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̔  This research is funded by the California Energy Commission (CEC) through its Electric 
Program Investment Charge (EPIC) Program, which invests in scientific and 
technological research to accelerate the transformation of the electricity sector to meet 
the state’s energy and climate goals. 

̔  The research project, EPC-20-006, will integrate the latest downscaling approaches 
applied to the recently produced global climate models (GCMs) with an engagement 
process to develop a robust, usable, set of climate projections applicable for California. 

̔  This memo and data here within are being shared to support transparent and timely 
consideration of interim deliverables that are relevant for energy stakeholders and all 
those interested in California’s next generation of climate projections.  

 
 
 
 
 
 
This memorandum is submitted to the CEC by UC San Diego’s Scripps Institution of 
Oceanography. The report meets deliverable requirements under Task 4 of the California 
Energy Commission’s Project EPC-20-006: Development of Climate Projections for California 
and Identification of Priority Projections.        
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Synopsis 
In this document, we present four new dynamically downscaled global climate model (GCM) 
projections, building on the original four GCMs under of EPC-20-006, Task 4. Specifically, new 
GCMs from the 6th Coupled Model Intercomparison Project (CMIP6) are downscaled here using 
the Weather Research and Forecasting (WRF) model. Information on the development of the 
original four dynamically downscaled projections can be found in the Memos on (a) the 
Development and Availability of Dynamically Downscaled Projections Using WRF1 and (b) the 
Evaluation of Downscaled GCMs using WRF2 - Task 4 deliverables of the California Energy 
Commission’s Project EPC-20-006.  
 
The four new GCMs that were dynamically downscaled were, like the original four projections, 
preselected based on their abilities to simulate the atmospheric circulation (both in the Northern 
Hemisphere and across California), extremes, and California’s temperature and precipitation; as 
well as availability of data at 6-hour intervals on native GCM levels to drive WRF. However, the 
need for photovoltaic (PV) and hub-height winds by climate data end-users required the 
production of these four new simulations. In this memo we discuss the motivations behind their 
selection as well as the choice to bias correct the GCM boundary condition data before (a priori 
to) dynamical downscaling. Further, we present comparisons of the original four projections to 
the four new a priori bias corrected projections. 
 
1. Introduction: Bias Correction and downscaling 
Global climate models use millions of calculations and estimations to represent interactions in 
the earth system. This information and data are extremely useful for understanding the climate 
system and predicting its future change. However, all models have errors. Systematic model 
errors are called biases. Examples of climate model biases include overly wet winters or heat 
waves that are not as extreme as observed. The process of artificially reducing model biases is 
called bias correction. 

Bias correction (BC) of Global Climate Model (GCM) data, downscaled or otherwise, is the 
process by which biases in their historical-era meteorological fields are quantified relative to 
another observationally constrained dataset and removed. The process of BC is to-date an 
unfortunate necessity since numerical models predict solutions that can have unrealistic biases. 
For climate data users interested in impacts modeling, these biases can be problematic. 

Take electricity utility planners, for example, who use downscaled temperature outputs to 
project peak load and electricity grid strain in a warming climate. Their in-house electricity load 
models are built on historically observed demand, which is related to historically observed 
temperature, as more buildings turn on (off) their air conditioners on hot (cold) days. If these 
electric utility load models are driven directly with non-bias corrected downscaled GCM data 
which are, say, 3°C too hot on average and/or misrepresent the variability and intensity of 3-day 
heatwaves, the models can easily return projections of future peak load that are nonsensical. 
Worse, utility companies may invest too much or too little capital in system resiliency upgrades, 
ultimately leading to punishing consequences to taxpayers through increased taxes or rolling 
blackouts. In either case, planners using downscaled data in their impacts models must be 
confident in the fidelity of historical load/meteorology relationships in order to place faith in their 
future projections, thus motivating the use of BC. 

