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PREFACE 
The California Energy Commission’s (CEC) Energy Research and Development Division 
supports energy research and development programs to spur innovation in energy efficiency, 
renewable energy and advanced clean generation, energy-related environmental protection, 
energy transmission, and distribution and transportation.   

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 
Public Utilities Commission to fund public investments in research to create and advance new 
energy solutions, foster regional innovation, and bring ideas from the lab to the marketplace. 
The EPIC Program is funded by California utility customers under the auspices of the California 
Public Utilities Commission. The CEC and the state’s three largest investor-owned utilities—
Pacific Gas and Electric Company, San Diego Gas and Electric Company, and Southern 
California Edison Company—were selected to administer the EPIC funds and advance novel 
technologies, tools, and strategies that provide benefits to their electric ratepayers.  

The CEC is committed to ensuring public participation in its research and development 
programs that promote greater reliability, lower costs, and increase safety for the California 
electric ratepayer and include: 

• Providing societal benefits. 

• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost. 

• Supporting California’s loading order to meet energy needs first with energy efficiency 
and demand response, next with renewable energy (distributed generation and utility 
scale), and finally with clean, conventional electricity supply. 

• Supporting low-emission vehicles and transportation. 

• Providing economic development. 

• Using ratepayer funds efficiently. 

For more information about the Energy Research and Development Division, please visit the 
CEC’s research website (www.energy.ca.gov/research/) or contact the Energy Research and 
Development Division at ERDD@energy.ca.gov. 

  

http://www.energy.ca.gov/research/
http://www.energy.ca.gov/research/
mailto:ERDD@energy.ca.gov


iii 

ABSTRACT 
The goal of this project was to improve energy efficiency and enable demand response for 
data centers in smart power distribution systems. This project achieved two objectives: 1) it 
developed pre-commercial server, data center, and data center cluster energy efficiency 
technologies and strategies, and 2) it provided easily accessible software solutions to facilitate 
the adoption of energy efficient data center technologies.  

Technological and scientific advancements were achieved at three levels. At the server level, 
an innovative low power management system was developed that coordinates deep sleep 
states and dynamic voltage-frequency scaling and selects the optimal power state 
configuration for a given workload and traffic pattern. At the rack/data center level, a new 
workload scheduling algorithm was developed to improve the data center level energy 
efficiency. This new algorithm collects system statistics of worker servers to predict power 
levels and trigger load migration to require all servers to run at peak energy efficiency. At the 
data center level, the project team developed a solution to enable data centers to provide 
ancillary services to the electricity market by adjusting their energy consumption.  

If all data centers in California adopt the three technologies developed in this project, it could 
result in estimated annual electricity savings of 1,342 gigawatt hours, a corresponding cost 
reduction of $163 million, and a greenhouse gas emission reduction of 596,114 metric tons. 
The lessons learned from this project are being incorporated into IEEE Standards P1924.1. 

Keywords: data center, energy efficiency, demand response, ancillary services 

Please use the following citation for this report: 

Yu, Nanpeng, Daniel Wong, and Hyeran Jeon. 2020. Enabling Energy Efficient Data Center in 
Smart Power Distribution Systems . California Energy Commission. 
Publication Number: CEC-500-2024-035.  
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Executive Summary 

Background 
Data centers currently consume approximately 5,580 gigawatt hours (GWh) per year of 
electricity in California (2 percent of California’s 2019 electricity demand). By 2030, data 
centers are expected to be responsible for 7 percent of global carbon emissions (Andrae & 
Edler, 2015). Without additional energy efficiency technologies, electricity consumption from 
data centers is expected to double in the next 10 years. 

Technologies developed in this project improve energy efficiency at the server, rack, data 
center, and data center cluster level of data centers. In addition, they provide demand 
response potential, helping to mitigate the intermittency of renewable energy resources while 
giving data center operators additional revenue streams. 

Project Purpose 
When someone posts a tweet, shares a post on Facebook, sends an email, or searches a 
business on Google, requests are routed by data centers, consuming electricity. As the U.S. 
and California economies continue to digitalize, electricity customers need to be concerned 
about energy efficiency at data centers, which are the engines of the digital life and economy. 

The intended audiences of this project’s research and development products are data center 
owners and operators. On-site data centers would gain the highest percentage of energy 
efficiency improvement. A pre-commercial server and a data center were developed to 
demonstrate improved energy efficiency and enable demand response. The project has shown 
that energy efficiency can be improved: 

• at the server level, by coordinating deep sleep states and optimizing the power state 
according to a given workload and traffic pattern by dynamic voltage-frequency scaling. 

• at the rack/data center level, by migrating the computational load between servers and 
between racks to operate servers at peak efficiency and to balance a three-phase load. 

• at the system level, by migrating the computational load between data centers 
according to conditions of the electric distribution network. 

In addition, this project quantified the capabilities of data centers to participate in demand 
response. 

Project Approach 
This project is the first study that applies deep neural networks (DNN) for current/future 
power prediction for data center servers. With not many publications on the topic, the team 
used studies from other fields (such as DNN-based object detection, stock-price prediction, 
and so on) and similar approaches to develop a unique design that fits well with data center 
study. Under the guidance of principal investigator, the team of students learned how to use 
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tools like DNN frameworks, Linux system monitoring commands, and a Docker container with 
a swarm feature to do research necessary to reach project objectives. 

Processor low power modes available in hardware may not be accessible and usable by users 
until the operating system includes software support to expose the hardware features to the 
software. Sometimes it takes years before processor manufacturers implement software 
support in the operating system. To account for this, the team designed server-level low 
power management policies based on various assumptions of processor feature availability. 

To minimize costs, the project team designed a system with open-source software tools and 
packages that were compatible with existing hardware. A set of performance metrics, including 
throughput and latency, was used to compare results against the baseline performance and to 
ensure the server met or exceeded the standards. Power conception was monitored and 
compared to the performance metrics to make sure the project achieved greater efficiency. 

Project Results 
The project team achieved all the objectives and goals laid out in the project proposal, provi-
ding electrical cost savings of 71 percent at the server level, 25 percent at rack/datacenter 
level, and about 8 percent at the datacenter cluster level. 

• Server level: The project team developed POWERMORPH, the server level low power 
management system, which enables data centers to participate in regulation service by 
dynamically adjusting the server power consumption. Based on available literature, 
POWERMORPH is the first proof-of-concept demonstration of frequency regulation 
service in realistic data center environments. 

• Rack/datacenter level: The project team evaluated data center load distribution 
strategies. They observed that the peak-energy-efficiency-aware load balancing 
algorithm that forces all servers to stay at their peak energy efficiency levels saves 
more energy than the conventional packing or uniform distribution algorithm. This is 
especially true for high-energy-proportional1 servers. To proactively balance loads and 
have more servers stay at their peak energy efficiency level, the team developed a 
DNN-accelerated server power model. The DNN-accelerated power model provides 
superior prediction accuracy (about 96 percent) by considering tens of system 
parameters, compared to conventional models that mostly rely on CPU use. The load 
balancing algorithm that incorporates the DNN-accelerated power model trigger for load 
migration demonstrated 25 percent electricity cost savings for a data center. 

• Data center cluster level: The operational flexibility of the data centers can be 
leveraged to provide valuable frequency regulation services in the smart grid. A 
comprehensive frequency regulation service provision framework was developed in this 
project. A risk constrained hour-ahead bidding strategy and a real-time frequency 
regulation signal following algorithm were developed. The introduction of a dummy load 
and the realistic server power consumption model allows data centers to follow real-

 
1  In an energy-proportional server, the power consumption of the server is proportional to its load. 
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world frequency regulation signals with over 95 percent accuracy. A numerical study 
with Wikipedia's access trace shows that, with reliable energy and frequency regulation 
service price forecast, data centers can reduce their electricity bill by about 8 percent 
without violating service level agreements. 

In this project, the team applied and evaluated the management algorithms and prototype 
implementation in a small-scale data center. Follow-up research should include: 

1. Evaluating the design for large-scale data centers that have highly diverse computing 
elements with different energy proportionality and computing capabilities. 

2. Updating the DNN model to accommodate up-to-date server statistics. 

3. Investing the impact of emerging data center hardware trends such as wider adoption of 
computing accelerators (GPUs, FPGAs, etc.) and ARM processors. 

4. Evaluating the impact of a wider-range of data center workloads, including emerging 
microservice workloads and machine learning (ML) or artificial intelligence (AI) workloads. 

Technology/Knowledge Transfer/Market Adoption 
The project released an open-source software package to the data center industry. 
Commercial entities such as data center solution providers and startup companies can 
leverage the freely available software to build commercial products for large-scale adoption. 
The team expects higher attention from the community after it finishes presenting the project 
results at conferences and in published papers. This project highlights the need to improve 
energy efficiency for data centers and provide open-source solutions to the data center 
industry to improve energy efficiency. 

The team published five academic papers in technical journals and presented at two industry 
and academic conferences. In addition, team members drafted the standard with the Institute 
of Electrical and Electronics Engineers (IEEE) outlining recommended practices for this 
technology. 

