California Energy Commission School Bus Replacement Program/Clean Transportation Program # **FINAL PROJECT REPORT** # Baldwin Park Unified School District School Bus and Charging Infrastructure Project **Prepared for: California Energy Commission** Prepared by: Armik Andjou June 2025 | CEC-600-2025-024 # **California Energy Commission** Armik Andjou **Primary Authors** Baldwin Park Unified School District 3699 N. Holy Ave. Baldwin Park, CA 91706 (626) 962-3311 bpusd.net **Agreement Number: ARV-19-017** Elizabeth Menchaca-Guhl Commission Agreement Manager Elizabeth John Office Manager COMMERCIAL AND INDUSTRIAL ZEV TECHNOLOGIES AND INFRASTRUCTURE Hannon Rasool Deputy Director FUELS AND TRANSPORTATION Drew Bohan **Executive Director** #### **DISCLAIMER** This report was prepared as the result of work sponsored by the California Energy Commission (CEC). It does not necessarily represent the views of the CEC, its employees, or the State of California. The CEC, the State of California, its employees, contractors, and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the use of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the CEC nor has the CEC passed upon the accuracy or adequacy of the information in this report. ### **PREFACE** Assembly Bill 118 (Núñez, Chapter 750, Statutes of 2007) created the Clean Transportation Program. The statute authorizes the California Energy Commission (CEC) to develop and deploy alternative and renewable fuels and advanced transportation technologies to help attain the state's climate change policies. Assembly Bill 8 (Perea, Chapter 401, Statutes of 2013) reauthorizes the Clean Transportation Program through January 1, 2024, and specifies that the CEC allocate up to \$20 million per year (or up to 20 percent of each fiscal year's funds) in funding for hydrogen station development until at least 100 stations are operational. The Clean Transportation Program has an annual budget of about \$100 million and provides financial support for projects that: - Reduce California's use and dependence on petroleum transportation fuels and increase the use of alternative and renewable fuels and advanced vehicle technologies. - Produce sustainable alternative and renewable low-carbon fuels in California. - Expand alternative fueling infrastructure and fueling stations. - Improve the efficiency, performance, and market viability of alternative light-, medium-, and heavy-duty vehicle technologies. - Expand the alternative fueling infrastructure available to existing fleets, public transit, and transportation corridors. - Establish workforce-training programs and conduct public outreach on the benefits of alternative transportation fuels and vehicle technologies. Senate Bill 110 (Committee on Budget and Fiscal Review, Chapter 55, Statutes of 2017) created the School Bus Replacement Program, appropriating up to \$75 million from the California Clean Energy Jobs Act (Proposition 39), an initiative that voters approved in 2012. The statute authorizes the CEC to provide school bus replacement grants to school districts, County Offices of Education, and Joint Power Authorities operating the oldest school buses in disadvantaged communities. To be eligible for funding under the Clean Transportation Program, a project must be consistent with the CEC's annual Clean Transportation Program Investment Plan Update. The CEC issued GFO-17-607 to provide funding opportunities under both the School Bus Program to fund projects that replace the oldest diesel school buses in California with electric vehicle school buses and the Clean Transportation Program to fund infrastructure projects that support the electric vehicle school buses. In response to GFO-17-607, the recipient submitted an application which was proposed for funding in the CEC's notice of proposed awards June 3, 2019 and the agreement was executed as ARV-19-017 and on November 22, 2019. ### **ABSTRACT** Baldwin Park Unified School District submitted an application to receive grant funding under the California Energy Commission (CEC) Solicitation GFO-17-607 to replace five old diesel school buses. Baldwin Park Unified School District was awarded funding for five vehicle-to-grid ready electric school buses and the supporting electric vehicle charging infrastructure. Baldwin Park Unified School District purchased five electric school buses and deployed a total of eight charging stations, including five single port grid connected charging stations and three dual port solar-powered grid independent charging stations. Three Type C school buses were placed into service on 01/13/2020 and two Type A school buses were placed into service on 12/13/2023. Baldwin Park USD was also offered workforce training to help support the successful deployment of the new electric fleet. The old, diesel-powered buses were also dismantled and removed from service. This project found that the electric school buses reduced greenhouse gas emissions by 0.356 NOx short tons and 0.11 CO₂ short tons, reduced 3276 gallons of diesel, and had a fuel and maintenance cost savings of \$24,407.55 during the project's 12-month reporting period. **Keywords**: GFO-17-607, grant funding, electric school bus, diesel, greenhouse gas emissions, cost savings, vehicle-to-grid, electric vehicle charging infrastructure, workforce training. Please use the following citation for this report: Andjou, Armik, 2025. *Baldwin Park Unified School District School Bus and Charging Infrastructure Project Final Report.