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PREFACE 
The California Energy Commission’s (CEC) Energy Research and Development Division 
supports energy research and development programs to spur innovation in energy efficiency, 
renewable energy and advanced clean generation, energy-related environmental protection, 
energy transmission, and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 
Public Utilities Commission to fund public investments in research to create and advance new 
energy solutions, foster regional innovation, and bring ideas from the lab to the marketplace. 
The EPIC Program is funded by California utility customers under the auspices of the California 
Public Utilities Commission. The CEC and the state’s three largest investor-owned utilities—
Pacific Gas and Electric Company, San Diego Gas and Electric Company, and Southern 
California Edison Company—were selected to administer the EPIC funds and advance novel 
technologies, tools, and strategies that provide benefits to their electric ratepayers.  

The CEC is committed to ensuring public participation in its research and development 
programs that promote greater reliability, lower costs, and increase safety for the California 
electric ratepayer and include: 

• Providing societal benefits. 
• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost. 
• Supporting California’s loading order to meet energy needs first with energy efficiency 

and demand response, next with renewable energy (distributed generation and utility 
scale), and finally with clean, conventional electricity supply. 

• Supporting low-emission vehicles and transportation. 
• Providing economic development. 
• Using ratepayer funds efficiently. 

For more information about the Energy Research and Development Division, please visit the 
CEC’s research website (www.energy.ca.gov/research/) or contact the Energy Research and 
Development Division at ERDD@energy.ca.gov. 

  

http://www.energy.ca.gov/research/
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ABSTRACT 
Hydropower is an integral part of supplying clean electricity to the state’s electric grid. Besides 
providing baseload generation, hydropower is increasingly used to mediate load variability in 
the electrical grid due to the intermittent nature of wind and solar generation. Given the 
increasing potential of hydropower to meet energy demands, especially in the modernized 
electric grid, accurate and timely precipitation estimates are critical for optimizing hydropower 
scheduling. Despite having high-resolution satellite information, precipitation estimation for 
determining hydrologic flows from remotely sensed data suffer from methodological limita-
tions. State-of-the-art deep learning algorithms, renowned for their skill in learning accurate 
patterns within large and complex datasets, appear well suited for precipitation estimation. 

Advanced machine and deep learning mechanisms were developed to improve the accuracy of 
precipitation forecasts of an existing real-time Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks (PERSIANN) algorithm. The precipitation estimates 
delivered by the improved PERSIANN were used as the main input to a hydrological model to 
generate daily streamflow information.  

Improving the accuracy and time resolution of streamflow data contributes to an increase in 
confidence and higher efficiency of hydropower scheduling decisions generated by both the 
reservoir and the hydropower dispatch models used by facility operators. Hydropower release 
decision making relies on multisource information such as climate conditions, downstream 
water quality, inflow and storage, regulation, and engineering constraints. To improve this 
decision making, this study developed meta-heuristic generalized reservoir releases and simu-
lation algorithms for optimizing hydropower operations. A case study of a major operational 
hydropower facility serving California was presented to demonstrate the improvement of the 
streamflow simulation and forecast accuracy, based on improved precipitation estimates in 
PERSIANN products. 

Keywords: Precipitation Estimation, Precipitation Forecast, Machine Learning, Artificial Neural 
Network, Hydropower Operations, Optimization, Precipitation Estimation from Remotely 
Sensed Information using Artificial Neural Networks (PERSIANN)  

Please use the following citation for this report: 

Analui, Bita and Soroosh Sorooshian. 2024. Improving Hydrologic and Energy Demand 
Forecasts for Hydropower Operations with Climate Change. California 
Energy Commission. Publication Number: CEC-500-2024-059.  
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Executive Summary 

California’s hydropower is an integral part of supplying clean electricity to the state’s electric 
grid. Hydropower provides baseload generation and is able to adjust production, offering load-
following services that can help meet unexpected spikes (or troughs) in energy demand, 
without disruption to the grid. This role for hydropower is becoming increasingly critical as it 
alleviates the intermittent nature of wind and solar generation as California strives to achieve 
its ambitious mandate of 100 percent renewable energy and zero-carbon resources supply by 
2045.  

Hydropower’s role in meeting load variability in the electrical grid is particularly sensitive to 
accurate and timely precipitation and inflow forecasts. Precipitation and inflow forecasts are 
especially important for run-of-river hydropower plants (hydropower generation that uses the 
natural flow rate of water to generate power) and hydropower scheduling (the scheduling of 
water releases from a hydropower facility). Reservoirs play an essential role in providing resili-
ence against flood and drought, and additionally supply a wide range of services including 
water supply, hydropower electricity, recreation, and ecosystem protection. There is therefore 
an important need to properly address, through reservoir modelling, these various services, 
while respecting underlying regulations. Although reservoir modelling and optimal reservoir 
operations have been well studied, there is still vast research potential to address the 
credibility of forecasts used for reservoir modelling. 

The development of Earth-observing satellites that measure precipitation have overcome many 
of the limitations of land- and radar-based precipitation measurements. Satellite-based precipi-
tation estimates provide high temporal and spatial resolution; but precipitation estimation for 
determining hydrologic flows from remotely sensed data still suffers from methodological limi-
tations. State-of-the-art deep learning algorithms, renowned for their accuracy in producing 
accurate patterns within large and complex datasets, appear well suited to the task of precipi-
tation estimation given the ample amount of available high-resolution satellite data. 

Project Purpose 
To support more accurate and optimal hydropower scheduling for utilities serving California, 
the purpose of this research was to: 

1. Enhance short-term precipitation streamflow forecasts by developing an operating 
module for an existing near real time Precipitation Estimation from Remotely Sensed 
Information using Artificial Neural Networks (PERSIANN) product that has demon-
strated advantages over other quantitative precipitation estimation algorithms over the 
Western continental United States.  

2. Provide more accurate assessments of hydropower generation capabilities by 
developing a generalized reservoir release and hydropower production model for 
major reservoirs in California. 
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Project Approach and Results 
The focus of this project by researchers from the University of California, Irvine’s, Center for 
Hydrometeorology and Remote Sensing was to develop advanced machine and deep learning 
mechanisms to improve the accuracy of precipitation forecasts of an existing near real-time 
PERSIANN model. The precipitation estimates delivered by the improved PERSIANN were used 
as the main inputs to a hydrological model that generates daily streamflow information. 

Improved accuracy and time resolution of streamflow data contributed to increased confidence 
in and higher efficiency of hydropower scheduling decisions generated by the reservoir and 
hydropower dispatch models used by hydropower facility operators. Precipitation measure-
ments with high space/time resolution are vital inputs for hydrometeorological and water 
resources studies, weather, climate, and hydrological forecasting. Moreover, highly precise 
real-time precipitation estimations are pivotal for monitoring and managing catastrophic 
hydroclimate events such as flash floods, which frequently transpire rapidly after extreme 
rainfall. To this end, a model and nine algorithms were developed. 

1. The PERSIANN Dynamic Infrared Rain-Rate Model estimated precipitation rates from 
satellite infrared radiation imagery, which offered notable advantages over current 
algorithms for rainfall estimation, especially over the Western Contiguous United 
States. 

2. Six advanced machine learning and neural network algorithms improved the 
PERSIANN family and delivered precipitation estimation and short-term forecasts 
more accurately. 

3. Three generalized reservoir-release and hydropower-optimization algorithms  
leveraged data-driven and meta-heuristic approaches, which analyzed streamflow 
simulation improvements and forecast accuracy based on improved precipitation 
estimates. Applications in California assisted hydropower management in a major 
operational facility in California. 

These three components, the improved and bias corrected data, the short-term precipitation 
forecast module, and reservoir optimization algorithms, together represent a fully connected 
modeling approach. 

Knowledge Transfer 
This research has been shared in presentations through more than 30 invited and accepted 
talks at different conferences and academic institutions such as the multiple papers presented 
at the 2019 American Geoscience Union Fall Meeting. In addition, the knowledge gained, 
experimental results, and lessons learned were reflected in more than 16 peer-reviewed 
journal publications, five PhD theses, and nine developed algorithms. 

Benefits to California 
Using the developed components of this research (in the form of the PERSIANN Dynamic 
Infrared Rain-Rate Model, a real-time global high-resolution satellite precipitation estimation 
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product), the advanced machine learning algorithms to improve precipitation estimation and 
forecasts, and the reservoir modeling/optimization algorithms, would enable more efficient 
management of clean energy resources in California and lead to improved resilience of water 
and energy systems in the face of climate change impacts. Advancing these algorithms and 
model for hydropower scheduling and prediction will also facilitate electricity exchanges in the 
power markets, reduce consumption of non-renewable energy sources, and increase the 
reliability of renewable resource energy generation. 
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CHAPTER 1:  
Introduction 

In this chapter, the foundations upon which the project approaches are built are presented. 
Since this research investigated, analyzed, and improved the accuracy of the Precipitation 
Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) 
products at different weather and climate scales, the PERSIANN algorithm is introduced. As its 
name indicates, PERSIANN uses a machine learning technique to determine the relationship 
between remotely sensed cloud-top temperatures (measured by long-wave infrared [IR] 
sensors on geosynchronous equatorial orbit satellites) and rainfall rates, with bias correction 
from passive microwave readings measured by low Earth-orbiting satellites. Gridded precipita-
tion products like PERSIANN are useful in the research, community, and private sectors for 
hydrologic modeling, flood, and drought predictions, water resource management, and urban 
planning. The quasi-global scope of these satellite-based precipitation products makes them 
practical for quantifying rainfall measurements over space and time, notably in regions lacking 
large-scale systems of precipitation gauges or a radar network (for example, over the oceans). 