The project team presented results to several data center industry managers and operators. 
They plan to adopt the results of this project to improve their data centers' energy efficiency. 
The near- term target markets for the technology are the on-site data centers in California. 
The mid-term target market expands to all types of data centers in California. The long-term 
target market includes all data centers in the U.S. The industry advisors provided useful 
feedback about making the products easier to use and adopt. It is challenging to track facilities 
that actually adopted the research results, but citations of the team’s publications show 
adoption and extension of the research outcomes to some extent. The team’s publications 
have been cited by researchers of the National Renewable Energy Laboratory, Pacific 
Northwest National Laboratory, the University of Colorado, Boulder, Google, and Stanford 
University. 
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Benefits to California 
The proposed technology improvements in this project are estimated to reduce data center 
energy use by 48 percent annually. If all data centers in California adopted the proposed 
technology, an estimated annual electricity cost savings of $163 million could be realized. 

The energy efficiency technologies developed in this project will reduce the data center energy 
consumption at the server, rack, and data center system levels by 7.8 percent, 25 percent, 
and 25 percent, respectively. If all data centers in California adopted the technology developed 
in this project, an estimated annual energy saving of 1,342 GWh, and a corresponding reduc-
tion of 596,114 metric tons of greenhouse gas emissions will be realized. Servers consume 
roughly 50 percent of data center energy or 2,790 GWh. Assuming a commercial electricity 
price of $0.20 per kilowatt hour (kWh), the electricity cost of the data center servers is $558 
million. Therefore, an estimated energy savings of $163 million is anticipated, with an 
estimated total avoided electricity production of 1,342 GWh. 



 
 

5 
 

CHAPTER 1:  
Introduction 

Data centers currently consume approximately 5,580 GWh per year of electricity in California 
(2% of California’s 2019 electricity demand). By 2030, data centers are expected to be respon-
sible for 7 percent of global carbon emissions (Andrae & Edler, 2015). Without additional 
energy efficiency technology, electricity consumption from data centers is expected to double 
in the next 10 years. 

To contribute and meet California's goal of reducing greenhouse gas (GHG) emissions, data 
centers must employ more energy efficient techniques. However, a major barrier to achieving 
energy efficient data centers involves server underuse and poor low power management 
policies across different levels in the datacenter. By evaluating techniques to improve data 
center energy efficiency at the server level, rack/cluster level, and data center level, the 
technologies developed during this project can reduce the energy consumption of and 
electricity cost to ratepayers. In addition, through the participation of ancillary services, the 
project technologies can help improve the reliability of power grids. 

To combat energy inefficiencies resulting from underuse and poor idle power consumption, a 
common approach is to consolidate workloads to a subset of active servers in the cluster and 
turn off idle servers. Active servers run at a higher utilization, which is more energy efficient. 
Meanwhile idle servers, which still consume up to 60 percent of peak power, are shut down, 
saving significant wasteful idle power. Many workloads in the data centers cannot tolerate 
servers being turned off due to performance requirements. Therefore, servers must rely on 
processor sleep states and dynamic voltage frequency scaling (DVFS). However, sleep states 
and DVFS face many limitations. Due to silicon technology scaling, DVFS alone has limited 
effectiveness because of limitations to how low voltage can scale. Sleep states are not used 
effectively due to unpredictable short idle periods, leading to energy inefficient shallow sleep 
states. To solve this problem, the project team developed a server level coordination 
technology to achieve longer idle periods for effective deep sleep states and extend the 
amount of time DVFS can be in a low frequency state. 

Additionally, workload consolidation tends to pack servers to their peak utilization, based on 
the conventional wisdom that peak energy efficiency occurs at maximum server utilization. 
However, as data center server energy efficiency improves, this trend no longer holds. Modern 
servers exhibit peak energy efficiency between 50 percent to 60 percent utilization. Thus, it is 
more energy efficient to balance loads across servers than consolidating workloads to fewer 
servers. During this project, the team developed and tested a new deep-learning-based load 
management and load migration algorithm for energy efficiency. Most of the previous studies 
used heuristic approaches that incorporated hardware resource use and inter-application 
dependencies to determine the target server to migrate applications. Instead of using 
heuristics, the team used deep learning to determine the optimal migration that guarantees 
peak energy efficiency for all servers. 
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Previous research on data center energy efficiency focused on reducing the power consump-
tion of a single data center. To improve data center energy efficiency, hardware and software 
layer improvements were proposed. On the hardware layer, device level chip multiprocessing, 
core parking, memory bank parking, and new cooling technologies were developed. On the 
software layer, virtualization, server consolidation, and application placement techniques were 
developed. In many of these prior data-center-level techniques, data centers passively react to 
varying electricity prices and load reduction instructions from the electric utility companies. 
During this project, the team developed a proactive data center demand participation scheme. 
This scheme created price-sensitive demand bids and ancillary service bids based on customer 
request forecasts, quality of service, electric load forecast, and price forecast. This approach 
makes it possible to integrate data centers into the smart distribution systems seamlessly and 
to fully integrate them into the resource dispatch and price formation processes. 

The goal of this project was to improve energy efficiency and enable demand response for 
data centers in smart power distribution systems. The objectives of the project were to 
1) develop pre-commercial server, data center, and data center cluster energy efficiency 
technologies and strategies and 2) facilitate the adoption of data center energy efficiency 
technology by providing easily accessed software solutions. To achieve the energy efficiency 
and demand response goals, the project advanced three areas/levels. 

• At the server level, the team improved energy efficiency through coordinated deep 
sleep states and DVFS, which selects the optimal power state configuration for a given 
workload and traffic pattern. 

• At the rack/data center level, the team migrated computational load among servers to 
operate servers at peak efficiency points and to migrate workload across racks to 
balance the electrical loads across three phases in the electric power distribution 
systems. 

• At the system level, the team improved the electricity cost efficiency of data center 
clusters through participation in demand response and frequency regulation ancillary 
service. 
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The overall project framework is depicted in Figure 1. 

Figure 1: Project Framework 

 
Source: UC Riverside 
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CHAPTER 2:  
Project Approach 

Improve Server Level Energy Efficiency 
Server low power management is hindered by three main issues, illustrated in Figure 2. This 
illustrative example shows two requests, R0 and R1, along with the sleep state at which the 
processor is operating. Sleep states are commonly called C-states, with C0 indicating the 
processor is active, C3 being a shallow sleep state that consumes less power, and C6 being a 
deep sleep state that consumes near-zero power. Consider the case where R0 is processing 
and then completes the task, entering an idle period. 

First, idle periods are not handled effectively due to inefficiencies in selecting sleep states. For 
example, in the Linux operating system, the idle governor either estimates the idle period 
length and selects the best state for that idle period, or it enters the shallowest state and 
moves to a deeper state if the processor remains in a long enough sleep state. Figure 2 illus-
trates the latter policy, where the processor first enters C3, then after a while enters C6. If idle 
periods are short, as is common with short request service times, governors will consistently 
select shallow sleep states. It is possible for the Linux governor to mispredict the expected idle 
period length and select a shallower sleep state than is supported. These shallower sleep 
states lead to wasted power when a server initially enters an idle state. Such sleep state man-
agement behaviors are not unique to Linux; they are also present in other operating systems. 

Second, it is possible for the server to wake up, due to a request arrival, before it has achieved 
its target residency time, which is the amount of time a processor needs to spend in a certain 
sleep state before the energy saved exceeds the energy overhead of entering a sleep state. 
For example, in Figure 2, request R1 arrives before the target residency time. The server 
wakes from sleep too early and ends up consuming more energy than it saves. Currently, 
server operating systems are not aware of the energy efficiency of low power states and, 
therefore, wake up processors to prioritize performance over power savings. 

Third, sleep states are not coordinated with frequency states, so that, upon wakeup, the 
frequency governor typically selects the highest clock frequency and processes the request as 
fast as possible. This is wasteful, as the request does not have to be completed until a certain 
deadline. For example, in Figure 2, request R1’s deadline for completing processing (also 
known as the tail latency target) is 800 microseconds (µs). However, the tail service time to 
process the request is only 78 µs. This leads to a waste of the DVFS policy, where request R1’s 
processing time could have been slowed down to save power but was not. Furthermore, due 
to the limited range of frequency states, even if request R1 could be slowed down, it cannot 
be slowed down to the point where it completes just-in-time to meet the deadline and 
maximize the amount of time in a low frequency state. Uncoordinated sleep and DVFS can 
lead to significant inefficiencies. 
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Figure 2: Existing Dynamic Power Management 

 
Existing dynamic power management limitations include inefficient sleep state management, 
limited range of frequency states, and significant low-power state transition overhead. This 

illustrative figure highlights these inefficiencies when an idle period exists between processing two 
requests, R0 and R1. Sleep states are commonly known as C-states and are shown as C0 (active), 

C3 (shallow sleep), and C6 (deep sleep). 
Source: UC Riverside 

Overall Framework 
The overall framework for the server level low power management, called µDPM (micro dyna-
mic power management), is shown in Figure 3. μDPM aggressively deep sleeps to minimize 
idle periods, delays wakeup to meet C-state target residency time, and coordinates frequency 
scaling to complete the request just-in-time to meet the target tail latency constraint. This is 
carried out by coordinating the operating system's sleep state driver and frequency state 
driver, and the application's tail latency requirements. The key insight driving this solution is 
that deep sleep modes can be beneficial if it is tail latency aware. The details of the 
mechanism are explained in the following subsections. 

