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Methods and Prior Relevant Work 
All versions of the Localized Constructed Analogs (LOCA) statistical downscaling method use 
observationally-based training data in the bias correction and spatial downscaling processes. 
Since LOCA is designed to reproduce the statistics (e.g., seasonal variation, seasonal 
averages, etc.) of the training data in the final historical portion of the downscaled result, the 
training data plays a key role in the downscaling process and determines the climatology, 
annual cycle, and variability of the downscaled result. 
 
In California’s Fourth Climate Change Assessment (Pierce et al. 2018), LOCA version 1 was 
used to downscale global climate models (GCM) from CMIP51. The training data in that work 
were based on station observations interpolated to a regular grid using a form of nearest-
neighbor interpolation, then imposed on a specified monthly gridded climatology (Livneh et al., 
2015; Livneh hereafter). Temperature was additionally corrected for elevation using a fixed 
lapse rate. Although this methodology has been used for decades to construct gridded data 
sets, it has some drawbacks. In particular, interpolating scattered station observations across 
regions of varied topography, such as found in California, may yield errors since the local 
topography at an unobserved location does not figure into the final result except insofar as the 
assumed gridded climatology reflects topography. The gridded climatology itself is an estimate 
since station observations in many regions are not available at the fine spatial resolution used 
for downscaling. In sum, the final gridded result supplies estimates of meteorological variables 
at unobserved locations that are informed by the values at neighboring stations, the elevation, 
and the estimated climatology.  
 
LOCA version 2 (LOCA2 hereafter) is used in the current CMIP62-based effort for California’s 
Fifth Climate Change Assessment. Differences between LOCA version 1 and 2 are not 
described in this memo, which focuses exclusively on the training data. In California’s Fifth 
Climate Change Assessment we have used an alternative method to construct the training data: 
the Weather Research and Forecasting model (WRF; Skamarock et al. 2019) is used to 
interpolate between stations rather than using nearest neighbor interpolation (details are given 
below). The motivation for this approach is the hypothesis that WRF’s simulation of physical 
processes and topographical effects yields a better estimate of meteorological variables at 
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unobserved locations than does nearest neighbor interpolation. Our evaluation of this 
hypothesis is described below. 
 
Constructing the training data begins with the ERA53 reanalysis (Hersback et al. 2020), a state-
of-the-art global atmospheric reanalysis at ~30 km spatial resolution that incorporates a large 
volume of weather observations in its generation. The ERA5 reanalysis is then dynamically 
downscaled by WRF to the 3 km spatial resolution used by LOCA2.  
 
Even though ERA5 ingests large quantities of observations, both ERA5 and WRF, like all 
models, have biases that need to be corrected before the ERA5-WRF data can be used to train 
LOCA2. We therefore use station observations to bias correct the ERA5-WRF data. At each 
station and for each of the 12 months we calculate the difference between the station-observed 
value and the value from ERA5-WRF. We calculate these differences for all integer percentiles 
of the data from 1 to 99. Then for each combination of month and percentile we construct, over 
the California domain, a best-fit surface of the ERA5-WRF errors using the Generic Mapping 
Tools (GMT) “surface” function (Wessel et al. 2019). This surface yields an estimate of the 
ERA5-WRF bias at all locations, for each month-of-year and percentile. The bias is then 
removed arithmetically for temperature (and other non-positive definite variables) or 
multiplicatively for precipitation (and other positive definite variables). This methodology is 
similar to that used in Brown et al. 2016, although WRF-based interpolation between stations is 
not used in that work. We refer to the final bias corrected training data as ERA5-WRF-BC.  
 
Downward surface solar radiation is the exception to this process. Our evaluations of WRF 
showed that coastal clouds are poorly represented in the ERA5-WRF simulations. Since these 
clouds have a strong bearing on rooftop solar photovoltaic electricity generation, we deemed the 
WRF data unsuitable for use as this variable’s training data. We instead used GOES satellite 
observations as the basis for the surface downward solar radiation training data (Clemesha et 
al. 2016).   
 