Accurate observations of the global distribution of precipitation are required for monitoring the 
variability of weather and climate and are crucial to the development of a proper under-
standing of the hydrologic cycle as it passes through oceans, land, and the atmosphere. For 
hundreds of years, rainfall has been measured by the conventional method of rain gauges, but 
this method facilitates only a relatively sparse sampling of rainfall, primarily over land. The use 
of ground-based radar now enables the measurement of rainfall over relatively large areas, 
but the coverage is still essentially limited to land surfaces and coastal regions. With the 
current rapid growth in satellite remote-sensing technology, the global distribution of rainfall, 
even over the oceans, can be routinely monitored (Hsu et al., 1997). At the University of 
Arizona, PERSIANN was developed by Hsu (1997) to extract and combine various sources of 
information including, for example, infrared and microwave satellite imagery, rain gauge and 
ground-based radar data, and ground-surface topographic information to estimate rainfall.  

The current operational PERSIANN system at the University of California, Irvine1, uses neural 
network function classification and approximation procedures to compute estimated rainfall 
rates at 0.25° x 0.25° pixel (about 27.75 km x 27.5 km) of the infrared brightness temperature 
image provided by geostationary satellites. An adaptive training feature facilitates updating of 
the network parameters whenever independent estimates of rainfall are available. The 
PERSIANN algorithm is an effective and efficient approach in retrieving rainfall using cloud-top 
brightness temperature (CTBT) data in quasi-global coverage (60°N to 60°S). Two major 
stages in PERSIANN are involved in processing a satellite image into surface rainfall rates. The 
algorithm first extracts and classifies local texture features from the long-wave infrared image 
of geostationary satellites to several texture patterns, then associates those classified cloud 

 
1 http://chrsdata.eng.uci.edu/ 

http://chrsdata.eng.uci.edu/
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texture patterns to surface rainfall rates. Figure 1 shows the precipitation generation flow from 
the PERSIANN algorithm. 

Behrangi (2009) and AghaKouchak (2011) have shown that the PERSIANN algorithm is a 
suitable candidate for estimating precipitation from short-term CTBT forecasts due to the 
capability of the model in estimating high-resolution half-hourly rainfall rate maps (where 
other precipitation retrieval models have coarser temporal resolution). 

Figure 1: The PERSIANN System 

 
Operational implementation of the PERSIANN system produces and distributes near-real-time 

global precipitation products at 0.25°(27.5km) hourly resolution. 
Source: Sorooshian et al., 2007 
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CHAPTER 2:  
Project Approach and Results 

Over the past two decades, a wide range of studies has incorporated PERSIANN products. 
Currently, PERSIANN offers several precipitation products based on different algorithms avail-
able at various spatial and temporal scales. The following discussion highlights the research 
carried out in this project and identifies new PERSIANN products, enhancements, and case 
studies. 

PERSIANN Dynamic Infrared-Rain Rate Model (PDIR) for High-
Resolution, Real-Time Satellite Precipitation Estimation 
(Nguyen et al., 2020) 

Previous research (Hsu et al., 1997) suggests that one of the main reasons for substantial 
errors in hydrologic forecasting is a lack of quality data on temporal and spatial variations of 
historical precipitation. Building on the foundations of the PERSIANN family, a new algorithm 
to estimate the precipitation rate from satellite infrared radiation imagery was developed. This 
offers notable advantages over current algorithms for rainfall estimation, especially over the 
western portion of the contiguous United States (CONUS). 

In the PERSIANN cloud classification system (CCS), clouds that are identical in shape, size, 
temperature distribution, and all other defining characteristics (except spatial location), have 
identical rain rates (RR). The new algorithm, the PERSIANN Dynamic Infrared-Rain Rate Model 
(PDIR-Now), advances the framework of the PERSIANN-CCS system by: 

1. Improving the capture of warm precipitation by adapting higher temperature 
thresholds and introducing gradient filtering and applying morphological filters to 
improve watershed methods of segmentation. 

2. Expanding the cloud classification system to include monthly sets of cloud types and 
improving the algorithm’s ability to distinguish between different rainfall regimes. 

3. Improving the skill of CTBT-RR curves with the National Oceanic and Atmospheric 
Administration’s (NOAA) passive microwave dataset. 

4. Using gridded climatology data from WorldClim (version 2) and the PERSIANN climate 
data record (CDR) to create a dynamical RR curve model optimized by a shuffled 
complex evolution algorithm. 

Figure 2 shows that drier climates, such as in the Mojave Desert, cause a leftward shift in the 
CTBT-RR relationships, which results in lower precipitation rates than at identical temperatures 
in moderately wet regions such as the California Central Coast, while wetter climates such as 
in the Klamath National Forest cause a rightward shift, which in turn causes an increase in 
estimated precipitation rates for identical temperatures. 
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Figure 2: The Dynamic CTBT (Tb)-Rain Rate (RR) Model 

 
In PERSIANN-CCS, clouds that are identical in shape, size, temperature distribution, and all other 

defining characteristics (but spatial location) have completely identical RR readings. 
Source: Nguyen et al., 2020 

In the PDIR-Now workflow, brightness temperature IR is read as the sole input by the fully 
trained PDIR-Now algorithm. After cloud patches are extracted with the assistance of the 
modified watershed technique, a vector of 17 characteristics is pulled from each cloud patch. 
The vector is fed into the month’s self-organizing feature map of cloud types, which returns 
the most likely cloud type given the extracted characteristics. Each cloud type has a charac-
teristic Tb-RR relationship that is dynamically shifted according to pixel climatology and cloud 
type before PDIR-Now pulls the final RR estimate. A flowchart of the PDIR-Now steps, from 
input to output, is shown in Figure 3. 

PDIR-Now estimates were validated over the western contiguous United States at annual and 
daily levels during the validation period of 2008-13. In addition, short-time-scale validation 
were performed for two specific extreme atmospheric river (AR) events, as ARs are intimately 
related to water resources and natural hazards in Pacific Ocean coastal states. 



 

8 

Figure 3: PDIR-Now Workflow From Input to Output 

 
SOFM = self-organizing feature map  
Source: Nguyen et al., 2019 

Atmospheric River Event Over California, March 20 to 25, 2018 
The 2018 AR event of March 20 to 25, belonged to a specific category of ARs known as the 
Pineapple Express. These ARs originate over Hawaii and move from the equatorial Pacific 
toward the West Coast of the United States. During this period, rainfall totals of 230 milli-
meters (mm) were recorded in some regions, during the first day alone. Figure 4 shows the 
rainfall accumulation during the six-day period of the storm. The observed (Stage IV) rainfall 
spatial pattern consisted of a band of heavy rainfall along the Sierra Nevada and disconnected 
bands of heavy rainfall along the California coast. Although all satellite-based products — the 
Integrated Multi-Satellite Retrievals Climate Prediction Center MORPHing technique (CMORPH), 
tropical rainfall measuring mission (TRMM), and PERSIANN-CCS — estimate heavy rainfall 
during the storm period, PDIR-Now is the only product that mimics observed spatial rainfall 
patterns apart from underestimation over the northern coast of California. In addition to better 
spatial patterns, PDIR-Now estimates more accurate rainfall amounts than other products with 
a correlation coefficient (CORR) of 0.74 and root mean square error (RMSE) of 41 mm; PDIR-
Now is superior to Stage II for detecting heavy storm rainfall in terms of both spatial pattern 
and volume. In addition to the metrics just discussed, PDIR-Now has a relative bias (rBIAS) of 
−0.40, which is superior to Stage II’s CORR, RMSE, and rBIAS values of 0.63, 57.87 mm, and 
−0.73. This shows that PDIR-Now has potential benefits in storm monitoring, designing early 
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warning systems, and disaster management planning for heavy storms associated with ARs 
over the western coast of the United States.  

The research team observed that PDIR-Now, a remotely sensed precipitation algorithm that 
solely uses IR as input data, was comparable (or of greater relative skill) to  passive micro-
wave, radar, and other IR-based products for both annual accumulations and short-term 
extreme weather events. Furthermore, PDIR-Now accurately mimicked the observed spatial 
patterns of rainfall over the study region, notably high rainfall amounts over the Cascade 
Range and the Sierra Nevada. PDIR-Now’s noteworthy performance in capturing the western 
states’ rainfall — especially with high intensities and over mountainous regions — suggests a 
level of success in adapting to the challenges of differing rainfall regimes intrinsic to the area. 

PDIR-Now contains the spatiotemporal richness and near instantaneous availability (15 min-
utes to one hour) required for rapid hazard response, while showing the potential for enough 
skill to be useful for hydrologic and water resources applications; the latter has been a major 
weakness of IR-based algorithms to date. However, future analysis into PDIR-Now’s skill 
specific to each rainfall regime must be performed before final concrete conclusions can be 
made. 
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Figure 4: Rainfall During March 20 to 25, 2018 

 
An extreme AR event over California. Six-hourly observations from ground measurements: Stage IV and the near real-time Stage II, 

satellite-based measurements: CMORPH, TRMM, PERSIANN-CCS (CCS) and PDIR-Now. 
Source: Nguyen et al., 2019 
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Developing Precipitation Estimation and Forecast Modules —  
Machine Learning and Artificial Neural Network Models 
In this section, a range of advance precipitation forecasts and estimation algorithms (based on 
machine learning and neural network models) is presented. 