Figure 3: μDPM 

 
Careful coordination of aggressive deep sleep (eliminates idle power), request delaying (meets 

residency time), and DVFS (just-in-time target tail latency) can achieve energy savings in 
microsecond workloads. 

Source: UC Riverside 
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Technical Methods 
The technical methods of μDPM are illustrated in Figure 4. In Figure 4(a), the moment a core 
is idle (such as when all prior requests complete), μDPM immediately goes into the deepest 
sleep state (C6) to save idle power. μDPM needs to maintain (1) when to wake up, and 
(2) what frequency to run upon wakeup. These two parameters are referred as a 
configuration. Upon entering sleep, the configuration is reset with a null wake-up time 
(representing stay asleep indefinitely) and with the lowest frequency setting. 

Figure 4: µDPM Run-time Illustrative Example 

 
µDPM run-time illustrative example: (a) aggressively deep sleep when idle, and delay wakeup until 

the request can finish just-in-time at the lowest frequency setting; (b) arriving request R1 is a 
critical request and will miss the latency target; (c) increase frequency on wakeup to meet request 
R1’s latency target; due to the higher frequency, we can sleep longer, as request R1 will complete 

more quickly; (d) a normative case with a non-critical request arrival. 
Source: UC Riverside 

When request R1 arrives, the tail service time of R1 is predicted while running at the current 
frequency configuration, and a wake-up time is set such that R1 finishes just-in-time. Instead 
of waking up the core at the latest moment and processing at full speed to meet tail latency 
targets, μDPM wakes up the core earlier and processes the request at a slower frequency to 
achieve a better trade-off between latency and power savings. 

Figure 4(b) illustrates a scenario where a second request, R2, arrives during an idle period and 
is determined to violate quality of service (QoS) constraints given the current wake-up time 
and frequency configuration. We define a request that will violate QoS constraints as a critical 
request. Since we know that the previous request satisfies QoS constraints, we can detect a 
critical request by simply determining if the interarrival time between these two most recent 
requests is less than the predicted tail service time of the incoming request. 
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Whenever a critical request arrives, μDPM reconfigures the wake-up time and frequency con-
figuration (Figure 4[c]). μDPM increases the frequency until R2 meets QoS. The increase in 
frequency is symbolized by the higher, but narrower, gray box of requests R1 and R2. 
Frequency is only increased, and not decreased, to limit DVFS transition overhead. Since 
frequency increased, R1 will complete more quickly, enabling μDPM to sleep longer, increasing 
the idle period length and still satisfying QoS. 

Figure 4(d) shows a normative case where another arriving request, R2, is not critical. In this 
scenario, R2 is satisfied with the given wake-up time and frequency and will therefore simply 
queue. Also, if a critical request arrives during an active period, this simply triggers a 
frequency increase, as the wake-up time is void. 

μDPM needs to determine: (1) when to wake up after sleeping and (2) what frequency to run 
at. The key is to estimate the incoming request's service time. μDPM uses a statistically based 
performance model and criticality-aware scheduling to recalculate wake-up time and frequency 
at every critical request arrival. In addition, μDPM will consider transition overheads while 
determining the optimal wake-up time and runtime frequency. 

Estimating Request Tail Service Time: A statistical performance model is used to estimate 
the tail service time of processing and queued requests. At a high level, this model breaks 
down request processing into two probability distributions: cycles spent in computing, 
P[C = c], and time spent memory-bound, P[M = t]. These probability distributions can be 
sampled online through performance counters for P[C = c], and through cycles-per-instruction 
(CPI) stacks for P[M = t]. Because of the nondeterministic request demands, the service time 
of a request is often considered as a random variable. A single distribution for simplicity was 
used, trading off a small amount of power savings opportunity. 

When multiple requests are in the queue, it is not sufficient to just estimate request tail 
service time. The completion time of the requests upon wakeup needs to be estimated. 
Therefore, the estimated completion cycle of a request Ri is a random variable Si, with 
probability distribution P[Si = c]. The completion cycle distributions all draw from a single 
distribution P[S = c], where S is how many cycles it takes to process one request. S is 
essentially a combination of the compute cycle distribution, C, and memory time distribution, 
M; S = C + M f. A 95th percentile of the distributions is used to obtain the tail service request 
time. 

The cycle at which Ri completes, P[Si = c], can then be computed as the n-fold convolution (∗) 
of S , where n is the number of queued requests and processing requests. The model is simpli-
fied by not conditioning the currently processing request on elapsed cycles completed. For 
example, in Figure 4(d), the estimated completion cycle of R2 (the random variable S2) is the 
sum of the random variables S0, S1, and S, and it is estimated as the following convolution: 
P[S 2 = c] = P[S 0 = c] ∗ P[S 1 = c] ∗ P[S = c]. The completion cycle can be simply converted 
to completion time by dividing the core's frequency. 
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Estimating Request Tail Latency: To determine whether a request is critical or not, the 
latency of a given request is estimated. The estimated tail latency of the request, Li, is given 
as follows: 

 

where W is the time until the core is scheduled to wake up, Twake is wake-up transition time, 
Tdvfs is the DVFS transition time, Si is the estimated tail completion cycle to service request Ri 
as discussed prior, and f is the operating frequency. Based on this latency model, target tail 
latency, core frequency, and wake-up time are used to determine μDPM configurations. 

Determining Critical Requests: After estimating the latency of arriving requests, it is 
necessary to check whether or not the arriving request is critical to determine whether a 
configuration update is needed. By observing Figure 4 and equation (1), a request is critical if: 

 

where tR is the arrival time of a request R, and S is the completion cycle distribution for a 
single request (service only, no queueing). This is because the arrival time between the 
current and the previous requests is too short for processing one request. Intuitively, for a 
given wake-up/VFS configuration, when the processor wakes up, it can process a request 
every Si seconds and meet the target tail latency just-in-time. If requests arrive too closely 
together, if the previous request is scheduled to finish just-in-time to meet the target tail 
latency, the current request will experience longer latency than the previous one, exceeding 
the tail latency. This insight is used to simplify the calculation for new wake-up time and 
frequency configurations. 

Determining New Wake-Up Time and Frequency Configuration: A critical request 
occurs when the incoming request cannot meet QoS requirements and requires a two-step 
approach. The first step is to determine the new frequency. Conceptually, this can be 
illustrated as: What is the frequency required to squeeze R1 to fit between R0 and the red 
line? This can be achieved as: 

 
 

where TRi TargetCompletion is the target tail latency completion time of Ri, TR i-1 Completion is the 
completion time of Ri-1, S is the completion cycle distribution for a single request, and f' is the 
new frequency. Since all of these variables are known by the time a request is determined to 
be critical, the new frequency can be computed directly. To minimize DVFS transition 
overheads, frequency changes are limited to only increase and not decrease. The frequency 
would then reset to a lower level upon the next idle period. 
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The second step is to determine the wake-up time. If a critical request arrives during an active 
period, this step is not necessary. This can be achieved by essentially shifting all requests to 
the right, or as late as possible, while still satisfying latency constraints. This requires re-
estimation of completion cycles for all queued requests. To determine the new wake-up time, 
the new completion time for the first queued request, S0, is used in Equation (1). If the wake-
up time is determined to be shorter than the residency time, μDPM will wake up at the cost of 
some energy overhead. Project experiments measured the overhead of this computation to be 
2µs, which is trivial in comparison to the service time of requests. 

Improve Data Center Level Energy Efficiency 
With the emergence of high energy proportional servers and increasing workload complexity, 
data center level energy efficiency can be improved with a new workload scheduling algorithm 
that exploits the high energy proportionality of individual data servers, dynamically detects 
individual servers' power level, and balances workloads across servers, such that all servers 
are forced to stay in peak-energy efficiency level. 

Overall Framework 
The overall framework of the new workload scheduling algorithm for data center level energy 
efficiency is illustrated in Figure 5. The overall framework includes coordinating servers and 
worker servers, where coordinating servers collect various system statistics of worker servers 
to predict power levels of the servers and trigger load migration to force all servers to run 
under the peak-energy efficiency levels. The details of the mechanism are explained in the 
following subsections. 