In dynamical downscaling (DD), Regional Climate Models (RCMs) are driven at their 
boundaries by data from reanalyses (e.g., Rahimi et al., 2022; Rasmussen et al., 2011;  
Rasmussen et al., 2023) or GCMs (e.g., Bukovsky & Karoly, 2011; Rahimi et al., 2024a,b; Wang 
& Kotamarthi, 2015) across a limited area of the planet over which computational power can be 

 
1 https://www.energy.ca.gov/media/7265 
2 https://cal-adapt.org/files/01_Memo_Evaluation_of_Downscaled_GCMs_Using_WRF_CEC_final.pdf 
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focused into resolving complex terrain and coastline geometry, as well as otherwise high-
resolution land and atmospheric processes. RCMs like the Weather Research and Forecasting 
(WRF) model (Skamarock et al., 2019; Skamarock & Klemp, 2008) used in EPC-2006, solve the 
primitive governing equations subject to the imposed boundary conditions, meaning that 
inherited biases from the boundary condition data, either from GCMs or reanalyses, may lead to 
biases in downscaled precipitation, temperature, and other variables. These biases in 
downscaled fields may be enormous, necessitating BC of these data before delivery to 
stakeholders. Specifically in EPC-20-006, the research team found there to be California-wide 
mean biases of -1.71°C and +1.86 mm d-1 for our original experiments (downscaled to 3 km x 3 
km) relative to observations for surface air temperature and precipitation, respectively, over the 
1981-2010 period. Further, local biases were much larger, particularly over the Sierra Nevada 
(Figure 1). Conversely, a well-calibrated dynamically downscaled reanalysis (ERA5; henceforth 
ERA5-WRF; Rahimi et al., 2022; Hersbach et al., 2020), showcased much smaller biases of 
+0.13°C and +0.19 mm d-1 for these variables, respectively. Temperature and precipitation 
biases in all in the original 4 dynamical downscaled models of these products were removed 
from many of these WRF data, as their statistics were forced to match the Livneh gridded 
dataset (Livneh et al., 2013) via an a posteriori (after downscaling) BC using PresRat. 
 

 
Figure 1. Historical-era (1981-2014) annual mean biases in (left) precipitation [mm d-1] and (right) surface air 
temperature [°C] for the four original downscaled GCMs. 
 

Despite a rigorous GCM selection process, the large bias disparity between ERA5-WRF and 
the 4 original dynamically downscaled GCM projections (see blue-tabled GCMs in Table 1) 
indicated that the transmission of GCM biases to WRF was to blame for the relatively large 
biases in dynamically downscaled precipitation and temperature. This raised the following 
questions: 

1. Were the GCM inputs to WRF so biased that the local-scale long-term climate trends 
distorted in unphysical ways? This is important since PresRat preserves WRF trends. 

2. Is there a BC that can be applied to the GCM boundary conditions a priori to DD that can 
lead to downscaled GCM precipitation and temperature comparable to WRF-ERA5 and 
observations, effectively lowering the intensiveness of BC via PresRat a posteriori to 
DD? 
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Below we address these two questions, as we justify and describe the choice to implement a 
priori BC to the newest four dynamically downscaled GCMs. A listing of all CEC GCM 
experiments is provided in Table 1. The original four GCM projections do not have their 
boundary condition data bias corrected prior to DD (henceforth referred to as no-BC 
experiments), while the newest four projections do have their boundary condition data bias 
corrected prior to DD (henceforth referred to as the w/BC experiments). We also provide a fifth 
3-km w/BC experiment, EC-Earth3-Veg3, which is identical to the no-BC version. 
 
Table 1.  GCMs delivered as part of EPC-20-006, classified by the use of bias correction (BC). GCM nicknames are 
given in parentheses. Note, EC-Earth3-Veg does not contain the new PV and wind variables of the other bias 
corrected experiments. 

 
 

 
2. Bias Correction of the GCM boundary conditions 
 

2.1. BC method 
Since the completion of the no-BC simulations (referred to as the initial four projections), the 
UCLA and Scripps team have been performing tests to assess if GCM biases that are 
transmitted to WRF can affect climate trends. Specifically, we tested if GCM biases in 
atmospheric temperature, horizontal winds, and moisture, as well as sea-surface temperatures 
(SSTs) could explain the very different precipitation, snow, and temperature bias profiles 
between the no-BC and WRF-ERA5 experiments. 