Precipitation Forecast 

Prediction Skill for the West Coast United States: From Short to Extended Ranges 
(Pan et. al., 2019a) 

Precipitation variability significantly influences the heavily populated West Coast of the United 
States, raising the need for reliable predictions. The team investigated the region’s short-to-
extended-range precipitation prediction skill using the hindcast database of the World Meteor-
ological Organization’s Sub-seasonal-to-Seasonal (S2S) Prediction Project (WMO, 2018). The 
prediction skill/lead time relationship was also evaluated, using both deterministic and proba-
bilistic skill scores. The study area was restricted to the heavily populated coastal region of the 
Western United States, which included California, Western Oregon, and Western Washington. 
Figure 5 shows the geographic map of the West Coast in sub-figure (a). The elevation data are 
provided by United States Geological Survey (Gesch, 2002). The four subdivisions, namely 
Southern California, Northern California, Western Oregon, and Western Washington states, are 
outlined with colored polygons. Geo-position of the study area in a larger scale is shown in 
sub-figure (b). The monthly mean precipitation rate for the four subdivisions, based on the 
Climate Prediction Center (CPC) precipitation dataset and the boreal winter (October to March) 
precipitation ratio, is labeled in sub-figure (c). 

Figure 5: The Study Area 

 
(a) The geographic map of the West Coast. (b) Geo-position of the study area in a global scale. 

(c) Monthly mean precipitation rates for the four subdivisions 
Source: Pan et al., 2019a 
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In this study, the impact of the leading modes of intra-seasonal-to-seasonal variability on the 
distribution and prediction skill for precipitation forecasting was explored. The intention was to 
use the results as a baseline for follow-up investigations of seamless weather and climate 
predictions, ranging from one day to two months. The evaluation was based on extended-
range retrospective forecast (hindcast) experiments developed by 11 operational centers (the 
11 experiments are color coded in Figure 6) and hosted by the World Weather Research 
Programme and the World Climate Research Programme S2S Prediction Project Science Plan 
(Vitart, 2017). 

The abundance of hindcast cases and model diversity offer an unprecedented opportunity for 
investigation of the potential predictability and prediction skill of precipitation. The specific 
experiments were to:  

1. Evaluate the prediction skill for West Coast precipitation during the cold season in 
each general circulation model, on time scales from short to extended ranges. 

2. Investigate the influence of intra-seasonal and seasonal variability on precipitation 
prediction skill in the general circulation models at the extended range, with emphasis 
on El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO). 

Using different spatial and temporal scales, four experiments were carried out based on: 

1. Daily Grid-Point-Scale Evaluation: Evaluate the nth day prediction skill at each 
grid point (0.20° × 0.25°), n ranges for the entire period of forecast. The overall skill 
for each climate division is calculated by averaging skill scores for all the grid points 
within this division. 

2. Daily Regional-Scale Evaluation: Evaluate daily regional average forecasts for 
each geographical division. 

3. Variable Temporal Windows, Grid-Point-Scale Evaluation: Evaluation is carried 
out, following the strategy of Zhu (2014), at each grid point for various windows of 
lead time. 

4. Variable Temporal Windows, Regional-Scale Evaluation: For each geographical 
division, the regional average precipitation forecasts are evaluated for variable 
windows of lead time. 

Figure 6 shows the Pearson correlation coefficient between the ensemble mean of precipita-
tion predictions and the observations for the four experiments. The evaluation results for 
Southern California and Northern California are shown in rows 1 and 2, respectively. The 
columns represent different experiments. The first column shows daily grid-point-scale evalu-
ation results, the second column shows daily regional-scale evaluation results, the third 
column shows the variable temporal windows and grid-point-scale evaluation results, and the 
fourth column shows the variable temporal windows and regional-scale evaluation results. 

For day-to-day evaluations (first two columns), as expected, each model showed a rapid 
decrease of r skill (r is the Pearson correlation coefficient that quantifies the linear correlation) 
with forecast lead times. Generally, because of the model performance differences, r fell below 
0.2 within 8 to 15 days for Experiment 1 and 10 to 16 days for Experiment 2. A comparison 
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between columns 1 and 2 showed that with a lead time of as much as two weeks, regional 
average predictions generally had higher r skill compared with grid-scale predictions. The skill 
improvements through spatial averaging were most obvious for Southern California, which is 
attributable to the uneven precipitation distribution for this region. 

Figure 6: Estimated Pearson Correlation Coefficient 

 
The estimated Pearson correlation coefficient r between ensemble mean predictions, and 

observations for the four experiments 
Source: Pan et al., 2019a 

For the temporal interval evaluation (last two columns), the statistics of best and mean per-
formances at different windows of lead time are shown in Table 2 in APPENDIX A. Within the 
synoptic range, Day 2 (1d1d), days 3 to 4 (2d2d), and days 5 to 8 (4d4d) r skills are generally 
of the same order of magnitude (above 0.6 at grid scale and 0.7 at regional scale). This 
indicates that the decrease of prediction skill as lead time increases is compensated by the 
expanding of evaluation windows following the (ndnd) temporal averaging strategy. The Japan 
Meteorological Agency (JMA), Korean Meteorological Agency, Environment and Climate 
Change Canada (ECCC), and European Centre for Medium-Range Weather Forecast (ECMWF) 
models have the best performances at this temporal range. It is important to note that these 
models are of higher resolution when compared with the others. For Week 2 (1w1w), there is 
large variability in the models’ r skills. The best-performing model (ECMWF) achieved an r skill 
of approximately 0.5 at grid scale, and 0.6 at regional scale. The average performance for all 
models was on the order of 0.4 for both grid and regional scales. Beyond two weeks, the 
models generally showed little usable skill. However, it is noteworthy that some models 
showed unexpectedly good performance at this time range, such as the Australian Bureau of 
Meteorology model for Southern California and the Hydrometeorological Centre of Russia 
model for Western Washington. 

For Week 1, the S2S models showed advantageous precipitation prediction skills: the Pearson 
correlation coefficient (r), the Nash–Sutcliffe model efficiency coefficient (NSE), and the rela-
tive operating characteristics (ROC) score. The ROC score provides a summary of the hit ratio 
and false alarm ratio for different observation intervals. ROC scores were approximately on the 
order of 0.8, 0.7, and 0.8, respectively, for this period. By spatial averaging, the skill score can 
be further improved. For Week 2, models showed large variations regarding their perform-
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ances. The Week-2 mean precipitation forecast from the best-performing model (ECMWF) was 
of considerable value, with r > 0.6, NSE > 0.35, and ROC score > 0.7. Beyond Week 2, 
predictions generally provided little deterministic skill. For this range period, the probabilistic 
evaluation of ensemble forecasts, using the continuous-ranked probability score,  showed the 
significant advantage of ensemble forecasts over deterministic forecasts. 

Considering the performance difference of the S2S models, the informative predictable range 
may differ by up to six or seven days between different models. In the short range, models 
with higher resolutions tended to have better performances. For the medium to extended 
ranges, ensemble mean predictions showed significantly better performance when compared 
with deterministic predictions. The best-performing models for this range period were the 
ECCC, ECMWF, and JMA models. For the Week 3 and Week 4 forecasts, although there was 
essentially no useful deterministic forecast skill, the ECMWF model still showed an advantage 
over the other models. These results can benefit model selections for both practical forecasts 
and multi-model ensemble predictions. 

In conclusion, it was found that periods of heavy precipitation associated with the ENSO were 
more predictable at extended range periods. During El Niño years, Southern California tends to 
receive more precipitation in late winter, and most models show better extended-range predic-
tion skill. On the contrary, during La Niña years Oregon tends to receive more precipitation in 
winter, with most models showing better extended-range skill. The team believes that the 
excessive precipitation and improved extended-range prediction skill are caused by the meri-
dional shift of baroclinic systems, as modulated by ENSO. Through examining precipitation 
anomalies conditioned on the Madden–Julian oscillation, it was verified that active Madden–
Julian oscillation events systematically modulate the area’s precipitation distribution. 

Enhancing Short-Term Precipitation Forecast Based on Long Short-Term Memory 
(LSTM) Recurrent Neural Networks 
(Akbari Asanjan, 2018) 

This study introduced a precipitation-forecasting algorithm with the potential to become an 
accurate short-term precipitation forecasting product, in quasi-global coverage. The CTBT data 
set from Geostationary Operational Environmental Satellite (GOES) is a homogenous and con-
tinuous data set used instead of directly using precipitation data. When compared with the 
rainfall data, the CTBT data obtained from the GOES satellites provided continuous values for 
each pixel and less randomness in each pixel’s time dependencies as temperature changes 
followed the continuity governing law of heat transfer. The proposed approach was an 
advanced deep learning algorithm, termed Long Short-Term Memory (LSTM), to forecast the 
next time step of CTBT images from IR channel of GOES satellites. The algorithm then  itera-
tively fed the forecasted CTBT image as input to obtain precipitation forecasts up to six hours 
ahead of time. Figure 7 depicts the LSTM algorithm concept. LSTM is a complex recurrent 
model developed by Hochreiter and Schmidhuber (1997) to address the deficiencies of recur-
rent neural network (RNN). LSTMs consist of one or more memory blocks as their fundamental 
units; the memory blocks contain memory cell(s) and gates that control the system’s 
information flow. As shown in Figure 7, an LSTM block consists of an input gate, a forget gate, 
a memory cell, and an output gate. 
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Figure 7: Long Short-Term Memory 

 
Source: Akbari Asanjan, 2018 

The results from the proposed LSTM method are compared with a number of classical 
extrapolation-based methods including the RNNs, the Farneback Optical Flow method, and the 
Persistency method. These experiments indicate better statistics, such as correlation coeffi-
cient and root-mean-square error, for the CTBT forecasts from the proposed LSTM compared 
with the RNN, Persistency, and Farneback methods. The precipitation forecasts from the 
proposed LSTM and PERSIANN framework have demonstrated better statistics compared to 
the Rapid Refresh (RAPv.1), numerical forecasts and PERSIANN estimations from RNN, Persis-
tency, and Farneback projections in terms of probability of detection, false alarm ratio, critical 
success index, correlation coefficient, and root-mean-square error, especially in predicting  
convective rainfalls. The proposed method shows superior capabilities in short-term fore-
casting over compared methods and has the potential to be implemented globally as an 
alternative short-term forecast product. Different precipitation patterns over the United States 
were identified using the model. The states of Oregon, Oklahoma, and Florida were chosen for 
case studies because of their different rainfall patterns. (Oregon: frontal, Oklahoma, and 
Florida: convective). It is also important to note that Oregon had dominant orthographic  
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precipitation (like California); the new extension covers all of CONUS, which will deliver 
credible precipitation information for California as well. Figure 8 shows statistical results, the 
first row shows the RMSE and correlations for IR forecasts where LSTM (red line) is doing 
better than other models. The rest are statistics regarding corresponding precipitation in which 
LSTM is showing higher performances for the state of Oregon. 