Figure 5: Overall Framework of Workload Scheduling Algorithm 
for Data Center Level Energy Efficiency 

 
Source: UC Riverside 
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Technical Methods 

DNN-based Current Server Power Prediction 
Many previous studies proposed dynamic load control algorithms leveraging linear or polyno-
mial power prediction models that relied heavily on CPU utilization to find the migration 
triggering point, which may not be accurate for realistic data center environments, since 
present data center applications have diverse performance characteristics. Especially in the big 
data era, system memory and disk accesses contribute significantly towards the overall system 
power. Thus, the conventional CPU-utilization-based power models may not reflect this trend. 
Figure 6 shows the prediction accuracy of various power models with regard to memory 
intensity of applications in root mean square error. The models are from an energy model 
study in cloud simulation frameworks (Makaratzis et al., 2018). The models use the linear, the 
square, and the root square of CPU utilization in the following equation for power prediction. 
Pmin and Pmax are the minimum and the maximum server power, respectively, and Utilα is the 
weight value based on CPU utilization. The linear, square, and square root models set α value 
to 1, 2, and 1/2, respectively. 

Server Power = Pmin + Pmax - Pmin × UtilαCPU 

Figure 6 shows the prediction error rate of various models in root mean square error (RMSE) 
values. The RMSE is the standard deviation of the residuals and is widely used to measure 
prediction errors. As can be seen in Figure 6, across all the models, the error rate is exponen-
tially increasing as the memory intensity increases, where the averaged power prediction error 
for the high memory intensive applications is greater than 30, which is not negligible. Instead, 
the project team’s approach uses machine learning algorithms to predict individual server 
power levels accurately. Machine learning algorithms are widely used for various cognitive 
problems, such as self-navigation systems, speech and face recognition, etc. Machine learning 
algorithms are effective in extracting meanings and key features of big data inputs without 
human intervention or sophisticatedly designed algorithms. In this project, the project team 
leveraged machine learning algorithms to extract the relations between various system 
parameters (including memory/storage usages as well as CPU utilization) and the server power 
consumption by feeding the machine learning algorithm server power statistics history data. 
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Figure 6: Server Power Prediction Errors of Conventional 
Power Models With Application Memory Intensity 

 
Source: UC Riverside 

There are numerous algorithms in machine 
learning. The project team used a fully 
connected deep neural network (DNN) for 
current power prediction because DNN is 
effective for extracting common patterns from 
input data where individual inputs consist of 
relatively fewer parameters (such as tens of 
values in one set of input). Note that another 
famous machine learning algorithm, convolu-
tional neural network (CNN), is effective for 
object detection in image inputs where each 
image has hundreds of pixel values. For 
server power prediction, only tens of system 
statistics were used as a sample of input data, 
which is insufficient for CNN. It’s likely that 
the other widely used algorithms, such as 
recurrent neural network (RNN) and rein-
forcement learning (RL), are not applicable for 
the power prediction because these algor-
ithms are effective for time-series data (stock-price prediction) or interactive problems (e.g., 
games). Therefore, the project team used fully connected DNN. To train a DNN model, system 
parameters were collected, along with power consumption. Out of 28 parameters collected by 
running two Linux profiling commands, psutil and perf, not all parameters had a clear relation 
with power consumption. The project team identified the top 10 parameters that showed a 
strong relation with server level power consumption by measuring the correlation coefficient 
between individual parameters and power consumption. The selected parameters and their 
meanings are summarized in Table 1. The top 10 parameters are noted with a "Y" in the 

Table 1: System Statistics Considered for 
Power Prediction 

 
Table 1 includes selected 10 parameters that are 

used for DNN model development. 
 Source: UC Riverside 
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Selected column. In addition to CPU-related parameters such as CPU frequency, CPU Util, 
Processes, Instructions, and User Time, there are parameters that are related to system 
memory, cache, and interrupts, which are Interrupts, S/W Interrupts, Cache Miss Ratio, Virtual 
Mem Usage, and System Calls. In conventional power models, parameters about system 
memory, cache, and interrupts are not considered. These 10 parameters with power consump-
tion were collected every 5 seconds for 25,000 seconds while varying the combination of 
concurrently executing workloads to collect 5,000 training data. 

As there are no ground rules to design a DNN structure, the project team used heuristic 
search, which is the de facto standard of DNN design to date. The search space was set to two 
major hyperparameters, the number of neurons per layer and the number of layers. First, the 
team evaluated the accuracy impact of the number of layers while varying the number of 
hidden layers from one to seven and employing an identical neuron count per layer from 10 to 
1024 in each experiment. The error rate was lowest for five layers at 4.95 watts (W). Next, the 
team changed the number of neurons while using five layers. As there are a plethora of 
combinations of five-layer DNNs, the team referenced various well-known DNN structures and 
narrowed down the combinations. Of the tested combinations, the model that used an 
ascending but repeated number of neurons for two consecutive layers derived the best 
prediction accuracy (an average of 4.5 watts error boundary). Therefore, the DNN was 
modeled to have five hidden layers of 128, 128, 256, 256, and 512 neurons for each of the 
five layers, respectively. 

RNN-based Future Server Power Prediction 
DNN is sufficient to estimate the server power consumption. However, as the DNN is relying 
on the current system parameters and predicting the current power consumption when it is 
detected that the server is reaching the peak energy efficiency point, it is already too late to 
initiate migration due to the migration latency. Thus, the team also designed a future power 
prediction model by using RNN, which is a type of DNN that predicts time-series data. RNN 
extracts the trend and dependency between consecutive data in a series of inputs and predicts 
the next/following data. As discussed earlier, RNN is not effective to predict power consump-
tion data based on system parameter values. However, for future power prediction, RNN is 
effective if power consumption data are rearranged to time-series data. For example, if RNN is 
provided a series of past power consumption data (for example, past 30-minute power 
measurements where each power value is measured every one minute), RNN extracts the 
power consumption trend of the server and predicts the next likely power value (such as the 
power consumption of one minute later, which is minute 31). By exploiting this next data 
prediction feature of RNN, the project team designed an RNN to predict the future power 
consumption of servers. The same training data set used for DNN development was used for 
RNN development. The training data was collected while running workloads for a few hours 
with 5-second intervals, showing the time-series power and system statistics. 

As in the DNN design, the project team ran heuristics to find the optimal RNN structure for 
power prediction, and it found that the error rate was lowest out of the search when four 
layers with 128 neurons were used. Among various RNN designs, long short-term memory 
(LSTM) cells were used as individual neurons. With 20 percent dropout per layer, Adam as the 
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optimizer, and Tanh function as the activation function, the model was trained with 100 
epochs. The final accuracy result was 7.57 watts. To enable an RNN to correctly predict future 
power by extracting the trend from the previous time-series data input, the number of input 
data should be determined. The project team evaluated the prediction accuracy while varying 
the number of inputs from 30 to 60, which are widely used by RNN models. Both 30 and 60 
inputs derived lower prediction errors than 40 and 50 inputs. However, as 60 data points are 
120 seconds worth of data, feeding 60 data points would make the warming-up time 
unnecessarily long with only a 0.05 error reduction compared to 30 data points. Therefore, 30 
inputs per one future power value prediction was used. 

The RNN and the DNN are integrated as a hybrid model. DNN is first fed with system para-
meters, and it predicts the current power consumption. RNN is then fed with 30 DNN 
prediction results and it predicts one future power consumption. Figure 7 is a captured time 
frame, where both predicted and actual power are shown synchronously to the time. For the 
hybrid model, 30 past power values are fed as inputs, which is power trend values for 150 
seconds, as each data point is collected every five seconds. As can be seen, the hybrid model 
(blue) catches the trend of the actual power consumption (red) where the power peak is 
predicted ahead of time of the actual power peak. 

Figure 7: Actual vs. Predicted Power 

 
(X-axis unit: 5 seconds) 

Source: UC Riverside 

Improve Data Center Cluster Energy Efficiency 
The most effective way to improve data center level energy efficiency is to enable the data 
centers to provide ancillary services to the electricity market. Data centers can adjust their 
energy consumption and provide frequency regulation services in real time by implementing 
dynamic voltage and frequency scaling (DVFS) and introducing dummy computing loads. 
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Overall Framework 
The overall framework of the frequency regulation service provision by a data center is 
depicted in Figure 8. The overall framework involves interactions between the transmission 
system operator (TSO) and the data center (DC) in two electricity market processes: hour-
ahead (HA) market and real-time operations. The details of the frequency regulation service 
provision framework are described in the next three subsections. 

Figure 8: Overall Framework of Frequency Regulation Service 
Provision by Data Center 

 
Source: UC Riverside 

Technical Methods 

Data Center's Participation in Electricity Market 
To provide frequency regulation services, the data center is required to participate in two 
electricity market processes: the HA market and real-time operations. 

In the HA market, the DC first predicts the prices for energy and frequency regulation service 
and the workload of the DC for the next operating hour. The DC then determines the optimal 
bidding capacity for energy and frequency regulation services that maximize its expected net 
benefits subject to certain risk limits. After the HA market is cleared by the TSO, the DC 
receives the hour-ahead energy schedule, the award for frequency regulation service, and the 
cleared prices for energy and frequency regulation. 