We impose a BC method that is minimally aggressive and has physically identifiable effects 
in WRF downscaling. By ‘minimally aggressive’, we mean that we want as much of the original 
GCM signal to be preserved as possible after BC. Thus we implement the BC procedure 
adopted in Bruyère et al. (2014) and Holland et al. (2010), which decomposes the above GCM 
variables (𝑥𝑥) into the sums of their monthly climatological mean state (𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺,0 ), averaged from 
1980-2014, and the residuals (𝑥𝑥′𝐺𝐺𝐺𝐺𝐺𝐺) which contain the synoptic variability and climate trends:  

 
  (1)   𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺 =  𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺,0 +  𝑥𝑥′𝐺𝐺𝐺𝐺𝐺𝐺. 

 
Next, we do the same for a reference dataset used in BC, in this case, native ERA5 (not ERA5-
WRF): 
  (2)   𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸5 =  𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸5,0 +  𝑥𝑥′𝐸𝐸𝐸𝐸𝐸𝐸5. 
 

 
3 This was an early test simulation to assess the effectiveness of BC. Thus, we do not provide wind and PV variables 
for this simulation. ECE and ECEnew have an identical phasing of internal variability. 
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We then define the mean-state bias as  𝛥𝛥 = 𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺,0 − 𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸5,0, and subtract this from the original 
GCM signal to arrive at our bias corrected signal ( 𝑥𝑥𝐵𝐵𝐵𝐵) and use this signal to drive WRF: 
   

(3)     𝑥𝑥𝐵𝐵𝐵𝐵 =  𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺,0 +  𝑥𝑥′𝐺𝐺𝐺𝐺𝐺𝐺 − 𝛥𝛥,  
(4)     𝑥𝑥𝐵𝐵𝐵𝐵 =  𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸5,0 +  𝑥𝑥′𝐺𝐺𝐺𝐺𝐺𝐺 .   

 
This BC procedure is applied monthly and at every grid point to the entire 1980-2100 time 
series. Time stationarity is assumed in 𝛥𝛥, which is unsampled to 6-hourly, the boundary 
condition update interval in WRF. In the no-BC experiments, WRF is driven by 𝑥𝑥𝐺𝐺𝐺𝐺𝐺𝐺. 
 
We chose this BC technique for the following reasons: 

1. BC may break/violate the physical relationships linking the variables used to drive WRF. 
(e.g., mass continuity, energy conservation). While WRF does not conserve mass or 
energy anyways and integrates its own internal physically consistent solution, a more 
aggressive BC procedure (e.g., by quantile) may create imbalances in WRF that may 
manifest as unintended and unphysical artifacts in DD. 

2. Despite the assumption of time stationarity in the BC, the above method preserves the 
original GCMs’ trends and variability. 

3. A gridpoint-specific versus a spatial-mean BC was chosen since WRF’s large-scale 
temperature and horizontal winds are spectrally nudged to parent GCMs in downscaling. 
The spatial geometry of these biases can be linked to biases in dynamically downscaled 
precipitation, temperature, and snow (Rahimi et al., 2024). 