Figure 8: Mean CTBT and Precipitation Forecast Statistics Event-Based 
Performances for Oregon, for Six Hours 

 
Source: Akbari Asanjan, 2018  
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Precipitation Estimation 

Improving Precipitation Estimation Using Convolutional Neural Network 
(Pan et al., 2019b) 

To represent the precipitation process more accurately in comparison with numerical weather/
climate models and statistical downscaling methods, a convolutional neural networks (CNN) 
model was introduced. Specifically, the predictors were restricted to the variables that were  
directly derived from atmospheric dynamic equations. The model was directed to learn 
precipitation-related dynamical features from the surrounding dynamical fields by optimizing a 
hierarchical set of spatial convolution kernels. The model was tested at 14 geogrid points 
across the contiguous United States. The architecture of the proposed model and the map of 
studied climate zones are shown in Figure 9 and Figure 10. 

Figure 9: The Proposed CNN Architecture 

 
The CNN architecture for estimating precipitation using the numerical model  

resolved geopotential height and moisture field. 
Source: Pan et al., 2019b 
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Figure 10: The Sample Grids Used in the Experiment 

 
For each grid, the surrounding 800km x 800km dynamical field is delineated. The color indicates the 

mean daily precipitation rate averaging NOAA CPC daily precipitation. Records 1979-2017. 
Source: Pan et al., 2019b 

Results show that the CNN model outperforms the original North American Regional Reanalysis 
(NARR) precipitation estimates for the west and east coasts, where precipitation is more copi-
ous compared to other areas. For the middle part of the continent, the CNN model shows 
slightly worse performance, which can be attributed to model overfitting when there are 
limited precipitation samples for training the model. 

In Figure 11, the scatter plots compare the precipitation estimation from CNN divided by 
precipitation estimation from NARR (PCNN /PNARR) against the CPC precipitation records (Pobser) 
for 6 of the 14 sample points regions. 

The skill scores of r and RMSE for each point are given in corresponding sub-figures. The bold 
and underlined value indicates the better statistics of the two estimates. The bottom right 
geographic map shows the geoposition of the 14 points. The point is labeled red/blue if both 
skill scores indicate that PCNN/ PNARR perform better. It is labeled gray if the two skill scores 
show disagreement. For Region 6, including California, improvement in the PCNN estimates 
was observed. 
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Figure 11: Comparing PCNN(red)/PNARR(blue) Against 
CPC Precipitation Recodes (Pobser) 

 
Source: Pan et al., 2019b 

Through the case study of precipitation estimation, it was demonstrated that the CNN is a 
promising approach for climate downscaling. This model can seamlessly be incorporated in 
numerical precipitation predictions. Compared to the raw precipitation product from numerical 
models, the CNN model showed enhanced precipitation estimation when trained with abun-
dant data. The performance improvement provided important implications for improving 
precipitation-related parameterization schemes using a data-driven approach. Through com-
paring the performance between CNN and fully connected neural network, linear regression, 
nearest neighbor, and random forest, the effectiveness of CNN for precipitation estimation was 
empirically verified. 

Effective Cloud Detection and Segmentation Using a Gradient-Based Algorithm for 
Satellite Imagery: Application to Improve the PERSIANN-CCS 
(Hayatbini et al., 2019a) 

Effectively identifying clouds and monitoring their evolution are an important function for  
more accurate quantitative precipitation estimations and forecasts. In this part of the study, a 
new gradient-based cloud-image segmentation algorithm was developed using image pro-
cessing techniques. This method integrated morphological image gradient magnitudes to 
separate cloud systems and patches boundaries. A varying scale kernel was implemented to 
reduce the sensitivity of image segmentation to noise and to capture objects with various 
fineness’s of the edges in remote sensing images. The proposed method is flexible and 
extendable from single to multispectral imagery. In addition, case studies were carried out to 
validate the algorithm by applying the proposed segmentation algorithm to synthetic radiances 
for channels of the GOES-16 simulated by a high-resolution weather prediction model. Figure 
12 shows the flow diagram for the proposed gradient-based segmentation algorithm. 
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Figure 12: Flow Diagram of Segmentation Algorithm 

 
Source: Hayatbini et al., 2019a 

The proposed method compared favorably with the existing cloud-patch-based segmentation 
technique implemented in the PERSIANN-CCS rainfall retrieval algorithm. The gradient-based 
segmentation result from simulated IR input along with gradient magnitude imageries of 
Hurricane Harvey event was studied. The gradient magnitudes were calculated from the IR 
images and the watershed segmentation was then applied to the gradient magnitude ima-
geries based on the generated markers to achieve the final cloud patch segmentation. Figure 
13 shows that the newly developed algorithm can capture more types of clouds, especially the 
warmer ones compared with the PERSIANN-CCS, in reference to the true cloud mask from the 
model simulations. This indicates that the gradient-based segmentation algorithm can over-
come the drawback associated with threshold-based segmentation approaches implemented in 
patch-based precipitation retrieval algorithms. 
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Figure 13: Visual Comparison of Segmentation Algorithm 

 
Visual comparison of the two segmentation outputs based on the truth mask as a reference for the 

simulated Hurricane Harvey event at 0300 UTC 26 Aug 2017. (A) Truth cloud mask used as a 
reference. The dark blue region implies the cloud existence. (B) PERSIANN-CCS segmentation result 

from single-IR channel. (C) Gradient-based segmentation algorithm output based on only the IR 
channel. In (B) and (C), each random color identifies a distinct cloud patch. 

Source: Hayatbini et al., 2019a 

In addition, Figure 14 compares the probability of detection (POD) and false alarm ratio (FAR) 
statistics of the proposed gradient based segmentation and PERSIANN-CCS algorithm. Con-
stant improvements in segmentation skill using the gradient method algorithm are evident for 
Hurricane Harvey with its cloud systems evolving considerably in structure and morphology. 

Evaluation of event-based images indicates that the proposed algorithm has superiorities when 
comparing to the conventional segmentation technique used in PERSIANN-CCS to improve rain 
detection and estimation skills with an accuracy rate of up to 98 percent in identifying cloud 
regions. 

Figure 14: Statistical Comparison With PERSIANN-CCS 

 
Statistical Comparison of Two Different Segmentation Algorithms for the Hurricane Harvey Case: 

(Left) POD, and (Right) FAR. 
Source: Hayatbini et al., 2019a 
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Conditional Generative Adversarial Networks (cGANs) for Near Real-Time 
Precipitation Estimation From Multispectral GOES-16 Satellite Imageries—
PERSIANN-cGAN 
(Hayatbini et al., 2019b) 

A state-of-the-art precipitation estimation framework which leverages advances in satellite 
remote sensing as well as Deep Learning is developed and verified. The framework takes 
advantage of the improvements in spatial, spectral, and temporal resolutions of the Advanced 
Baseline Imager onboard the GOES-16 platform along with elevation information to improve 
the precipitation estimates. This framework is proposed as an augmentation for PERSIANN-
CCS algorithm for estimating global precipitation. 

The procedure has two main steps. First, a rain/no rain (R/NR) binary mask through classifi-
cation of the pixels is derived and a regression model to estimate the amount of rainfall for 
rainy pixels is applied. Secondly, a CNN is used as a regressor to predict precipitation esti-
mates. The network is trained using the non-saturating conditional generative adversarial 
network (cGAN) and mean squared error (MSE) loss terms to generate results that better learn 
the complex distribution of precipitation in the observed data. The GAN concept is illustrated in 
Figure 15, where G is a generator network and D is a discriminator network. 

Common verification metrics such as POD, FAR, Critical Success Index, rBIAS, Correlation and 
MSE were used to evaluate the accuracy of both R/NR classification and real-valued precipi-
tation estimates. Statistics and visualizations of the evaluation measures show improvements 
in the precipitation retrieval accuracy in the proposed framework compared to the baseline 
models trained using only conventional MSE loss terms. 

Figure 15: Schematic Conditional Generative Adversarial Network (cGAN) Structure 

 
Source: Hayatbini et al., 2019b 

The Multi-Radar/Multi-Sensor system (MRMS) data was used as the ground truth to investigate 
the performance improvement in both detecting the Rain/No Rain pixels and the rain estimates. 
Multiple channels were considered stand-alone and as the input to the proposed model inclu-
ding channel 13 with similar wavelength to PERSIANN-CCS to make the comparison fair. The 
elevation data was also considered as another input to the model, along with single bands of 
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Advanced Baseline Imager GOES-16 to investigate the effect of infusing elevation data as 
auxiliary information. 

Figure 16 shows two sample IR band types and the half-hourly precipitation maps from the 
proposed cGAN model for July 31, 2018, at 22:00 — Coordinated Universal Time (UTC) along 
with the PERSIANN-CCS output and MRMS data for the same time step. Black circles on GOES-
16 satellite imagery represent regions with warm clouds and the red circles are corresponding 
regions with rainfall associated with the warm clouds. 