In real-time operations, the DC receives the frequency regulation signals and automatic gener-
ation control (AGC) set points from the TSO every two seconds. The frequency regulation 
signal ranges from -1 to 1. The signals are negative (positive) when the system requests 
frequency regulation down (up) services. The AGC set points specify the amount of load the 
DC should consume. The AGC set points equal the summation of the HA market energy 
schedule plus the product of the frequency regulation signals and frequency regulation service 
awards. Upon receiving the AGC set points, the DC adjusts its energy consumption to follow 
the set points. It can accurately follow the AGC set points by dynamically routing arriving 
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requests to various servers, changing the operating frequency of CPUs, and inserting dummy 
loads at the server level. 

The physical and contractual constraints of the DC need to be taken into consideration when it 
participates in the electricity market. First, the bidding capacity for energy, Pbase, and 
frequency regulation service, Bcap, should be determined in such a way that the maximum 
and minimum power consumption limits, Pmax and Pmin, of the DC will not be violated. If the 
submitted bids are accepted, in real-time operations the AGC set points for the data center 
range from 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 to 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐. The DC needs to make sure that 
𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 ≤ 𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑇𝑇𝑇𝑇 and 𝑃𝑃𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝐵𝐵𝐵𝐵𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑐𝑐𝑐𝑐 ≥ 𝑃𝑃𝑃𝑃𝑐𝑐𝑐𝑐𝑇𝑇𝑇𝑇𝑐𝑐𝑐𝑐. Second, the DC 
needs to satisfy the service level agreement (SLA) and maintain the quality of service (QoS) as 
a cloud computing service provider. Hence, the control of request routing, CPU frequency, and 
dummy loads are limited by the SLA requirements. 

Finally, note that, in an electricity market such as the Pennsylvania-New Jersey-Maryland 
Interconnection (PJM), there are two types of frequency regulation services, RegA and RegD. 
RegD is a frequency regulation service with fast response. RegA is a frequency regulation 
service with slow response. The real-time regulation signal of RegD service is much more 
volatile than that of RegA service, and the price of RegD service is higher than that of RegA 
service. The DC can control its server energy usage in real time to follow the volatile RegD 
service signals. Hence, it is suitable for the DC to provide such premium frequency regulation 
services and receive higher compensation from the electricity market. Figure 9 shows an 
example of daily prices for frequency regulation services and energy in the PJM market. 

Figure 9: Prices for Frequency Regulation Services and Energy in the PJM Market 

 
The yellow electricity line indicates the locational marginal price of electricity. 

Source: UC Riverside 
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Transmission System Operator 
In the hour-ahead market process, the TSO first receives both energy and frequency regula-
tion service bids from generators and DCs. It then clears the hour-ahead market to determine 
the hour-ahead energy schedule and prices for energy and frequency regulation services. The 
objective is to minimize the total energy and frequency regulation service costs while satisfying 
the electric loads. The market-clearing results are sent to DCs and other market participants. 

In real-time operations, the TSO first measures the area control error and computes the 
frequency regulation signals of the system, aiming to reduce the area control error to zero in a 
distributed fashion. The individual generator and DC’s AGC set points are calculated based on 
the frequency regulation signal, hour-ahead energy schedule, and frequency regulation service 
awards. The updated AGC setpoints are sent to the generators and DCs every two seconds. 

Performance-based Compensation 
The final compensation for providing frequency regulation service depends on the frequency 
regulation service award amount and the real-time AGC set points signal following the 
performance. The signal following performance is quantified by the performance score in the 
PJM market. It consists of three components: accuracy, delay, and precision. 

The accuracy score is the correlation between the AGC set point signals and the DC’s 
response. It is calculated over a five-minute period with 10-second granularity. The calculation 
is performed repeatedly with 10-second delays propagated over five minutes, where the best 
score is used. The delay score is based on the time delay between the control signal and the 
point of the highest correlation. The delay score will be 100 percent if the best correlation is at 
0 or a 10-second delay. It decreases as the delay time increases until the five-minute mark. 
The precision score is calculated based on the instantaneous error between the control signal 
and the regulating unit's response. The final performance score is the average of the three 
components. 
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CHAPTER 3:  
Project Results 

Improvement in Server Level Energy Efficiency 
Evaluation Setup 
The project team constructed a software prototype that implements µDPM, the server low 
power management technique, in user-space. µDPM was evaluated with Memcached, a high-
performance key-value store application. Memcached was set up using the data caching 
benchmark from the Cloudsuite benchmark suite. Memcached had one of the shortest service 
times in the team’s simulation experiments and, hence, represented one of the most 
challenging workloads for server low power management. This workload has an average 
service time of 30 µs, tail service time of 33 µs, and target tail latency (performance target) of 
150 µs. 

Two multicore servers were used, one client and one request-processing server. The client 
server established multiple TCP (transmission control protocol) connections with the server, 
emulating multiple clients. The inter-request time distribution for each client was exponential 
and was scaled to see the impact of different traffic loads. The server had dual Intel Xeon E5-
2620 v4 processors running at 2.1 GHz (gigahertz), 128 GB (gigabytes) main memory, and 
1TB HDD (1 terabyte hard disk drive). Hyperthreading and Turbo Boost were disabled during 
the experiments. Memcached was run across 12 threads, with a fixed one-to-one thread-to-
core mapping to avoid run-to-run variance caused by the Linux thread scheduler. All scheduler 
threads were running on one core mapped to the second processor, mimicking a dedicated 
µDPM scheduler hardware. 

Performance of Server Low Power Management 
The main outcome of the pilot test was the demonstration that the server low power manage-
ment policy, µDPM, could achieve significant power savings under real-world data center 
conditions. This was demonstrated by running Memcached, a common data center workload, 
in a containerized Docker environment. Data center workloads are typically virtualized to 
simplify the deployment and manageability of workloads. The most light-weight (low software 
overhead) and widely used virtualization technologies used are referred to as containers. 

The main performance metric for this workload was the request response time (or latency). 
Specifically, the main performance factor was the 95th percentile tail latency, which is the time 
where 95 percent of requests completed beforehand; it is shown in Figure 10(a) as the black 
dashed line. The tail latency is normalized on the y-axis. The blue line shows traditional DVFS 
+ Sleep state policies (the specific algorithm implemented is called SleepScale), which are 
uncoordinated. Due to the uncoordinated nature of DVFS and sleep states, it is possible that 
these policies can miss the target tail latency, resulting in significant performance violation to 
the data center operators. 
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The project team subjected the Memcached workload to a real-world varying traffic pattern, as 
shown in Figure 10(b). The request per second of the trace was scaled such that the peak 
traffic load corresponded to the peak server load. The traffic pattern covered a wide range of 
use, from low utilization (20 percent) to high utilization (80 percent), with traffic spikes of up 
to 100 percent utilization. 

Figure 10: Tail Latency Under Varying Traffic Loan 

 
Source: UC Riverside 

The server low power management policy, µDPM, is shown in orange. Due to being aware of 
the target tail latency and being able to change the sleep and DVFS condition at every request 
arrival, µDPM is deadline-aware and can adjust on the fly to varying traffic loads. In addition, 
µDPM can coordinate both low power states in order to finish processing just-in-time, conser-
ving as much power as possible. µDPM can achieve tail latency that is always just below the 
target tail latency. 

In terms of energy savings, Figure 11 demonstrates the benefits of µDPM under varying loads, 
compared to other existing state-of-the-art server low power management algorithms. The 
Rubik algorithm represents a DVFS-only low power policy, Dynsleep represents a state-of-the-
art sleep-state-only low power policy, Sleepscale represents a state-of-the-art DVFS+Sleep 
state low power policy. Optimum represents that hypothetical best-case energy savings where 
the server does not consume any idle power and sleep transitions do not incur any additional 
overhead. Overall, the µDPM outperformed existing state-of-the-art server low power manage-
ment algorithms, consistently achieving ~2x (approximately two times) more energy savings. 
In the best-case scenario, we observed that µDPM achieved server energy savings of up to 
~25%. 
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Figure 11: Energy-saving Comparisons Among Different 
Power Management Schemes 

 
Source: UC Riverside 

Improvement in Data Center Level Energy Efficiency 
Simulation Setup 
The pilot test used a minimum of three servers that ran the Linux operation system, which is 
the most commonly used operating system in large-scale data centers. One of the servers ran 
the workload manager (marked as "GPU Server" in the figure), and the others ran the data 
center workloads. The workload manager server periodically collected various system stats of 
the worker servers, predicted power consumption, and triggered load migration if any server 
reached the peak efficiency threshold. The workload manager estimated the power consump-
tion of the worker servers by using DNN models. To accelerate the processing speed of deep 
learning solutions, the workload manager server was equipped with a GPU. One of the state-
of-the-art open-source deep learning frameworks such as TensorFlow was executed to run the 
DNN model on GPUs. The system stats used for the power estimation are collected by each of 
the worker servers by using Linux commands that are psutil and perf. 
Applications are typically "virtualized" to provide isolation from other applications and enable 
easy mechanisms to migrate and move applications from server to server. The project team 
chose to use light-weight containers, such as Docker, to provide virtualization. To manage the 
workload migration among servers, the team used an open-source container orchestration 
platform, such as Docker Swarm. The workload manager server initiated Docker Swarm for the 
worker servers, such that each of the workloads in the worker servers could run in a docker 
container. Once the deep learning model detected an overloaded server, the workload 
manager server commanded the workload migration in a unit of a Docker container. More 
specifically, a checksum image of the target workload was created in a compressed file, the 
image was copied to the migration target server, and a new Docker container resumed the 
workload with the copied checksum image. The basic migration was supported by the Docker 
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Swarm. For further performance improvement, various optimization techniques were applied 
that the project team was exploring, such as creating a checksum only for the data generated 
at run-time rather than creating one for both static and dynamic parts of the workload. All 
these virtualization and migration frameworks and optimization techniques are supported by 
open-source solutions and Linux systems. 