 
2.2. Quality checks of the BC 

A two-stage check for the success of the implemented BC was conducted. First, we checked 
that the historical means (1980-2014) of the bias corrected fields (horizontal winds and 
temperature above the boundary layer and SSTs) matched those from ERA5-WRF across the 
45-km intermediate nest; here ERA5-WRF should match native ERA5 above 1000 meters 
altitude due to our implemented spectral nudging approach in WRF. As can be seen, the w/BC 
experiments exhibit near-zero biases (Figure 2) relative to ERA5-WRF, while the no-BC 
experiments can be quite biased, especially for temperature fields. Second, we compared 
biases in dynamically downscaled temperature, precipitation, and snow water equivalent (SWE) 
across the western United States (U.S.) relative to PRISM (Daly et al., 1994) and SNOw 
TELemetry (SNOTEL; Serreze et al., 1999) on our intermediate 9-km x 9-km grid. Biases in 
these variables were generally much smaller in the w/BC experiments relative to the no-BC 
experiments when considering an identical 9-GCM ensemble mean (Fig. 3; including GCMs not 
delivered in EPC-20-006). Specifically, biases in temperature (precipitation) averaged across 11 
western U.S. states were -1.48°C and -0.08°C (0.38 mm d-1 and 0.07 mm d-1) in the no-BC and 
w/BC experiments, respectively, relative to PRISM. At higher elevations, biases were compared 
to SNOTEL given the strong correlation with biases and elevation. Spatially averaged at more 
than 700 SNOTEL sites, near-zero and +20% (-12% and +25%) biases in precipitation (snow) 
were simulated in w/BC and no-BC experiments, respectively. Further, the simulated spread in 
bias is much larger in the no-BC relative to the w/BC experiments. Bias comparisons are 
summarized in Rahimi et al. (2024b) and reveal that biases in extreme precipitation are smaller 
in the w/BC relative to the no-BC experiments. 
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Figure 2. Regional-mean approximate downscaled GCM bias profiles from w/BC (dashed) and no-BC (solid) 
experiments across the Northeast Pacific and the western U.S. for (left) temperature [°C], (center) zonal wind [m s-1], 
and (right) meridional wind [m s-1]. Here, these are approximate biases because the reference data product used 
here is ERA5-WRF (see LOCA Version 2 – Training Data Adoption Justification Memo). Since we are using spectral 
nudging in the 45-km WRF experiments, these fields are approximately conserved in downscaling across large 
spatial scales. Here, no-BC and w/BC are constructed using an identical 11-GCM mean with their spreads given by 
blue and red shading, respectively. We also include individual curves for new GCMs reported to CEC (all bias 
corrected; dashed curves) and where possible, the no-BC pair (not reported to CEC). 
 

2.3. Effects of BC on future climate trends 
From the beginning of DD, BC of the GCM boundary conditions was avoided due to its 
potentially distorting effects on climate trends and subsequently increased uncertainty in future 
projections. Subsequent analyses of no-BC and w/BC experiments from the Western U.S. 
Dynamically Downscaled Dataset (WUS-D3) have revealed that, across the western U.S., a 
priori BC introduces relatively little uncertainty into climate projections when compared to the 
irreducible uncertainties attributed to internal climate variability and GCM choice (Risser et al., 
2024). Locally, however, trends in surface air temperature can be modified by as much as 1.5°C 
per century (Figure 4). Across the Sierra Nevada in California, for instance, w/BC experiments 
simulate stronger warming than their no-BC counterparts in excess of 1°C per century. 

This difference in trends is related to wet precipitation (Fig. 3c,e) and snow biases (Fig. 3f) in 
the no-BC experiments; this wet behavior of the no-BC relative to the w/BC experiments 
continues from the historical into the future era (through 2100; not shown). With more snow on 
the ground from year to year in no-BC experiments, bare, darker ground will be exposed more 
gradually than in the w/BC experiments as regional transient warming facilitates snow melt via 
latent heating at the expense of sensible heating for a given energy input to the land surface. 
BC of the GCM boundary conditions dries the WRF solution comparatively, reducing seasonal 
precipitation and snow while warming surface air temperatures as more energy is diverted into 
sensible heating of the overlying atmosphere, leading to an environment more prone to snow 
loss and warmer surface air temperature trends. 
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Figure 3. Relative to PRISM, ensemble-mean climatological (1981-2010) bias patterns in annual-mean (a,b) 
temperature and (c,d) precipitation, with 11-state-mean biases indicated in the lower-left of each subpanel. (e, f) time 
series of cumulative annual precipitation and snow water equivalent (SWE), respectively [mm], across 703 western 
U.S. SNOTEL sites. Shading denotes the range in w/BC (red) and no-BC (blue) experiments. Observations (black 
solid curve) and WRF-ERA5 (black dashed curve) are also presented. 
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Figure 4. The upper-left panel shows downscaled 9-GCM-mean linear trends in springtime 2-meter maximum daily 
air temperature [°C/Century]. The upper-right panel depicts alterations in linear trends if BC is applied prior to 
downscaling for identical GCMs (subtracting the no-BC from the w/BC experiments). The bottom-left figure is the 
same as in the upper-right, but for linear trend alterations when BC is applied after downscaling only using PresRat. 
The bottom-right figure is the same as in the upper-right, but for linear trend alterations when BC is applied both 
before and after downscaling. 
 