The visual comparison clearly demonstrates the superiority of PERSIANN-cGAN and improve-
ment of precipitation estimates associated with warm clouds when compared to PERSIANN-
CCS. The current investigation is a preliminary step as a proof of concept for global application 
and toward supporting the National Aeronautics and Space Administration’s Global Precipita-
tion Measurement Mission to develop effective multi-satellite precipitation retrieval algorithms 
for the fusion of precipitation information from multi-satellite platforms. 

Figure 16: PERSIANN-cGAN Algorithm Results Visualization 

 
Source: Hayatbini et al., 2019 

PERSIANN-CNN: Precipitation Estimation From Remotely Sensed Information 
Using Artificial Neural Networks–Convolutional Neural Networks 
(Sadeghi et al., 2019a) 

In this study the effectiveness of applying CNNs together with the IR and water vapor (WV) 
channels from geostationary satellites for estimating the precipitation rate were explored. The 
proposed model performances were evaluated over the central CONUS at the spatial resolution 
of 0.08-degree and at an hourly time scale. PERSIANN-CCS, which is an operational satellite-
based product, and PERSIANN-stacked denoising autoencoder (PERSIANN-SDAE), were 
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employed as baseline models. Results from the study demonstrated that the proposed CNN-
based model (PERSIANN-CNN) can provide more accurate rainfall estimates compared to the 
baseline models at various temporal (hourly and daily) and spatial (0.08, 0.16, 0.25, and 
0.5 degrees) scales. 

Figure 17 shows an extreme storm that occurred on August 3, 2013, over the examined study 
area to compare the performance of PERSIANN-CNN against PERSIANN-CCS and PERSIANN-
SDAE. On August 3, 2013, at 11:00 UTC, two separate cloud patches can be detected using 
the IR (a) and WV channels (b), which show intense rainfalls mostly near the central areas of 
the larger patch, as shown is sub-figure (c), which is the radar observation. As shown in Figure 
17(e), PERSIANN-CNN provided a more realistic representation of the extent and the pattern 
of the rainfall patches when compared to PERSIANN-CCS (subfigure [f]) and PERSIANN-SDAE 
subfigure (d). Both programs falsely detected precipitation occurrence over the majority of the 
larger cloud patch where the cloud temperature was relatively lower. 

Figure 17: Extreme Storm Event 

 
Source: Sadeghi et al., 2019a 

Figure 18 additionally demonstrates how the proposed PERSIANN-CNN approach and baseline 
models performed in detecting and estimating the rainfall intensity throughout different evolu-
tion stages of the intense storm that occurred on August 3, 2013. Time series plots for the 
hourly rainfall estimates by the radar observations, PERSIANN-CNN, PERSIANN-CCS, and 
PERSIANN-SDAE, are shown. PERSIANN-CCS and PERSIANN-SDAE overestimated the rainfall 
for the entire event. However, PERSIANN-CNN’s estimates corresponded well with the radar 



 

25 

observations although there was a slight overestimation and underestimation before and after 
11:00 UTC, respectively. The horizontal axis shows time steps (hr). 

Figure 18: Rainfall Detection 

 
Source: Sadeghi et al., 2019a 

Meta-Heuristic Optimization Applied to Reservoir Simulation 
Algorithms 
Simplicity and flexibility of meta-heuristic optimization algorithms have attracted much atten-
tion in the field of optimization. Different optimization methods, however, hold algorithm-
specific strengths and limitations, and selecting the best-performing algorithm for a specific 
problem is a tedious task. In this section, three optimization algorithms developed in response 
to the requirements of this project, with applications in reservoirs located in California are 
presented. 

Shuffled Complex-Self Adaptive Hybrid EvoLution (SC-SAHEL) Optimization 
Framework 
(Naeini et al., 2018) 

The SC-SAHEL algorithm combines the strengths of different evolutionary algorithms (EAs) in a 
parallel computing scheme. The algorithm uses an “award and punishment” logic in junction 
with various types of EAs. SC-SAHEL explores performance of different EAs, such as the capa-
bility to escape local attractions, speed, or convergence, during population evolution as each 
individual EA suits differently to various response surfaces. The paper compares the perfor-
mance of newly developed SC-SAHEL with a set of previously developed shuffled complex 
algorithms. The SC-SAHEL algorithm performance is evaluated on Folsom Reservoir, which is 
located on the American River, in Northern California. The main functions of the facility are 
flood control, water supply for irrigation, hydropower generation, maintaining environmental 
flow, water quality purposes, and providing recreational area. The reservoir has a capacity of 
1,203,878,290 cubic meters and the power plant has a total capacity of 198.7MW. Three 
different periods are considered here. The first study period is April 1, 2010, to June 30, 2010. 
The year 2010 is categorized as below-normal period according to the California Department 
of Water Resources. The second and third study periods are over the April - June period 
selected in years 2011 and 2015, as the former is categorized by California Department of 
Water Resources as wet, and the latter is classified as critical dry year. The input and output 
from the reservoir are obtained from California Data Exchange Center.2 

 
2 http://cdec.water.ca.gov/  

http://cdec.water.ca.gov/


 

26 

In Figure 19, the simulated storage for different study periods achieved by different EAs is pre-
sented. During the dry period (2015), not only the SC-SAHEL algorithm achieved the lowest 
objective function value, but also the storage level is higher than the observed storage level in 
most of the period. This is since power generation is a function of water height, as well as 
discharge rate. 

Figure 19: Simulated Storage of Folsom Reservoir Simulated Storage 
for Dry (A), Below-Normal (B), and Wet (C) Periods 

   

 
Source: Naeini et al., 2018 

During the below-normal period, the algorithms SC-SAHEL, SP-UCI (shuffled complex strategy 
with principal component analysis developed at the University of California, Irvine), and shuffle 
complex-differential evolution (SC-DE) showed similar behaviors in terms of the storage level. 
During the wet period, the storage levels simulated by the SP-UCI and SC-SAHEL algorithms 
were lower than all other algorithms, however, in some of the runs they were able to find the 
optimum solution (objective function value is 0). However, the simulated storages by these 
algorithms showed some level of uncertainty, which showed equifinality in simulation, meaning 
that the same hydropower generation could be achieved by different sets of parameters. 

The SP-UCI and SC-DE algorithms showed a similar behavior in terms of the storage level. 
During wet periods, storage levels simulated by the SP-UCI and SC-SAHEL algorithms were 
lower than all other algorithms. It is worth noting that, during the wet period, SC-SAHEL and 
SP-UCI algorithms were able to find optimum solutions (which objective function value is 0) in 
some of the runs. However, the simulated storages by these algorithms showed some level of 



 

27 

uncertainty. This showed equifinality in simulation, meaning that same hydropower generation 
can be achieved by different sets of parameters. 

The SC-SAHEL framework provided an arsenal of tools for testing, evaluating and developing 
optimization algorithms. The performance of the hybrid SC-SAHEL with single-method algor-
ithms on 29 test functions was compared. The results showed that the SC-SAHEL algorithm is 
superior to most of single-method optimization algorithms and in general offers a more robust 
and efficient algorithm for optimizing various problems. Furthermore, the proposed algorithm 
can reveal the characteristics of different EAs during entire search periods. The algorithm is 
also designed to work in a parallel framework, which can take advantage of available 
computation resources. 

A Model Tree Generator (MTG) Framework for Simulating Hydrologic 
Systems: Application to Reservoir Routing 
(Naeini et. al, 2020) 

Tree-based algorithms are transparent data-mining approaches that describe and present a 
response (dependent) variable by splitting the explanatory (independent) variables space into 
clusters of data. Simplicity and accuracy of tree-based algorithms make them attractive tools 
among practitioners in different fields of study including remote sensing, water resources man-
agement, and hydrology. Although classic tree-based algorithms were more concerned with 
classification and discrete spaces, application of tree induction methods have been extended 
to regression problems and continuous spaces. A wide range of algorithms have been pro-
posed for regression tree induction, among which a classification and regression tree (CART), 
random forest (RF) and extremely randomized tree (Extra-Tree) found more applications in 
water resources management and reservoir studies. An extension to the regression tree 
algorithms is model trees (MTs), where the partitioning process is carried over according to a 
predefined measure of goodness for splitting candidates. 

In addition, the exhaustive search mechanism embedded in MT algorithms can be biased in 
attribute selections where the number of possible split points is different for the attributes. 
Hence, the attributes with more split candidates have higher chances of being selected for 
partitioning. This search mechanism is also computationally inefficient for finding the combina-
torial effect of variables. These shortcomings motivated the research agenda to develop a new 
generalized MTG framework for tree induction to reduce the selection bias and computation 
burden of MTs. They also enhanced the performance of these algorithms. Figure 20 shows a 
comparison between the sum squared residuals with respect to the mean setting, with single 
constant values in the terminal nodes (left plot) and the sum squared residuals using multiple 
linear regression setting with multiple linear regression in the terminal nodes (right plot) for 
generating models with the MTG framework. The figure also shows the superiority of linear 
regression to single constant values for representing subsets of data. 
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Figure 20: MTG Concept 

 
Source: Naeini et al., 2020 

The MTG framework was employed to simulate daily discharge to evaluate the performance of 
the algorithms on rule-based hydrologic systems, as shown in Figure 21. 

For this study, eight reservoirs with different ranges of services were selected. Figure 22 
shows the location of these reservoirs across the CONUS. The selected reservoirs provide 
various services including flood control, water supply, recreation, and hydropower. Four of 
these reservoirs provide hydropower among which three of them are in California. 