Performance of DNN-accelerated Load Scheduling Algorithm 
The project team integrated the DNN-RNN hybrid model with a migration script. The migration 
script checks RNN's future power prediction data and determines whether the power value is 
exceeding the peak energy efficiency point. The team evaluated the overall power efficiency 
while varying the migration triggering point from the top 70 to 85 percentile power consump-
tion and the migrating applications. Evaluations of other percentile levels were excluded 
because there were too frequent migrations when using a percentile below 70 and no migra-
tion when using a percentile above 85. Figure 12 shows the summary of the mean power 
consumption of two servers, which are migration source and migration target servers (named 
backend and frontend servers to distinguish) when using different migration triggering points 
and migrating applications. All experiments started running all three specified applications on 
the backend server and measured the power consumption while migrating one of the applica-
tions when the backend reached the specified migration triggering point. For the same choice 
of migrating application, the top 75 percentile power level derived the minimum overall power 
consumption for both backend and frontend servers, which means that 75 percentile power 
consumption was corresponding to the peak energy efficiency level. Therefore, the migration 
script was implemented to trigger the migration once the RNN predicted that future power 
reached the top 75 percent of the power consumption of the migration source server. To 
evaluate the effectiveness of the load migration algorithm, all possible combinations of 
workloads with the four workloads were formed, a total of 15 cases. Each experiment ran for 
one and one-half hours and monitored the power trend and checked to see whether the total 
aggregated power was decreasing after the migration. 

Figure 12: Mean Power on Two Servers With Respect to Migration Triggering Point 

 
Source: UC Riverside 
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Two results are shown as examples. Figure 13 shows individual server power consumption 
while the migration was triggered. While the Media streaming and Graph Analytics were 
running on the migration source server, between 40 to 50 timestamps, the RNN's power 
prediction indicated that the power value would be exceeding the migration threshold power 
level and triggered the migration of the Graph application. As can be seen in the figure, the 
migration source server power significantly dropped, and the target server power spiked 
slightly when the migration was started and then slowly saturated. 

Figure 13: Example Migration Result: Media and Graph 

 
Graph and Media ran together, and Graph is migrated at  

around 40~50 time points. 
Source: UC Riverside 

Figure 14 shows the total power of both servers to understand the data center level power 
efficiency. The red line is the trend line based on the blue total power consumption. The total 
power is decreasing towards the end of the experiments, which shows that the migration helps 
save power while servicing both workloads. 

Figure 14: Example of Migration Result: Red Line 

 
The red trend line shows that total power is decreasing with migration. 

Source: UC Riverside 

Figure 15 and Figure 16 show more aggressive results, where four workloads run on the 
source server and one of them, RNN-DNN, which is the most power-hungry application, is 
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migrated. As the sharp power reduction from the source server shows, the migration 
happened at around 75-85 time points. After 85, the target server runs the RNN-DNN, and the 
source server runs the remaining three applications (Graph, Media, and Web search). After the 
migration, as shown in Figure 15, both servers' power levels become well balanced. Figure 16 
shows that the data center level power is also decreasing toward the end of the migration, 
where 25 percent total power reduction is observed compared to the total power consumption 
before the migration. 

Figure 15: Example Migration Result: RNN-DNN, Graph, Media, Web Search 

 
RNN-DNN, Graph, Media, and Web Search ran together and RNN-DNN is migrated 

at around 75~85 time points. 
Source: UC Riverside 

Figure 16: Example Migration Result: Red Color Trend 

 
The red trend line shows that total power is decreasing with migration. 

Source: UC Riverside 
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Improvement in Data Center Cluster Energy Efficiency 
Simulation Setup 
It was assumed that the data center in the numerical study had 100,000 servers, which were 
then assumed to have the same power curves as shown in Figure 17, with power consumption 
ranging from 22W to 85W. The maximum capacity of each server was 1,230 requests per 
second. The SLA specified that 90 percent of the requests be processed within 115 ms 
(milliseconds). The corresponding limits on the utilization rate were 0:8 at 2:1 GHz and 0:77 at 
2:0 GHz. To simulate the data center's workload, Wikipedia's access trace was adopted from 
the online repository [24]. The historical prices for frequency regulation and energy from the 
PJM market were used for electricity market simulation. 

Figure 17: Fitted Power Consumption Curves With Default Sleep Policy 

 
Source: UC Riverside 

Performance of Frequency Regulation Service Provision by Data Center 
The performance of the frequency regulation service provision by the data center was evalu-
ated from three perspectives: frequency regulation signal following performance, electricity 
cost, and request response time. The price prediction results of the 12 last weeks for each 
month of year 2017 were used in the simulation. During the performance evaluation, it was 
assumed that the data center would provide frequency regulation service to the electricity 
market whenever the frequency regulation service price was higher than the energy price. In 
other words, risk constraint was not considered. The risk constraint indicated the level of 
financial uncertainty in terms of the electricity bill associated with the data center operation. In 
the real-time operation simulations, the data center was expected to follow the historical 
frequency regulation signals from the PJM market. The requests served by the data are 
derived from the scaled request arrival rate of English, Spanish and Polish pages in the last 
week of the Wikipedia trace, as shown in Figure 18, which was repeatedly used. The use rate 
of each server was determined by the bi-linear power model. The actual power consumption 
of the data center was estimated with empirical measurement data with interpolation. 
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Figure 18: Hourly-averaged Request Arrival Rate After Scaling 

 
Source: UC Riverside 

First, the frequency regulation signal following the performance of the proposed data center 
power consumption control algorithm was quantified by three metrics: accuracy, delay, and 
precision. The frequency regulation signal and the actual power consumption trajectory of the 
data center for an hour are depicted in Figure 19, which shows that the proposed data center 
power consumption control algorithm allows the data center to follow the frequency regulation 
signals closely. The accuracy, delay, and precision scores for the 12 weeks were calculated 
and shown in Table 2. The accuracy, delay, and precision scores of the data center are very 
high for the three types of page visits traced. The small frequency regulation signal tracking 
errors mainly come from two sources: the requests prediction error and the approximation 
error of the piece-wise bi-linear server power model. 

Table 2: Frequency Regulation Signal Following Performance Scores 

Performance Score English Page Spanish Page Polish Page 
Accuracy 99.76% 99.69% 99.61% 
Delay 1 1 1 
Precision 95.36% 95.83% 95.62% 

Source: UC Riverside 
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Figure 19: Frequency Regulation Signal Following One Hour for Three Pages 

 
Source: UC Riverside 

Second, the reduction in electricity cost by participating in the frequency regulation market for 
the data center was calculated. If the data center did not provide frequency regulation service 
to the power system, it was operated to minimize its power consumption. The electricity costs 
of the data center under both scenarios are reported in Table 3. As shown, no matter which 
type of page requests were being served, the electricity cost was always lower when the data 
center provided frequency regulation services to the power system. For a data center with 
100,000 servers, the proposed data center control algorithm resulted in, on average, a 
$19,100 (7.8 percent) electricity costs reduction for the 12 weeks. 

Table 3: Electricity Costs of the Data Center Under Two Operating Scenarios 

Electricity Costs English Page Spanish Page Polish Page 
Costs with Frequency Regulation ($) 266.60K 213.13K 194.51K 
Costs with Minimum Power ($) 282.73K 234.48K 214.35K 

Source: UC Riverside 

Third, the request response time of the data center when providing frequency regulation 
services was calculated based on the proposed request routing algorithm. The distribution of 
request response time during the hours when the data center provided frequency regulation is 
shown in Figure 20. Compared to the uniform request routing strategy, when the data center 
followed the frequency regulation signals, only a small portion of the request response time 
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moved closer to the SLA's response time limit. If the data center did not provide frequency 
regulation service and instead minimized power consumption with packing strategy, the 
response time of almost all the requests would be very close to the SLA's response time limit. 
Compared to the minimum power consumption control strategy, the proposed data center 
control with frequency regulation provision reduced not only electricity costs but also the 
response time of requests. 