As discussed previously, in the experiments, transmitted GCM biases are leading to no-BC 
solutions that are relatively wetter and generally unrealistic compared to those in w/BC. For a 
more holistic review of transmitted GCM biases and their effects in DD, refer to Rahimi et al. 
(2024b). However, we found three mean GCM biases that generally explained the unrealistically 
wet behavior of the no-BC experiments: 

2.4. Why does BC dry the WRF solution? 

1.  An overly cold troposphere (Fig. 2a): This increases the likelihood of heterogenous 
(ice+liquid) precipitation processes in clouds, increasing precipitation efficiency. Further, 
for parcels lifted adiabatically, saturation and subsequent precipitation formation 
processes will occur more readily given lower saturation vapor pressures. 

2. An overly unstable lower troposphere (Fig. 2a): Too much thermodynamic instability in 
the lower levels of the atmosphere tends to increase convective available potential 
energy (CAPE). CAPE is positively correlated with vertical velocity, which itself is 
positively correlated with a faster cloud droplet nucleation (and subsequent precipitation) 
rate. 

3. An overly cyclonic atmosphere just upstream of western North America (Figure 5): This 
feature is coupled to the cold bias (2) via the thermal wind in GCMs, which is maximized 
in intensity just upstream of the western U.S. The presence of this feature can be 
diagnostically linked to excessive upward vertical velocities using quasigeostrophic 
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theory that, when transmitted to WRF, manifests as too much precipitation. This bias 
cannot be removed if a spatial-mean BC were implemented. 
 

 
Figure 5. 1980-2014 biases in 9-GCM-mean 500 hPa temperature [°C] and 250 hPa horizontal winds [m s-1]. 
 
 

2.5. Overview of BC used in EPC-20-006 
Since different types of BC are used for different datasets in EPC-20-006, we provide a general 
summary of these data by BC type in Table 2. 
 
All simulations have the raw 6-hourly, hourly, and daily datastreams saved within an open data 
bucket on Amazon S3. Principally, there are two sets of bias corrected WRF outputs for use in 
this project. 
 

1. Bias correction a priori: The full WRF datastreams for these experiments can be 
regarded as bias corrected, since the GCM boundary conditions were bias corrected to 
ERA5 before downscaling. This bias correction was only performed to TaiESM, MIROC, 
MPI, and ECEnoVeg. These data are best for use in process studies, downscaling to 
higher resolution, or for when variables not provided in LOCA2 hydrid downscaling are 
needed in analysis. 

2. Bias correction a posteriori: This bias correction procedure, conducted using PresRat, 
is only applied to the no-BC WRF experiments (CESM2, CNRM, ECE, and FGOALS) for 
certain variables and temporal frequencies. Specifically, hourly simulated precipitation 
and temperature outputs were bias corrected station data at multiple sites across 
California. These outputs may be better suited for impact studies than the outputs in (1) 
given their minimal historical biases. 