Figure 21: Reservoir Model Variables 

 
Source: Naeini et al., 2020 
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Figure 22: Location of Case Study Reservoirs Over the Continental United States 

 
Source: Naeini et al., 2020 

According to Figure 23, MTG(2) (which is MTG with sum squared residuals using multiple 
linear regression with quantile sampling) can better capture the peak flows and variability of 
data. Although the peaks are well simulated by MTG(2), the model overestimated low flows at 
the end of the period, due to the high inflow values. Similar behavior was observed for the M5 
algorithm. The M5 algorithm maximized the expected error reduction and reduced the stan-
dard deviation. This can also be observed in the beginning of 2016 for all models. However, 
MTG(2) showed better performance for the whole period, specifically for the peak flows. The 
model generated by CART used constant values for flows and showed less variability for most 
flows. These results support the application of the MTs for reservoir routing and efficiency and 
effectiveness of the MTG framework for generating these types of models. Furthermore, the 
storage derived by the generated discharge with MTG model can better capture the variability 
of the storage for the whole period, in comparison to the CART and M5 algorithms. This is also 
evident from the correlation between the simulated and observed discharge and storage for 
the MTG(2) model. 
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Figure 23: Simulated Storage and Discharge for Shasta Dam 

 
Simulated storage; (a) and discharge (b) for Shasta dam; years 2016 and 2017 using CART, M5’, 

and MTG(2) algorithms 
Source: Naeini et al., 2020 

Simulating Hydropower Discharge Using Multiple Decision Tree Methods and 
a Dynamical Model Merging Technique 
(Yang et al., 2020) 

Hydropower release decision-making relies on multisource information such as climate condi-
tions, downstream water quality, inflow and storage, regulation and engineering constraints, 
and so on. The decision tree (DT) method is one of the commonly used techniques to simulate 
reservoir operation and release strategies because of its simplicity and effectiveness. However, 
the performances and simulation accuracy vary among different DT models due to many 
structures and splitting rules associated with each DT model. 

In this study, a dynamic merge technique (DMerge), which adopts a concept from particle 
swarm optimization to postprocess outputs from different DT models, was proposed. The 
purpose of such approach was increasing the simulation accuracy and producing a model 
ensemble with dynamically changing weights throughout the validation phase. This new 
predictive approach, termed DMerge, is capable of using updated observation data to select 
the best ensemble members and is also capable of producing a more consistent and reliable 
prediction than any single DT model. 

In addition, different DT methods in support of hydropower simulation using multiple informa-
tion sources were compared and the importance of different model inputs, particularly water 
quality and climate information, with respect to the predictability of hydropower releases were  
evaluated. Figure 24 shows the concept of the DMerge technique. The core concept of this 
method is to use nonequal weights to dynamically create a single model averaging results with 
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two specific models: the current best-performing model at Time Step t, and the historical best-
performing model over the horizon from 0 to (t–1). 

Figure 24: Dynamic Merge Technique 

 
Source: Yang et al., 2020 

The proposed technique is applied to Shasta Lake in northern California and the results are 
presented. The daily hydropower releases are predicted and compared using the DMerge, 
AdaBoost DT, random forest, and extremely randomized trees methods. These DT algorithms 
differ on how they handle splitting the data. According to Figure 25(a), all algorithms were 
able to produce reasonable simulations with a good match to observation. However, during 
February and March of 2015 in Figure 25(a), only the DMerge and AdaBoost algorithms were 
able to capture the sudden hydropower reduction, while other models overestimated the daily 
hydropower releases during this period. Another interesting phenomenon is shown during the 
period of June to October of 2015 in Figure 25(b), in which the AdaBoost tree algorithm signi-
ficantly overestimated the hydropower releases. However, the DMerge method was able to 
capture the variation of hydropower releases and retains similar predictive performances to RF 
and the Extra-Trees algorithms, which are performing more satisfactorily than the AdaBoost 
tree algorithm during this particular prediction period. 

Figure 25 shows the comparison between simulated and observed daily hydropower discharge 
under different scenarios during the validation period (January 1, 2014, to December 31, 2015). 
The observations are shown as black dots, and the red, blue, pink, yellow, and green lines 
represent the simulated discharges by AdaBoost, RF, Extra-Trees, simple model average (SMA), 
and the proposed DMerge method, respectively. 
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Figure 25: Comparing Simulated and Observed Daily Hydropower Discharges 

 
Comparison of observations (black dots) and predictions 

Source: Analui and Sarooshian 

As shown in Figure 26, 2010 to 2013 is used for calibration and 2014 to 2015 is used for 
validation period. Also, to compare the sensitivity of the model inputs, three different test 
scenarios were designed. 

Figure 26: DMerge Model Setting, Designed Scenarios, and Modeling Structure 

 
Source: Yang et al., 2020 
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Modeling Hydropower Scheduling Decisions 
ARs usually result in massive rainfall along the coastline of California. While challenges remain 
over accurately estimating the associated rainfall, the wide coverage and high spatiotemporal 
resolution of the satellite precipitation products make them suitable for driving distributed 
hydrological models. In this section, the outputs delivered by PERSIANN family products were 
used as the main forcing input to a semi-distributed hydrological model to generate daily 
streamflow information. This information demonstrates the capability of improved PERSIANN 
products in more accurate streamflow modelling and simulation, which contributes to the 
increasing confidence and higher efficiency of hydropower scheduling decisions. With 
California the study region of this project, evaluation of PERSIANN precipitation products 
through streamflow simulation with a distributed hydrological model, the Weather Research 
and Forecasting Model Hydrological modelling system (WRF-Hydro), for a coastal watershed 
was studied. 

Hydrologic Evaluation of PERSIANN Precipitation Products Through 
Streamflow Simulation Using WRF-Hydro 
(Analui and Sarooshian) 

The Russian River Basin is located within Sonoma and Mendocino counties in Northern 
California. The watershed has an area of 3,846 square kilometers and is surrounded by the 
Mayacamas Mountains to the east and the Coast Ranges to the west (Figure 27).  

Figure 27: Russian River Watershed 

  
(Left) Monthly precipitation rate based on PERSIANN-CCS, January 2020. (Right) Annual 

precipitation rate obtained from RainSphere based on PERSIANN-CDR. 

Source: Analui and Sarooshian 

With a hot summer and wet winter, the annual mean precipitation rate from 1983 to 2019 is 
859.56 mm, with 51 percent of the annual precipitation induced by atmospheric rivers (Ralph 
et al., 2013), which can cause flooding in extreme cases. There are two reservoirs within the 
basin for flood control: Lake Mendocino and Lake Sonoma. Figure 28 provides a visual depic-
tion of the Russian River Watershed and the stream gauges, before and after both lakes, that 
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gather important metrics such as flow rates and stream temperatures. The data collected from 
the gauges is used to allocate water during droughts, predict flooding events, ensure the 
protection of fish, and track illegal diversions.  

Figure 28: Russian River Stream Gauges 

 
Source: Analui and Sarooshian 

Precipitation Data 
The evaluation is based on four satellite-based precipitation products from the PERSIANN 
family: the PERSIANN-CDR, PERSIANN-CCS, and the more recently developed PDIR-Now and 
the PERSIANN-Cloud Classification System-Climate Data Record (PCCSCDR) of hourly resolu-
tion. The benchmark used was a gage-corrected MRMS precipitation product. Table 1 summar-
izes the spatial and temporal resolutions, available periods, and coverage of the precipitation 
products. All precipitation products were re-gridded spatially to the 1000-meter resolution land 
surface model grid using bilinear interpolation and were resampled temporally to hourly reso-
lution. For PERSIANN-CDR, the hourly precipitation was assumed to be the same within each 
three-hour interval. Figure 29 shows the hyetograph for MRMS and PERSIANN family precipi-
tation products for water years (WYs) 2017 to 2019. 
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Table 1: Summary of the Precipitation Products Used in the Study 

Dataset Period Spatial 
Resolution 

Temporal 
Resolution Coverage 

MRMS (Gauge 
Corrected) 

June 2006* - Present 0.01° x 0.01° 1-hourly 125°W to 25°E, 
67°S to 53°N 

PERSIANN-CDR January 1983 - Present 0.25° x 0.25° 3-hourly 180°W to 180°E, 
60°S to 60°N 

PCCSCDR January 1983 - Present 0.04° x 0.04° 3-hourly 180°W to 180°E, 
60°S to 60°N 

PERSIANN-CCS January 2003 - Present 0.04° x 0.04° 1-hourly 180°W to 180°E, 
60°S to 60°N 

PDIR-Now March 2000 - Present 0.04° x 0.04° 1-hourly 180°W to 180°E, 
60°S to 60°N 

*The MRMS only became operational in September 2014 but has been running 
in real time since June 2006. (Qi et al., 2016) 

Source: Analui and Sarooshian 

Figure 29: Hyetograph for MRMS and PERSIANN Family Precipitation Product 

 
Calibration Period: 10/1/2016 to 9/30/2018 and validation period: 10/1/2018 to 9/30/2019 

Source: Analui and Sarooshian 

Method 
The WRF-Hydro modelling system is a distributed modeling system that integrates multi-scale 
atmospheric and terrestrial hydrologic processes designed to be compatible with parallel 
computing applications (Gochis, 2020). Its architecture also allows for stand-alone hydrologic 
modeling without two-way coupling with the atmospheric component. WRF-Hydro has been 
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successfully applied in various studies (Yucel, 2015), (Arnault, 2016) and (Verri, 2017). It 
constitutes the core of the United States National Water Model, which forecasts streamflows 
over the entire continental United States for nationwide decision support services.3 

In this study, version 5.1 of WRF-Hydro was used and forced with prescribed atmospheric data-
sets (one-way coupling). The model comprises six modules: land surface model, subsurface 
flow routing, overland flow routing, baseflow model, channel routing, and reservoir routing. 
The evaluation was conducted after automatic model calibration for WY 2017 and WY 2018 in 
two different approaches, using either MRMS precipitation or each of the aforementioned 
PERSIANN products as inputs. The calibration was performed using a surrogate-based method 
and targeted 14 sensitive parameters. Further technical details on descriptions about 
WRF-Hydro modules and calibration process can be found in Appendix A. 