Figure 20: Distribution of Request Response Time 

 
Source: UC Riverside 

Summary 
The developed techniques operated at the server-level, rack-level and data center cluster-level 
and can operate orthogonal to each other. The evaluation results demonstrated that an 
estimated 7.8 percent, 25 percent, and 25 percent reduction in energy cost could be achieved 
through demand response (cluster-level), peak efficiency scheduling (rack-level), and server 
low power runtime (server-level), respectively. Therefore, the estimated energy cost was 
calculated as (1- 0.078) x (1- 0.25) x (1-0.25) = 51.9 percent. This represents a total of a 48.1 
percent reduction in energy cost. 
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CHAPTER 4:  
Technology/Knowledge/Market Transfer 
Activities 

Target Market – Enterprise Data Centers 
A 2014 study by the Natural Resources Defense Council (NRDC) provided a useful market 
segmentation for this technology transfer plan, identifying five data center market segments 
(Whitney & Delforge, 2014): 

• Small- to Medium-sized 
• Enterprise/Corporate 
• Multi-Tenant 
• Hyper-scale Cloud Computing 
• High Performance Computing 

Using this segmentation, the project team’s primary target was the Enterprise/Corporate data 
center segment, which accounts for approximately one-quarter of U.S. data center energy 
consumption. The study's authors note that this is not meant to be an authoritative model of 
data center energy consumption but, rather, a rough estimate to help understand the relative 
contribution of each segment's consumption. 

The project team expects medium-scale data centers in the Enterprise/Corporate segment, 
managing their own systems with others' software, to be able to incorporate the approaches 
developed during the project and see direct energy-saving benefits. Additionally, some of the 
more sophisticated operators in the Small- to Medium-sized segment may be candidates for 
the technology. 

A secondary target of the technology is the Hyper-scale Cloud Computing segment. Companies 
in this segment, which includes Facebook, Microsoft, Google, and Amazon, have their own 
development efforts and would be unlikely candidates to directly use the software developed 
on the program, but the concepts and ideas could inform their approaches. 

A key attribute of the Enterprise/Corporate segment is the use of open-source products to run 
their data centers. Common platforms include Linux, Docker and OpenStack. The fact that 
data centers run on open-source platforms factored significantly into the project team’s 
technology transfer strategy. The technology is applicable to new and existing data centers. 

Within the target segment, there is a broad audience of actors, decision-makers, and 
influencers whom the project team aims to reach with information about the technology. The 
primary audience includes: data center managers, data center operators, IT managers, data 
center designers, energy/facility managers, and policymakers. 
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Overall Strategy and Transfer Activities 
The project team planned three types of activities: technology development, passive outreach 
activities, and active outreach activities. All three strategies were used to reach out to as many 
audiences of interest as possible. The channels used to transfer the technologies of this 
project include publishing papers, presenting at conferences, interacting with conference 
attendees or through industry/TAC meetings, working as a standards association committee, 
and releasing developed products in public repositories. The complete list of activities so far is 
summarized below. The project team will continue actively reaching the community to transfer 
its technology. All proposed ideas were developed by using commercial off-the-shelf servers 
and existing open-source frameworks/tools, as described in Chapters 2 and 3. Thus, the team 
expects that the technology can be easily adopted for various commercial or opensource 
research projects. 

• Academic papers and articles 

o Wei Wang, Amirali Abdolrashidi, Nanpeng Yu and Daniel Wong, "Frequency 
Regulation Service Provision by Data Center," Applied Energy, vol. 251, pp. 1-17, 
2019. 

o Wei Wang and Nanpeng Yu, "Phase Balancing in Power Distribution Network with 
Data Center," Greenmetrics, pp. 1-6, Urbana-Champaign, IL, 2017. 

o Chih-Hsun Chou, Laxmi N. Bhuyan, and Daniel Wong, "µDPM: Dynamic Power 
Management for the Microsecond Era", in Proceedings of the 25th IEEE 
International Symposium on High Performance Computer Architecture (HPCA), 
2019. 

o Ali Jahanshahi, Nanpeng Yu, and Daniel Wong, "PowerMorph: QoS-aware Server 
Power Reshaping for Data Center Regulation Service", under review. 

o Aman Chandan, Savyasachi Jagdeeshan, Namdev Prabhugaonkar, Rutuja Shah, 
and Hyeran Jeon, "DeepPower: Deep Learning Accelerated Server Power 
Prediction," in preparation. 

• Presentations for conferences 

o Wei Wang (student of Nanpeng Yu) presented the conference paper "Phase 
Balancing in Power Distribution Network with Data Center" at GreenMetrics in 
Urbana-Champaign. 

o Daniel Wong presented his conference paper titled "µDPM: Dynamic Power 
Management for the Microsecond Era" at HPCA in Washington, DC. 

• Standardization 

o Daniel Wong and Hyeran Jeon are on the IEEE Standards Association Committee 
for "P1924.1 - Recommended practice for developing energy efficient power-
proportional digital architectures." (https://standards.ieee.org/project/1924_1.
html) 

https://standards.ieee.org/project/1924_1.html
https://standards.ieee.org/project/1924_1.html
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Daniel Wong is the editor of the system-level writing sub-group and Hyeran Jeon 
is the editor of the components writing sub-group. Specifically, the lessons 
learned from this project effort shed light on many best practices for holistically 
designing the many levels of data center hardware infrastructure. These lessons 
are being directly incorporated into the standards to guide industry practitioners 
in designing energy efficient digital architectures. For example, the need to 
carefully coordinate sleep states and DVFS is recommended to achieve power-
proportionality at the server level, and the need to migrate tasks to load balance 
servers is recommended to achieve power-proportionality at the data center 
level. 

• Open-source repositories 

o The products of the data center level energy efficiency project are available at 
https://github.com/rrshah/energy_efficient_data_center. The repository includes 
scripts that operate Docker Swarm-based workload coordination, system para-
meter collection and transfer, and DNN-RNN hybrid model inference and training, 
as well as DNN and RNN model files. 

• Meetings with domain experts or TAC members 

o October 2017 at MICRO'17 to discuss coordinated deep sleep and DVFS 
algorithms 

o November 2018 in Riverside, California, to discuss server low power 
management and load migration algorithm and software 

o March 2019 in San Jose, California, to discuss server low power management 
and data center workload management 

o February 2020 at HPCA'20 to discuss data center management strategy 

Market Adoption 
• Extension by Academia and Industry 

o Researchers of the National Renewable Energy Laboratory at Golden, Colorado, 
Pacific Northwest National Laboratory at Richland, Washington, and the 
University of Colorado, Boulder, (Yangyang Fu et al., AMC’20 and Applied 
Energy’20) cited the paper co-authored by Nanpeng Yu and Daniel Wong with 
the outcomes of this project. The researchers referenced the frequency 
regulation approaches and proposed extended ideas. 

o Researchers of Google and Stanford (K. Kaffes et al., SoCC’20) cited the paper 
authored by Daniel Wong and extended the idea of using processor power saving 
features for the energy efficient data center. 

https://github.com/rrshah/energy_efficient_data_center
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• Potential for Adoption 

o The project team is finding ways to encourage adoption of the research out-
comes by industry and data centers. The team believes that the products of this 
project have a high potential for adoption in future data centers. For example, it 
is an inevitable trend that systems and architectures adopt deep-learning-
assisted designs for better performance, reliability, and energy efficiency (Wang 
et al., pp. 1-17, 2019). As the developed deep-learning-assisted load migration 
approach does not need physical power meters, data centers will save facility 
cost as well as power consumption. 

• Plans for Adoption 

o The project team will apply the developed products to its affiliated school data 
centers. The team is planning to closely communicate with the school IT 
administrators to check the applicability. 

o The project team will meet with other researchers at conferences and business 
meetings to further increase possibilities of adoptions and extension of the 
research outcome. 

Possibility of Adoption in Linux OS 
Adoption of coordinated deep sleep/DVFS management techniques, such as the proposed 
µDPM policy, in the Linux Operating System requires close coordination between the sleep 
state driver (also called the CPU Idle driver) and the DVFS driver (also called the CPUFreq 
driver). To achieve this, there are two possible approaches: (1) creating a fused driver that 
handles sleep state and DVFS, or (2) introducing coordination mechanisms between the 
existing sleep state and DVFS drivers. Option (1) is intrusive and not feasible due to separate 
Linux subsystems handling sleep states (CPU Idle subsystem) and DVFS (CPUFreq subsystem). 
Option (2) is more viable and realistic; thus, the project team is focusing on this method of 
integrating into Linux. 

While the project outcome demonstrates the significant benefit possible with close coor-
dination, the nature of Linux device drivers and modern processor design may make adoption 
challenging for several reasons, as detailed below. 

• Abstraction: Linux device drivers are designed to be abstracted and “siloed” from one 
another. Requiring coordination between both sleep state and DVFS drivers would 
break this abstraction and create dependencies between drivers. This causes a 
maintainability issue of the driver’s software. 