 
 

2.6. Why the w/BC GCMs were different from the no-BC GCMs 
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Once we decided to employ a priori BC in DD, we were then faced with the choice of whether to 
select new GCMs from the GCMs identified for downscaling over California (Krantz, et al, 2021). 
In the end, we chose a new set of GCMs for the w/BC experiments (Table 1) which, like the no-
BC GCMs, were minimally biased. Further, the new GCMs, in the mean, were characterized by 
amounts of regional warming and precipitation change like the no-BC GCMs (Section 4). There 
are three fundamental reasons why we opted to downscale different GCMs in w/BC 
experiments: 

1. While downscaling the original 4 GCMs, we found practical issues with some of the 
native GCM data despite a rigorous GCM identification and selection process. This is not 
uncommon to DD, but nonetheless gave us pause about re-downscaling the same 
GCMs. For example, FGOALS-g3 contains a western seaboard coastline that is offset 
~2° of longitude relative to where it should be. Due to this, FGOALS-g3 was out of 
contention for w/BC experiments and we began to examine other minimally biased 
contenders for DD. 

2. We wanted a broader sense of structural uncertainty. By downscaling different GCMs in 
w/BC experiments, our complete set of projections (considering both no-BC and w/BC 
experiments) trace out a larger swath of plausible regional climate responses. 

3. By downscaling 4 new GCMs, each of which with their own unique phasing of internal 
climate variability, it was considered that these new simulations could also provide 
outputs of use in targeted case study downscaling (another task yet to be performed as 
part of EPC-20-006). For example, MPI-ESM1-2-HR has an intense drought in the early 
2090s (not shown). 
 

 
3. Historical performance of new 3-km x 3-km bias corrected WRF GCM projections 
 
Next, we evaluate historical biases in precipitation and temperature in the w/BC experiments 
across California with respect to the original four GCMs (Table 1). We begin with a quantile-
based state-mean examination of WRF-simulated versus PRISM-based precipitation, as well as 
mean, maximum, and minimum temperature in Figure 6. Beginning with precipitation (Fig. 6, 
upper-left), we can see that the no-BC (blue) experiments are generally much wetter than the 
w/BC experiments (red), which is consistent with the broader western U.S. precipitation bias 
profiles (Fig. 3). Despite the fact that biases grow with increasing quantile, w/BC experiments 
reduce the bias from +1.1 to 0.1 mm, +4.9 to +1.6 mm, and +4.7 to +2.6 mm for the 50th, 99th, 
and 99.9th percentiles, respectively. The substantial reduction in bias is evident by comparing 
ECE and ECEnew. Finally, although precipitation bias is evident for the most extreme quantiles 
examined here, these values are modulated by particularly high precipitation amounts simulated 
across data-sparse regions of complex terrain (e.g., the Sierra Nevada). Given large 
observational uncertainties across these regions, it may not be appropriate to classify WRF and 
PRISM differences as biases for higher quantiles (Lundquist et al., 2019). We also note a much-
reduced simulated spread in the w/BC experiments comparatively which perhaps is an intuitive 
result given that GCM climate means of bias corrected fields were forced to match the mean-
state climate of native ERA5; the w/BC experiments expectedly straddle the ERA5-WRF curve. 

Next, we focus on surface air temperature. For mean surface air temperature (upper-right, 
Fig. 6), the cold bias is effectively removed in the w/BC experiments, with the original spread of 
the no-BC experiments nearly vanishing. We can also see that a large portion of the bias in no-
BC-simulated mean air surface temperature is the result of highly biased maximum surface air 
temperature (lower-left, Fig. 6), whose bias and spread are lowered in the w/BC experiments. In 
terms of minimum surface air temperature, no-BC experiments are slightly less warm-biased 
compared to their w/BC counterparts (lower-right, Fig. 6), albeit with a larger model spread.  
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We believe the nature of the bias differences between w/BC and no-BC experiments in 
maximum and minimum temperature stems in part from low cloud coverage differences 
between the two sets of simulations. Specifically, no-BC experiments precipitate too much 
relative to the w/BC experiments and observations. If we use precipitation as a proxy for 
cloudiness, then no-BC experiments will tend to be cloudier, which would tend to cool maximum 
daily temperatures and warm nocturnal temperatures. During the overnight hours, cloudiness 
would tend to prevent thermal infrared emissions from escaping to space, thus limiting the 
degree to which minimum temperatures could be lowered. These simple arguments tend to 
explain the relatively warmer maximum temperatures of w/BC experiments in Figure 6, but not 
the warmer, more biased behavior of w/BC experiments in simulating minimum temperatures in 
which no-BC is nearly always cooler than w/BC experiments. Thus, we speculate that an overly 
snowy solution in no-BC experiments could be partially responsible for its colder representation 
of minimum daily temperatures relative to w/BC experiments. This could also partially explain 
why no-BC-simulated maximum surface air temperatures are colder than those in w/BC. 

