan-
ging aerosol concentration produce more realistic relationships between cloud water amount 
and albedo, and that the default approach used before applying our methods produces clouds 
that are too bright, even for many polluted clouds. These results help inform future regional 
downscaling efforts whose aim is to investigate coastal low clouds and their impact on surface 
insolation.  

Methods 
Definitions 

Albedo Reflectivity of a cloud-containing atmospheric column as measured by the 
ratio of upwelling to downwelling solar radiative flux at the top of the 
atmosphere α =(F_TOA^↑)/ (F_TOA^↓ ) 
Typical albedo values for summer clear and cloudy sky conditions over the 
California coast are 0.15 and 0.6, respectively. 

Susceptibility Defined as the relative change in albedo following a systematic change in 
cloud properties (e.g., number of aerosols or cloud droplets) S=〖α -α〗
_0/α_0.  That is, a measure of the sensitivity to aerosol loading.  

Cloud Water 
Content 

The total mass of cloud water in an atmospheric column, including liquid and 
ice phases. M_c 
For stratocumulus clouds over the California coast, Mc is typically near 
0.4 grams per cubic meter of air.  

Cloud Number 
Concentration 

The number of cloud droplets (Nc) per unit volume of the atmosphere. N_c 
In near-coastal stratocumulus conditions, Nc, typically ranges between 
100 and 1000 cloud droplets per cubic centimeter of air. 
In general, the greater the number of cloud droplets, the more reflective 
cloud tops are, gaining a higher albedo for a constant Mc.  

Cloud Water 
Path (CWP) 

The integrated amount of cloud water mass between the earth’s surface and 
the top of the atmosphere. Also, the integrated amount between the earth’s 
surface and a pressure equal to 700 hPa. CWP700. Typically, CWP700 is 
between 0.01 and 0.3 mm when stratocumulus clouds are present. 
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Cloud Droplet 
Effective 
Radius 

The ratio of the third to second moments of the cloud droplet size distribu-
tion, describing the scattering efficiency of clouds in most atmospheric 
radiative transfer models, r_e. 
Typical values of re are between 5 and 30 micrometers. Smaller re tends to 
result in more efficient scattering, analogous to the impact of raising Nc on 
cloud albedo. 

Cloud Optical 
Depth 

The total extinction of radiation (here, solar) in an atmospheric layer con-
taining cloud. τ_c. 
Typical values of τ_c are between 1 and 50. 
Thicker optical depth yields lower penetration of radiation to the surface and 
higher albedo. 

Models 
• WRF-CA-CLC: the standard WRF configuration that was used to dynamically downscale

coastal low cloud amount in the historical climate period. See Section 3.2.
• WRF/CHEM: WRF coupled with predictive models for atmospheric chemistry and aero-

sols (https://ruc.noaa.gov/wrf/wrf-chem/). Herein, only the code module “mixactivate”
is used to predict N_c given a prescribed aerosol cloud condensation nuclei
concentration.

• Morrison 2-Moment Microphysics: Cloud microscale physics model running interactively
with WRF in WRF-CA-CLC configuration. The Morrison 2-moment microphysics model
(Morrison et al., 2009) allows N_c and M_c to evolve independently, thus enabling CLC
susceptibility experimentation.

• Goddard Radiative Transfer Model: Atmospheric radiative transfer model running
interactively with WRF in WRF-CA-CLC configuration. The Goddard radiative transfer
model (Matsui et al., 2018) uses M_c, r_e, and other atmospheric variables to predict
τ_c and α.

• Model Susceptibility Process (1 -> 2 -> 3 in Figure A-1): As configured by the devel-
opers, the standard Goddard radiative transfer model does not ingest a dynamically
varying r_e from the Morrison 2-moment microphysics model. Instead, a fixed value of
r_e=10 μm is used for all clouds. Thus, even when the standard WRF/CHEM is activated
to provide clean and polluted scenarios for Nc; the albedo of clouds, the subsequent
cloud top cooling, and resulting boundary layer turbulence depicted in Figure A-1 can-
not respond to a change from clean to polluted conditions. For this study, the Morrison
2-moment microphysics model and the Goddard radiative transfer model components of
WRF/CHEM were modified so that the dynamically varying value of r_e is used to com-
pute cloud optical depth and thus albedo, radiative heating and cooling at cloud top.
This version is called “modified WRF-CA-CLC”.

https://ruc.noaa.gov/wrf/wrf-chem/
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Figure A-1: Updates to the WRF-CA-CLC sub-models governing CLC simulation to 
allow albedo susceptibility 

𝑵𝑵𝒄𝒄, 𝑴𝑴𝒄𝒄, 𝝉𝝉𝒄𝒄, 𝜶𝜶 and steps 1, 2, 3 are defined in the text under “Definitions” and “Models,” respectively. Red 
slash indicates that WRF does not, by default, pass the cloud effective radius (𝒓𝒓𝒆𝒆) to the radiation model, 
making susceptibility simulations impossible. Updating WRF code to allow effective radius to pass to the 
radiation model was a technical achievement of this project.  