• Ownership of drivers: There exist different CPU Idle drivers and CPUFreq drivers, 
depending on the processor being used. For example, acpi_idle is the generic CPU Idle 
driver that supports all processors. However, Intel processors use the intel_idle driver 
that is maintained by Intel and contains Intel-specific optimizations. As another exam-
ple, the acpi-cpufreq is the generic CPUFreq driver. The Intel processor uses the 
intel_pstate driver for DVFS management. Therefore, in order to support coordination 
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between the CPU Idle and the CPUFreq driver, the mechanism would have to be 
adopted by driver maintainers, such as Intel in this example. Other processors, such as 
AMD and ARM, may have their own sets of drivers, adding to the challenge of having all 
vendors buy in to a new driver design of coupling the sleep state and DVFS driver. 

• Shift to hardware managed sleep mode, DVFS and thermal: Modern processors have 
recently shifted towards managing sleep modes, DVFS, and thermal modes in hard-
ware. That is, modern processors contain Power Management Controllers (PMC) on-
chip, which coordinates idle mode, voltage, frequency, and thermals, in order to be as 
energy efficient as possible while providing performance and staying within a certain 
thermal limit. This level of coordination requires fast response times, on the order of 
microseconds; thus direct hardware control is needed without the overhead of software 
management. Therefore, the Linux drivers simply defer sleep and DVFS state decisions 
to the hardware. 

• Quality-of-Service: While hardware can directly coordinate sleep and DVFS states, the 
hardware does not take into account quality-of-service (QoS) metrics that are tangible 
to end users, such as response times. The proposed µDPM technique takes QoS 
requirements into account when coordinating sleep states and DVFS. Therefore, in 
order for Linux and the hardware PMC to gain the benefits of the proposed approach, it 
is necessary to provide quality metrics to the driver and the hardware. To some extent, 
recent versions of Linux 5.10 (released in December 2020) now support performance 
hints being passed to the intel_pstate driver to tune and trade off energy savings and 
performance. 

While direct adoption of the proposed µDPM policy in Linux may be challenging, the above 
highlighted trend of the Linux drivers and processor hardware are showing developments that 
incorporate many aspects of the project findings, mainly the need for fast coordination 
between sleep states and DVFS (with hardware managed PMCs in the processor) and the need 
to be quality-of-service aware (through performance hints). To fully realize the benefits, 
modifications to software (Linux) and hardware (processor) are necessary. Because of the 
importance of influencing future software and hardware design, the project team believes the 
standardization approach can provide greater saturation of the project’s developed technology 
in the long term; this is not limited to data center servers but applies to all computing devices, 
including mobile and embedded systems. 

One of the project findings is that the uncoordinated management of existing sleep state and 
DVFS drivers leads to significant inefficiencies. If the Linux OS adopts the µDPM policy, energy 
efficiency improvements are expected in line with the project results, which achieves server 
energy savings of up to 25 percent. 
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CHAPTER 5:  
Conclusions/Recommendations 

The team achieved two key objectives: 1) developed pre-commercial server, data center, and 
data center cluster energy efficiency technologies and strategies and 2) facilitated the 
adoption of data center energy efficiency technology by providing easily accessed software 
solutions. The project efforts advanced the energy efficiency technology for data centers at 
three levels. At the server level, the project team developed an innovative server-level lower 
power management system, called µDPM, which coordinates deep sleep states and dynamic 
voltage-frequency scaling and selects the optimal power state configuration for a given 
workload and traffic pattern. At the rack/data center level, the project team developed a 
workload scheduling algorithm to improve the data center level energy efficiency. This new 
algorithm collects various system statistics of worker servers to predict power levels of servers 
and trigger load migration to force all servers to run at peak energy efficiency. At the data 
center level, the project team developed an ingenious solution to enable data centers to 
provide ancillary services to the electricity market by adjusting their energy consumption. If all 
data centers in California adopt the three technologies developed in this project, there would 
be an annual electricity saving of 1,342 GWh, an electricity cost reduction of $163 million, and 
a GHG emission reduction of 596,114 metric tons. 
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CHAPTER 6:  
Benefits to Ratepayers 

Importance and Benefits to Ratepayers 
The three proposed techniques work together at the data center level, across servers in the 
data centers, and within servers to enhance reliability and to improve energy efficiency and 
safety. For example, data center participation in frequency regulation services considers the 
operating condition of the distribution network to improve distribution system reliability. DNN-
accelerated Load Scheduling aims to schedule servers to run at peak energy efficiency to 
enable servers to operate at higher levels of efficiency. The coordinated deep sleep and DVFS 
policy within servers can eliminate idle power consumption, lowering electricity costs to 
ratepayers. 

Monetary, Energy, and Emission Savings for Ratepayers 
The potential benefits to California IOU electricity ratepayers come from energy efficiency 
improvements due to peak efficiency scheduling and low power runtime of servers. The 
project benefits are estimated by comparing the new data center management policies with 
those of the existing data center management. The project team estimated that the three 
proposed techniques would yield annual electricity savings of 1,342 GWh, a quantifiable 
electricity cost reduction of $163 million per year, and a greenhouse gas emission reduction of 
596,114 metric tons. 

The assumptions and calculations for estimated benefits for the proposed techniques are 
described as follows. The project team estimated that 7.8 percent, 25 percent, and 25 percent 
reductions in energy cost can be achieved through demand response, peak efficiency schedu-
ling, and server low power runtime, respectively, for a total energy cost reduction of 48.1 
percent. The estimated energy reduction of these proposed techniques is derived from the 
project results evaluation shown in Chapter 3: Project Results. These results have been pub-
lished in major international conference venues and journals relating to energy engineering 
and computer architecture. California's total electricity consumption is estimated to be 279,402 
GWh by combining the grand total of electricity use of residential, commercial, industrial, and 
agricultural sectors. According to CEC's Data Centers Research website, data centers consume 
roughly 2 percent of the state's electricity, or 5,580 GWh. Servers consume roughly 50 percent 
of data center energy, or 2,790 GWh. Assuming a commercial electricity price of $0.20/kWh, 
the data center servers’ cost is $558 million. Therefore, an estimated energy savings of $163 
million would be anticipated, with an estimated total avoided electricity production of 1,342 
GWh, corresponding with a reduction in GHG emissions of 1,342 GWh x 0.331 kg per kWh, or 
596,114 metric tons. 
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Potential for Technology Adoption 
Data centers: Data center operators typically avoid low power modes such as DVFS and sleep 
states due to the negative impact on latency. The proposed software runtime can meet strict 
latency requirements and improve the penetration of low power modes in latency-critical 
environments by at least 10 percent. The project team expects the majority of the on-site data 
centers to adopt its data center energy efficiency technology. The server and the data center 
cluster low power techniques proposed and evaluated in this project, along with the lessons 
learned from this project effort, are being incorporated into IEEE Standards P1924.1 
Recommended practice for developing energy-efficient power-proportional digital 
architectures. 

Demand response: The proposed load migration techniques can be applied to coordinate the 
operations of demand response resources. The proposed technology can be verified and 
implemented in the existing California demand response programs. In particular, the tech-
nology can be easily implemented in the demand response programs which the principal 
investigator (PI) managed at Southern California Edison Company (1,000 MW). 

Potential Societal Benefits to Ratepayers 
This project has the potential for environmental benefits and public health. Reduced electrical 
generation from fossil fuel power plants due to improved data center energy efficiency will 
result in reduced GHG emissions and criteria air pollutants associated with power generation. 
This will lead to an improvement in health for California residents. 

This project also has the potential for personal computer benefits. This project develops a 
general power management runtime. Should the server low power management recom-
mended practices be integrated into commercial operation systems (such as Linux), energy 
savings would not be limited to data centers but could be realized in consumer desktops and 
laptop devices that are connected to networks. 

Power and computer engineering workforce: Co-PI Dr. Wong incorporated the latest research 
results on energy efficiency management of servers and data centers into the existing under-
graduate and graduate computer architecture curriculum. In addition, computer designers can 
benefit from the open-source releases and IEEE Standards recommended practices. PI Dr. Yu 
has incorporated the latest research results on computing load migration into the existing 
undergraduate and graduate power engineering curriculum. This effort can significantly 
improve the quality of the future power engineering workforce in California. In addition, 
employees from the electricity utility industry may join the online master's program to gain a 
deeper understanding of the best practices to renewable integration and distribution system 
automation. 
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GLOSSARY AND LIST OF ACRONYMS 

Term Definition 
AGC Automatic generation control 
CNN Convolutional neural network 
DC Data center 
DNN Deep neural network 
DVFS Dynamic voltage frequency scaling 
GHG Greenhouse gas 
GHz Gigahertz 
GWh Gigawatt hour 
HA Hour-ahead 
KWh Kilowatt hour 
LSTM Long short-term memory 
PI Principal investigator 
PJM Pennsylvania-New Jersey-Maryland Interconnection 
PMC Power management controller 
QoS Quality of service 
RL Reinforcement learning 
RMSE Root mean square error 
RNN Recurrent neural network 
SLA Service level agreement 
TAC Technical advisory committee 
TSO Transmission system operator 
µDPM Micro dynamic power management 
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