Numerical Results and Analysis 
These simulations assessed the effects of PERSIANN rainfall estimates on streamflow when 
WRF-Hydro was calibrated with the individual products. Figure 30 presents a time series com-
parison of the input specific-calibrated model simulations with observed daily streamflow. For 
the calibration period from WY 2017 to WY 2018, the PERSIANN family products were better 
able to reproduce the variability of the observed streamflow. Compared to the MRMS calibra-
ted streamflow, there was a reduction in the overestimation by the PDIR-Now in February 
2017. Notably, input-specific calibration allowed PERSIANN-CDR, PCCSCDR, and PERSIANN-
CCS to approach the higher peak streamflows in January to May 2017, and May 2018, but also 
resulted in unintended spikes during other low streamflow periods, especially for PCSSCDR in 
November 2016. A similar performance was observed during the validation period in WY 2019. 

Figure 30: Time Series Comparison of the Input Specific-Calibrated Model 
Simulations With Observed Daily Streamflow 

 
Source: Analui and Sarooshian 

 
3 https://water.noaa.gov/about/nwm, last access: 12 July 2020 

https://water.noaa.gov/about/nwm
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The statistical comparisons for the validation period show that the performance generally 
improved for the PERSIANN family products, with PDIR-Now results being the closest to the 
observed streamflow. The bias remained negative but was substantially reduced for 
PERSIANN-CDR (-40 percent), PCCSCDR (-20 percent) and PERSIANN-CCS (-32 percent 
percent). The NSE for PERSIANN-CCS improved the most to a positive value of 0.31 but it was 
still lower than that of both PERSIANN-CDR (0.40) and PCCSCDR (0.36). The correlation 
coefficient for PERSIANN-CDR and PERSIANN-CCS improved to 0.69 and 0.58 respectively, but 
the correlation coefficient for PCCSCDR decreased from 0.71 to 0.61. The latter can be 
explained by the spikes induced after the calibration during the low streamflow periods. The 
outperformance of PDIR-Now over MRMS increased further in terms of NSE (0.71), RMSE 
(102.35), and rBIAS (-22 percent). While the correlation coefficient for PDIR-Now improved to 
0.88 after input-specific calibration, it was slightly lower than that of MRMS (0.93). 
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CHAPTER 3:  
Conclusion 

Precipitation measurements with high spatiotemporal resolution are a vital input for hydro-
meteorological and water resources studies; decision-making in managing extreme weather 
events; and weather, climate, and hydrological forecasting. The focus of this research project 
was to develop advanced machine and deep learning mechanisms to improve the accuracy of 
an existing near real-time PERSIANN product. More specifically, this research developed a 
module that uses climatological data to construct a dynamic that: 

• Has several notable advantages over other quantitative precipitation estimation 
algorithms. 

• Has noteworthy skill over the CONUS (with specific improvement for challenging areas 
in western CONUS and California in particular). 

• Employs machine learning algorithms to improve precipitation forecasts. 

Previous research suggests that one of the main reasons for substantial errors in hydrologic 
forecasting is the lack of quality data on both temporal and spatial variations of historical 
precipitation. Therefore, this research, building upon the foundations of PERSIANN family, 
developed a new algorithm for estimation of precipitation rates from satellite IR radiation ima-
gery, which offers notable advantages over current algorithms for rainfall estimation especially 
over the western Contiguous United States. The new algorithm PDIR-Now advances the 
framework of the existing PERSIANN-CCS system. 

Moreover, since precipitation variability significantly influences the heavily populated West 
Coast of the United States, it raises the need for reliable predictions. Therefore, as part of this 
project, researchers investigated short-to-extended-range precipitation prediction skill in the 
West Coast of the United States. The study used the hindcast database of the S2S project. It 
was found that periods of heavy precipitation associated with the El Niño southern oscillation 
were more predictable in the extended range period than in the shorter time frame. 

In addition, a range of advanced machine learning and neural network algorithms were 
developed to improve the PERSIANN family products and deliver precipitation estimation and 
short-term forecast more accurately by: 

• Enhancing short-term precipitation forecasts based on LSTM recurrent neural networks. 
This study introduced a precipitation-forecasting algorithm that could potentially 
become an accurate short-term precipitation forecasting product in quasi-global cover-
age. The precipitation forecasts from the proposed LSTM and PERSIANN framework 
have demonstrated better statistics compared to the Rapid Refresh (RAPv.1), numerical 
forecasts and PERSIANN estimations from RNN, persistency, and Farneback projections 
in terms of probability of detection, false alarm ratio, critical success index, correlation 
coefficient, and root-mean-square error, especially in predicting convective rainfalls. 
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• Improving precipitation estimation using a CNN. In order to represent the precipitation 
process more accurately in comparison with numerical weather and climate models and 
statistical downscaling methods, a CNN model was introduced. Specifically, the predic-
tors are restricted to the variables that are directly derived from atmospheric dynamic 
equations. It was found that the CNN model outperforms original NARR precipitation 
estimates for the west and east coasts, where precipitation is more abundant compared 
with other areas. 

• PERSIANN-CNN: In this work the effectiveness of applying CNNs, together with the 
infrared and water vapor channels from geostationary satellites for estimating the preci-
pitation rate, was explored. Results showed that PERSIANN-CNN’s hourly rainfall 
estimates corresponded well with the radar observations, while other PERSIANN family 
models overestimated the rainfall for the tested rainfall intensity event. 

Three generalized reservoir release and hydropower production models were also developed to 
leverage data-driven and meta-heuristic approaches. Finally, an analysis on streamflow simu-
lation improvement and forecast accuracy was designed based on improved precipitation 
estimates, with application in California to assist hydropower management for a major 
operational facility serving in California. 

The outcomes of this research provide decision makers with improved information regarding 
hydrologic modeling and short-term hydropower scheduling and will attempt to close the 
knowledge gap regarding the efficiency and reliability of forcing data in hydrological forecasts. 
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GLOSSARY AND LIST OF ACRONYMS 

Term Definition 
AR atmospheric river 
ASMO-PODE adaptive surrogate modeling-based optimization - parameter optimization 

and distribution estimation  
CART classification and regression tree 
CCS cloud classification system 
CDR climate data record 
CEC California Energy Commission 
cGANs Conditional Generative Adversarial Networks 
CMORPH Climate Prediction Center MORPHing technique 
cms cubic meters per second 
CNN convolutional neural networks 
CONUS contiguous United States 
CORR correlation coefficient 
CPC Climate Prediction Center 
CTBT cloud-top brightness temperature 
DMerge dynamic merge technique 
DRAM Delayed Rejection Adaptive Metropolis 
DT decision tree 
EA evolutionary algorithms 
ECCC Environment and Climate Change Canada 
ECMWF European Centre for Medium-Range Weather Forecast 
ENSO El-Niño-Southern Oscillation 
EPIC Electric Program Investment Charge 
FAR false alarm ratio 
GCM general circulation model 
GOES Geostationary Operational Environmental Satellite 
hr hour 
JMA Japan Meteorological Agency 
IR infrared 
LSM Land surface model 
LSTM long short-term memory 
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Term Definition 
M5 M5 is primarily used for supervised learning and produces either a 

decision tree or a tree of regression models in the form of simple linear 
functions. 

MannN Channel routing roughness coefficient 
MJO Madden-Julia oscillation 
mm millimeter 
mm/hr millimeters per hour 
MRMS Multi-Radar/Multi-Sensor 
MSE mean square error 
MT model tree 
MTG Model Tree Generator 
MTG(2) MTG with sum squared residuals using multiple linear regression with 

quantile sampling 
NARR North American Regional Reanalysis 
NASA National Aeronautics and Space Administration 
NOAA National Oceanic and Atmospheric Administration 
NSE Nash-Sutcliff model efficiency coefficient 
OV_ ROUGH2D roughness coefficients for overland flow  
PCNN precipitation estimation from CNN 
PCCSCDR PERSIANN-Cloud Classification System-Climate Data Record 
PDIR-Now PERSIANN Dynamic Infrared-Rain Rate Model 
PERSIANN Precipitation Estimation from Remotely Sensed Information using 

Artificial Neural Networks 
PNARR precipitation estimation from the North American Regional Reanalysis 
POD probability of detection 
r The Pearson correlation coefficient that quantifies the linear correlation 
rBIAS relative bias 
REFDK hydraulic conductivity 
REFKDT infiltration coefficient 
RETDEPRTFAC scaling factor for maximum retention depth 
RF random forest 
RMSE root mean square error 
RNN recurrent neural network 
ROC relative operating characteristics 
RR rain rate 
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Term Definition 
S2S Sub-seasonal-to-Seasonal 
SC-DE shuffle complex-differential evolution 
SC-SAHEL Shuffled Complex-Self Adaptive Hybrid EvoLution 
SDAE Stacked Denoising Autoencoder 
SLOPE linear groundwater basin coefficient 
SMA Simple model average 
SOFM Self-organizing feature map 
SP-UCI shuffled complex strategy with principal component analysis, developed 

at University of California, Irvine 
SSRM sum squared residuals with respect to the mean 
SSRML sum squared residuals using multiple linear regression 
ST2 stage two 
ST4 stage 4 
Tb cloud-top temperatures 
TRMM tropical rainfall measuring mission 
UTC  Coordinated Universal Time 
WRF-Hydro Weather Research and Forecasting Model Hydrological modelling system 
WV Water vapor 
WY Water year 
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Project Deliverables 

Deliverables provided by this project include: 

• Project deliverables included in this final report: 
o addressing improvements to the PERSIANN Including a Module for California 

(draft and final) 

o Improvement of Hydrologic and Energy Demand Forecasts that Reflect Effects of 
Climate Change and their Application for Near Short-term Scheduling of 
Hydropower Operations. 