Sources: from analyses herein, see text for additional details. 

Historical Period 
The warm season, defined as May through September (MJJAS, was re-simulated using the 
modified WRF-CA-CLC code for 2011 and 2015. Years 2011 and 2015 were chosen for suscep-
tibility simulations because they represented very cloudy and clear conditions for the warm 
season in the primary WRF-CA-CLC dataset (e.g., Figure 12) and as confirmed by GOES and 
airport cloud observations. Model domain, initial and boundary condition data followed the 
2011 and 2015 historical period simulations described in the primary EPC-16-063 report. Re-
simulating unusually cloudy and unusually clear summer cases gave additional bounding on 
the estimated CLC susceptibility because, as will be shown, the susceptibility is related to the 
cloud water amount. 

Defining Clean and Polluted Conditions 
The activated cloud droplet concentration (N_c) for Clean and Polluted scenarios were drawn 
from Martin et al. (2017). Therein, the authors measured aerosol number concentration and 
the concentration of cloud condensation nuclei (CCN) at Bodega Bay, California during January 
through March 2015. CCN, as the authors measured it, is compatible with the definition of 
N_cin WRF/CHEM as used herein. During clear weather at Bodega Bay, wind is primarily 
onshore, bringing a clean marine airmass with low aerosol number concentration to the 
measurement site. However, episodes of offshore wind are created by a mesoscale weather 
phenomenon known as gap wind. During gap wind events, the authors measured much higher 
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aerosol concentrations and were able to chemically associate the particulate matter with 
secondary aging processes that occur over the California Central Valley, the airmass source 
region during gap wind. Therefore, the onshore period mean CCN concentration, 150 cm-3, 
and gap wind mean CCN concentration, 600 cm-3, were used to represent California coastal 
clean and polluted conditions for this study. 

Cloud Screening 
Albedo susceptibility is used as the primary metric in this study, but the standard method for 
calculating albedo from both WRF-CA-CLC and satellite observations cannot discriminate 
whether the reflective surface is a low or high cloud. If high clouds overtop CLC in the model 
or observations, spurious values of albedo and susceptibility may occur. Cloud screening was 
performed to remove model grid points containing high clouds from the WRF-CA-CLC output. 
The differential high water content, defined as CWP - CWP700 was used to detect the pre-
sence of high clouds. If the ratio CWP - CWP700 / CWP700 was greater than 0.01, the grid 
point was excluded from analysis.  

Results 
Relationship of Susceptibility to Cloud Water Amount 
Figure 19 shows the relationship between CWP700 and albedo for WRF-CA-CLC warm season 
CLC in the California coastal zone for both clean and polluted simulations. The California 
coastal zone was defined as the set of model grid points nearest the land/sea boundary while 
retaining a land-surface type. This analysis serves as a validation of the model procedure and 
experimental method used herein (see “model susceptibility process” discussed above). 
Overlaid on Figure 19a are lines from the theoretical model of Han et al., (1998), whose 
authors explored the global relationship between liquid water path and albedo for liquid 
clouds. The approximate boundaries albedo can take for a given value of liquid water path 
(herein equivalent to CWP700) follow the line labelled “max” and the line for re = 35 μm. 
Figure 19a shows that WRF-CA-CLC clouds follow these bounds well. Figure 19a further shows 
that the effect of exchanging clean aerosol (blue) for polluted aerosol (red) conditions is to 
restrict the majority of clouds such that re does not exceed 20 μm. By contrast, clean condi-
tions allow the albedo curve for clouds with re = 35 μm to be accessed in the model. Finally, 
both clean and polluted simulations produce clouds with albedo indicative of re > 10 μm for a 
given CWP700. Recall from the model susceptibility process section, that the Goddard radiative 
transfer model assumes re = 10 μm. Figure 19a demonstrates that allowing dynamic variation 
of re within a dynamical downscaling model allows a more realistic range of albedo for a given 
cloud water amount, and allows less bright clouds to develop, even for polluted aerosol con-
ditions. Thus, projects attempting to dynamically downscale CLC should consider using a 
dynamically varying cloud effective radius, as used herein to produce realistic cloud albedos. 
Figure 19b shows the relationship between susceptibility and CWP700, essentially the frac-
tional difference between the two populations in Figure 19a. Thinner clouds experience a 
much higher range of susceptibility for a given value of CWP700 than for thicker clouds, as 
expected by varying re within the Han et al., 1998 theoretical curves. However, on average 



A-6

susceptibility is greater for thinner clouds than for thicker clouds, as will be seen in the results 
that follow. 