QA/QC and Uncertainty 
We evaluated the ability of our methodology to estimate precipitation in unobserved locations 
using a cross-validation method. Twenty stations that have many decades of observations and 
cover a range of climate conditions across California were selected for analysis (Figure 1). For 
each station, we first constructed an entirely new gridded station data set using the Livneh 
nearest-neighbor methodology but leaving out the station in question. We then compared the 
estimated time series at the omitted station’s location to the actual time series from the station. 
We then repeated the process for the 20 cross-validation stations using the ERA5-WRF data, 
performing the complete surface-fitting bias correction process but again omitting the station in 
question. This process could only be done for precipitation since that was the variable we had 
the facilities to process due to the work in Pierce et al. 2021. Nonetheless, this is a reasonable 
evaluation of the methodology since precipitation is heavily influenced by topography, covers a 
wide dynamic range across the landscape, and can be locally patchy.  
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Results from the cross-validated analysis show that the Livneh gridded nearest-neighbor 
methodology is superior to ERA5-WRF-BC for capturing the specific day-by-day evolution of 
historically observed precipitation, presumably because neighboring stations are likely to 
experience precipitation at the same time as the omitted station. By contrast ERA5-WRF-BC 
produces precipitation via simulated processes that are close to, but not perfectly synchronized 
with observed precipitation on any given day. Therefore, if one wishes to know whether 
precipitation fell on some particular day (for example, for forensic meteorology applications), the 
nearest-neighbor regridding is preferable. On the other hand, over longer periods, errors in 
ERA5-WRF-BC tend to cancel out – Figure 2 shows that the RMS error in yearly mean 
precipitation in cross-validated ERA5-WRF-BC is 5.9% across the 20 stations, about half the 
error seen in the cross-validated Livneh style nearest-neighbor interpolation (10.2%). Similar 
results are seen in winter (DJF), spring (MAM), and autumn (SON). Errors in summer are large 
in both methods (~20%) but the dry summer conditions in California make the summer 
evaluation of little interest compared to the performance in seasons when precipitation occurs. 
ERA5-WRF-BC likewise outperforms the nearest-neighbor method for extreme precipitation 
values (Figure 3), specifically for daily precipitation return periods between 2 and 20 years. By 
50 years the difference in RMSE between the two methods falls to only about 1 percentage 
point.  
 
Guidance or Caveats on Best Practices for Use of Data Products 
The purpose of the LOCA2 training data is twofold: 1) to provide unbiased estimates of 
meteorological values across the year and at different quantiles for use in the LOCA2 bias 
correction process; 2) to provide spatial patterns of the meteorological variable with the correct 
spatial patterns, means, and variability for use in the LOCA2 spatial downscaling analog day 
matching process. According to our cross-validation analysis the ERA5-WRF-BC data succeeds 
well for these purposes, outperforming the nearest-neighbor gridding approach when estimating 
data in unobserved locations. On the other hand, if an investigator needs to know if precipitation 
occurred at a particular location on a specific day for historical event-based or forensic 
meteorology applications, then the nearest-neighbor approach provides better results.  
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Figure 1. Locations of the 20 stations used in the cross-validation analysis. Red numbers are 
the rank of the station in data completeness amongst all California stations. Station names are 
shown in blue.  
 



 
Figure 2. Mean daily precipitation by season at the 20 cross-validation stations from the original 
station observations (black dots), cross-validated Livneh results (blue L), and cross-validated 
WRF results (red W). In each panel stations are sorted from wettest to driest. The indicated 
RMSE values are calculated as percent errors across the 20 stations.  
 



 
Figure 3. Return values (mm/day) of daily precipitation from the 20 cross-validated stations for 
different return periods from 2 to 100 years. Values from the original station data are shown as 
black dots, cross-validated Livneh values as the blue L, and cross-validated WRF results as the 
red W. The indicated RMSE values are calculated as percent errors across the 20 stations.  