Finally, despite the largest biases presenting for the largest quantiles for precipitation, the 
power of bias correcting the dynamic fields for WRF a priori to reduce PRISM-relative biases in 
50th percentile (median) downscaled precipitation and temperature is evident in Figure 7. 
Specifically, every w/BC experiment outperforms the best performing no-BC experiment 
(CESM2) in simulating median precipitation, while two w/BC experiments (MIROC and TaiESM) 
simulate median temperature biases comparable to the best-performing no-BC experiments 
(ECE and CESM2). Further, biases in w/BC simulations are closer than no-BC experiments to 
those in ERA5-WRF. 
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Figure 6. California-mean historical-era WRF-simulated variables scattered against reference data from PRISM by 
quantile for (upper-left) precipitation [mm d-1], mean surface air temperature [°C], maximum surface air temperature 
[°C], and minimum surface air temperature [°C]. GCM means of the original 4 (no-BC) simulations comprise the blue 
scatter, while GCM means from the new 5 (w/BC) simulations are depicted by the red scatter. Red (blue) shading 
denotes the w/BC (no-BC) experimental spread, and the WRF-ERA5 is depicted by the black solid line. EC-Earth3-
Veg is the only experiment that was duplicated in the w/BC and no-BC runs and is depicted by the light yellow and 
gray curves, respectively. Vertical bolded lines indicate the 25th, 50th (median), 75th, 90th, 99th, and 99.9th percentile 
values from PRISM. 
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Figure 7. California-mean historical biases in median (left) precipitation [mm d-1] and (right) daily mean surface air 
temperature [°C] from individual GCMs within no-BC (blue) and w/BC (red) simulations. WRF-ERA5 is provided for 
reference. 
 
 
4. Comparison of w/BC and no-BC Future Projections 
We restrict our examination of the w/BC GCMs’ climate response to precipitation and 
temperature and compare these new w/BC projections to the original no-BC projections in 
Figure 8. As in our no-BC projections, the large-scale climate change pattern is preserved in 
downscaling (see Krantz et al, 2021). 

 
Figure 8. Future-era (2070-2099 mean) annual and California-mean changes in surface mean air temperature [°C] 
and precipitation [mm d-1] relative to the 1981-2010 period. The left panel shows a scatter of future-era warming 
against future-era precipitation changes. Individual GCMs are shown as red stars (blue circles) for w/BC (no-BC) 
experiments with larger symbols indicating the ensemble mean changes. Red dashed (blue solid) horizontal lines 
showcase the precipitation spread. Vertical lines also denote spread but for temperature. Geographic figures on the 
right show the spatiality of (top) temperature and (bottom) precipitation changes for (left) no-BC and (right) w/BC 
experiments in their respective ensemble means. Numbers in the lower-left portion of each subpanel denote 
California-mean changes in either temperature [°C] or precipitation [mm d-1]. 
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Relative to no-BC experiments, the climate response of w/BC experiments is warmer 

and drier in the ensemble mean. Further, w/BC experiments have a smaller future precipitation 
spread and a broader warming spread than their no-BC counterparts (as denoted by the red 
dashed lines in Fig. 8, left panel). Geographically, w/BC experiments do not simulate the future-
era wetting along the spine of the Sierra Nevada as in the no-BC experiments, although annual-
mean wetting is predicted in both ensembles in the lee of the Sierra Nevada. 
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