Mean Warm Season Susceptibility 
Figure 20 depicts the mean clean condition albedo and low cloud susceptibility for WRF-CA-
CLC warm season (MJJAS) simulations, including cloudy (2011) and less cloudy (2015) years. 
During 2011 (Figure 20a), albedo is elevated (α>0.3) over nearly the entire coast, with 
pockets of very high (α>0.5) albedo. By contrast, elevated and very high albedo are confined 
primarily to the central and southern coasts in 2015 (Figure 20c). Low cloud susceptibility is 
higher in 2015, with a value of 0.21 compared to 0.16 in 2011. Han et al., 1998 discuss the 
relationship between CWP, r_e and α (see their Figure 1). Changes in re impact α more as 
CWP decreases. Thus, if coastal clouds were thinner on average during 2015, as is suggested 
by Figure 20c, then an increase in aerosol concentration from clean to polluted conditions 
would be expected to brighten clouds more, as is shown in Figure 20b, d.  As seen in the main 
document, a susceptibility of 0.16 - 0.21 compares favorably to the relative interannual varia-
bility found in both WRF-CA-CLC and GOES (~0.25). Thus, the impact of polluted aerosol 
conditions on cloud brightening or reduction of solar insolation in the heavily populated 
California coastal zone may be approximately equivalent to the difference between a less 
cloudy warm season and a cloudier, warm season.   

Susceptibility by Month and by Day 
Figure 21 depicts the mean clean condition albedo and low cloud susceptibility by month for 
WRF-CA-CLC warm season simulations, including both 2011 and 2015. A clear seasonal 
pattern in coastal and offshore albedo is visible, wherein clouds (and elevated albedo) are 
widespread during May, confined to the south coast largely south of point Conception in June, 
begin marching northward along the coast in July, reach their northernmost coastal extent in 
August, and retreat southward along the coast again in September. The widespread elevated 
(α>0.3) albedo in May, including over the Central Valley and inland desert regions could be 
indicative of deep, precipitating clouds driven by synoptic weather systems as found by 
previous authors (e.g., Clemesha et al., 2016).  

Albedo susceptibility (Figure 22) follows the mean albedo seasonal cycle, as it is only calcu-
lated where CLC are present. However, the value of coastal mean susceptibility (where 
defined) shows no such marked seasonality. The exception is for May, where mean suscepti-
bility is relatively less at 0.15, compared to 0.19, 0.2, 0.18, and 0.18 for JJAS.  

As discussed, the susceptibility is larger for thinner clouds (by CWP), and the potential for 
deep precipitating clouds in May to contain much higher CWP may explain why the May 
susceptibility is lower than the late summer. Heat waves and clear skies are less common 
during May for most of the populated coastal zone, thus the impact of particulate matter in 
reducing insolation through cloud brightening may be greater later in the summer when low 
clouds are thinner and more susceptible.  

Figure 23 shows the mean albedo diurnal cycle (daylight hours: 14 UTC to 01 UTC) for the 
warm season 2011 WRF-CA-CLC clean and polluted simulations alongside the diurnal cycle 
from GOES observations of albedo in the California coastal zone (coastal zone points as in 
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Figures 20-22). Visually following the difference between the curves for clean and polluted 
simulations reveals that there is very little diurnal cycle in susceptibility, except that which may 
be caused by the variation in clean albedo (e.g., the denominator of the susceptibility 
equation). In other words, polluted clouds show no systematic increase in reflectivity based on 
time of day. Also seen in Figure 23, the amplitude of the WRF-CA-CLC warm season diurnal 
cycle is significantly less than the GOES diurnal cycle (12 percent compared to 18 percent), 
and the model simulations prescribe a rebound of cloudiness in the evening, while the 
observational data does not show a systematic rebound. It should also be noted that the 
higher albedo level at all times of day shown in Figure 23 is consistent with the interannual 
timeseries for 2011 from Figures 11 and 12. Not shown in Figure 23 is the mean albedo 
diurnal cycle derived from 2015 warm season simulations, which are very similar in shape and 
amplitude, but differ somewhat in albedo absolute value. In particular, WRF-CA-CLC mean 
warm season albedo was less than GOES in 2015 instead of more than as in 2011. 
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