• Other deliverables include benefit questionnaire and technical transfer plans. 
• Additional information and data related to this research can be found at University of 

California, Irvine’s Center for Hydrometeorology and Remote Sensing at 
http://chrs.web.uci.edu/resources.php.  

• This project generated 13 peer-reviewed journal articles. 

http://chrs.web.uci.edu/resources.php
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APPENDIX A:  
WRF Hydro Calibration Procedure 

The team used Adaptive Surrogate Modeling-based Optimization - Parameter Optimization and 
Distribution Estimation (ASMO-PODE) to calibrate the WRF-Hydro model. ASMO-PODE has been 
tested to demonstrate its utility in calibrating a land surface model (Gong and Duan, 2017) 
while its predecessor ASMO was successfully applied to calibrate nine parameters in the WRF 
model (Di et al., 2017). In this study, 160 uniform initial sampling was first conducted on the 
WRF-Hydro model to construct a surrogate model using Gaussian Processes Regression 
method. A Markov Chain Monte Carlo approach, Delayed Rejection Adaptive Metropolis 
(DRAM), was then used to search for the optimal parameters in the surrogate model. Based on 
the information obtained from the DRAM samplers, six additional model evaluations were per-
formed and used for the construction of the surrogate model before DRAM started the next 
search. This process was repeated 15 times. The entire calibration consisted of 250 model runs 
and an optimal set of parameters with the posterior distribution was obtained. 

The parameters involved in the calibration procedure are broadly the same as those used in 
previous studies with WRF-Hydro (Yucel et al., 2015; Silver et al., 2015; Wang et al., 2019). 
The global parameters include infiltration coefficient (REFKDT) and hydraulic conductivity 
(REFDK), which can greatly affect the amount of surface runoff, scaling factor for maximum 
retention depth (RETDEPRTFAC) which controls the amount of overland flow that is retained on 
the surface before passing to the channels and linear groundwater basin coefficient (SLOPE) 
which determines the deep drainage from the soil columns to the baseflow. The spatial para-
meters are the Manning roughness coefficients for overland flow (OV_ROUGH2D) and channel 
routing (MannN) and Figure A-1 shows their distribution. The parameter ranges were specified 
based on guidelines from the National Water Model. Where there was no information, the 
upper and lower bounds of the parameter range were multiplied by 1.5 and 0.5 respectively in 
accordance with previous studies (Zhang and Anthes, 1982; Srivastava et al., 2014). The 
parameters identified for calibration and results of the calibration are summarized in Table A-1 
and Table A-2 respectively. 

Multi-Radar/Multi-Sensor (MRMS) precipitation was used to calibrate the WRF-Hydro model 
and the parameters were held constant for evaluation across all precipitation products. MRMS 
was used as a benchmark because it incorporates rain gauge data (Figure A-2). This allows 
the team to focus the evaluation solely on the performance of the precipitation products 
without their performance being altered by the potential improvements that product-specific 
calibration could bring. 
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Figure A-1: Spatial Distribution of Manning Roughness Coefficients 

 
Source: Analui and Sarooshian 

Table A-1: Summary of Parameters Identified for Calibration 

Parameters Description Baseline  Lower Limit Upper Limit 
Global Parameters    
REFKDT Infiltration partitioning 

parameter 
3 0.0001 4.0 

REFDK Saturated hydraulic 
conductivity 

2.0E-6 1.0E-6 3.162E-06 
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Parameters Description Baseline  Lower Limit Upper Limit 
RETDEPRTFAC Multiplier on maximum 

retention depth 
1.0 0.1 10.0 

SLOPE Linear groundwater basin 
coefficient 

0.1 0.1 1.0 

Distributed Parameters    
OV_ROUGH2D1  0.005 0.0025 0.0075 
OV_ROUGH2D2  0.025 0.0125 0.0375 
OV_ROUGH2D3 Overland flow roughness 

coefficient 
0.035 0.0175 0.0525 

OV_ROUGH2D4 0.055 0.0275 0.0825 
OV_ROUGH2D5  0.0680 0.0340 0.102 
OV_ROUGH2D6  0.20 0.10 0.30 
MannN1  0.55 0.275 0.825 
MannN2 Channel routing roughness 

coefficient 
0.35 0.175 0.525 

MannN3 0.15 0.075 0.225 
MannN4  0.1 0.05 0.15 

Source: Analui and Sorooshian 

Table A-2: Summary of Calibrated Parameters for Each Precipitation Product 

Parameters MRMS PERSIANN-
CDR PCCSCDR PERSIANN-

CCS 
PDIR-
Now 

REFKDT 4.0 0.00404 0.000592 0.00136 3.025 
REFDK 1.02E-06 3.126E-06 1.0E-6 3.162E-06 1.106E-06 
RETDEPRTFAC 10.0 10 7.81 10 0.132 
SLOPE 0.100 0.812 1.0 0.106 0.109 
OV_ROUGH2D1 0.00357 0.0075 0.0075 0.0075 0.00304 
OV_ROUGH2D2 0.0132 0.0263 0.0375 0.0375 0.0375 
OV_ROUGH2D3 0.0263 0.0525 0.0525 0.0525 0.0353 
OV_ROUGH2D4 0.0312 0.0825 0.0291 0.0340 0.0373 
OV_ROUGH2D5 0.04586 0.102 0.102 0.0454 0.0460 
OV_ROUGH2D6 0.11 0.296 0.290 0.30 0.106 
MannN1 0.821 0.825 0.825 0.825 0.825 
MannN2 0.525 0.525 0.521 0.525 0.183 
MannN3 0.0917 0.225 0.223 0.225 0.225 
MannN4 0.132 0.146 0.15 0.15 0.134 

Source: Analuia and Soroosh Sorooshian 
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Figure A-2: Streamflow Simulation from WRF-Hydro Calibrated 
with MRMS Precipitation 

 
Time series comparison of the MRMS-calibrated model simulations with observed daily streamflow 

Source: Analui and Sorooshian 

Figure A-3 presents a time series comparison of the MRMS-calibrated model simulations with 
observed daily streamflow. For the calibration period from Water Year (WY) 2017 to WY 2018, 
there was a general agreement between the MRMS-simulated streamflow and the observed 
daily streamflow but there was an underestimation of the peak in May 2018. The Precipitation 
Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN)-
Cloud Classification System-Climate Data Record (PCCSCDR), PERSIANN-CDR and PERSIANN-
CCS resulted in a consistent underestimation of the streamflow. PERSIANN dynamic infrared-
rain rate model (PDIR-Now) was able to capture the peaks in general and performed better 
than MRMS for the event in May 2018. However, it overestimated the highest peak streamflow 
in February 2017. 

For the validation period in WY 2019, the same behavior was observed as the calibration peri-
od, and this was also reflected in the statistics shown in Table A-3. All the simulations failed to 
hit several of the peak streamflows, indicating the limitations of the model and rainfall pro-
ducts in capturing such events. PDIR-Now was the closest in capturing the peak streamflows 
but also overestimated the highest peak streamflow in April 2019. Statistically, the MRMS 
derived streamflow achieved a Nash-Sutcliffe efficiency (NSE) of 0.64 root mean square error 
(RMSE) of 119.70 cubic meters per second and correlation coefficient of 0.93 but exhibited a 
substantial relative bias (rBIAS) of -43 percent. PDIR-Now showed the best performance 
among the satellite rainfall inputs and even outperformed MRMS slightly in NSE (0.68), RMSE 
(114.01) and rBIAS (-21 percent) but recorded a lower correlation of 0.83. For the other 
PERSIANN products, the simulations based on PERSIANN-Cloud Classification System-Climate 
Data Record (PCCSCDR) and PERSIANN-climate data record (CDR) were the closest and 
performed better than that of PERSIANN-CCS. There was a substantial negative bias for 
PCCSCDR, PERSIANN-CDR and PERSIANN-CCS at -61 percent, -67 percent, and -75 percent 
respectively. This can be attributed to the inherent underestimation in the respective 
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precipitation data. PCCSCDR and PERSIANN-CDR showed positive NSE values of 0.20 and 0.12 
respectively, indicating skills in the simulations, while PERSIANN-CCS yielded an unsatisfactory 
negative NSE value of -0.06. With the exception of PERSIANN-CCS which did not show good 
correlation with the observed streamflow (correlation coefficient 0.32), PCCSCDR and 
PERSIANN-CDR generally reproduced the variability of the observed streamflow (correlation 
coefficient 0.71 and 0.62, respectively). 

Figure A-3: Scatter Plots of Simulated Streamflow Against 
Observed Streamflow for the Precipitation Products 

 
Source: Analui and Sarooshian 
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Table A-3: Summary Statistic of Simulated Streamflow for Validation Period 

Products NSE CORR RMSE rBias 
MRMS (MRMS) 0.64 0.93 119.70 -43% 
PERSIANN-CDR (MRMS) 0.12 0.62 188.38 -67% 
PERSIANN-CDR (Input Specific) 0.40 0.69 155.10 -40% 
PCCSCDR (MRMS) 0.20 0.71 179.54 -61% 
PCCSCDR (Input Specific) 0.36 0.61 160.92 -20% 
PERSIANN-CCS (MRMS) -0.06 0.32 206.35 -75% 
PERSIANN-CCS (Input Specific) 0.31 0.58 167.17 -32% 
PDIR-Now (MRMS) 0.68 0.83 114.01 -21% 
PDIR-Now (Input Specific) 0.74 0.88 102.35 -22% 

Source Analui and Sarooshian 
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