* California Energy Commission. Publication Number: CEC-600-2025-024. # **TABLE OF CONTENTS** | Page | |--| | Prefacei | | Abstractii | | Table of Contentsiii | | _ist of Figuresiii | | _ist of Tablesiii | | Executive Summary | | CHAPTER 1: Introduction | | School Bus Replacement Program Objectives | | CHAPTER 2: Project Details | | Electric School Bus Funding | | Infrastructure Funding | | Obstacles, Delays, and Lessons Learned | | CHAPTER 3: Workforce Training Funding | | CHAPTER 4: Data Collection | | CHAPTER 5: Conclusion | | Glossary | | LIST OF FIGURES | | Page | | Figure 1: Baldwin Park Unified School District's Electric School Bus | | Figure 2: Example of Acceptable Method to Dismantle Vehicle Chassis | | Figure 3: Electric Replacement Bus #17 with BEAM EV ARC | | Figure 4: Electric Replacement Bus #16 | | LIST OF TABLES | | Table 1: School Bus Replacement Program Awarded Bids4 | ## **EXECUTIVE SUMMARY** The priority of Baldwin Park Unified School District has always been student health and educational success. Baldwin Park Unified School District embraces continuous improvements to its transportation department and fleet to help keep students safe and healthy. This project sought to replace old diesel school buses with zero-emission electric school buses. The replacement buses will improve air quality and reduce school energy and maintenance costs while providing students with necessary school transportation. The first stage focused on installation of grid connected charging infrastructure. This installation included coordinating with the local utility company, producing engineering and design drawings by subcontractors, purchasing charging equipment, and constructing the charging station. The electric vehicle charging infrastructure, which includes five single port Level 2 charging stations, is located and maintained at 3699 N. Holly Ave., Baldwin Park, Los Angeles County. The second stage dealt with the procurement of electric school buses. Baldwin Park Unified School District applied for and was awarded grant funding for the purchase of five new electric school buses. Baldwin Park Unified School District selected a school bus manufacturer, placed a purchase order for bus procurement, and placed the three Type C school buses into service on 01/13/2020 and two Type A school buses into service on 12/13/2023. The third stage required Baldwin Park Unified School District to scrap the old diesel school buses within 12 months from the delivery of the new electric school buses. This disposal is to ensure that the old diesel school bus(es) do not continue to produce emissions. The final stage involved 12 months of data collection on the electric school buses. These data were used to analyze the economic and environmental impacts that resulted from the electric for diesel school bus replacement. During the final stage of the project, Baldwin Park Unified School District requested to use its excess infrastructure funding to deploy three dual port solar-powered grid independent charging stations. The purpose of the deployment was to quickly install additional charging capacity within the agreement term that could also provide off-grid charging capabilities during power outages. Baldwin Park Unified School District's electric school buses have helped save money on fuel and maintenance costs. The new buses have also improved the health of students by reducing their exposure to toxic air contaminants. Baldwin Park Unified School District recommends school districts across the state replace their old diesel-polluting school buses with clean, all-electric school buses. # CHAPTER 1: Introduction ## **Background** Senate Bill 110 (Committee on Budget and Fiscal Review, Chapter 55, Statutes of 2017) appropriated funds to establish the School Bus Replacement Program at the California Energy Commission (CEC). The CEC provided one-time funding of \$75 million from Proposition 39 for the replacement and scrappage of old diesel school buses in disadvantaged and low-income communities throughout California. To allow wider coverage of the program, the funds were distributed among four regions in California: Northern California, Central California, Southern California, and Los Angeles County. Additional funding of almost \$14 million from the CEC's Clean Transportation Program was leveraged to provide schools the necessary charging infrastructure to operate the buses. Also, \$1 million in Clean Transportation Program funds were set aside for workforce training and development to ensure proper operation and maintenance of the buses. The CEC received more than 200 applications for more than 1,600 diesel school buses requested for replacement, some buses as old as 1978. CEC staff then evaluated the buses based on three factors: age of bus, applicant's percentage of free and reduced-price meals recipients, and applicant's disadvantaged community score according to the CalEnviroScreen 3.0. From the applications received, an initial list of ranked buses was released in November 2018. The second phase of the program included selecting a manufacturer or dealer that could design, construct, and deliver electric school buses. In November 2018, the CEC released a solicitation to establish a bulk purchase price for replacement buses. Applications were evaluated and scored for the technical evaluation portion based on the following criteria: - Relevant experience and qualifications - Project readiness and implementation - Client references - Battery and fuel range - Warranty, service, and support - Innovation - Economic benefits to California - Ability to leverage funding Applications passing the technical evaluation advanced to the next screen, where the lowest-cost bid was selected for each school bus type (Type A¹, Type C², Type D³, and each type with or without chair lifts). The bus bid forms were ranked in order from lowest to highest cost per bus by type. Table 1 shows the manufacturer's awarded bids, which did not include an awarded Type B bus. . ¹ A Type "A" school bus is a van conversion or bus constructed utilizing a cutaway front section vehicle with a left-side driver's door. This definition includes two classifications: Type A-I, with a Gross Vehicle Weight Rating (GVWR) less than or equal to 14,500 pounds; and Type A II, with a GVWR greater than 14,500 pounds and less than or equal to 21,500 pounds. ² A Type "C" school bus is constructed utilizing a chassis with a hood and front fender assembly. The entrance door is behind the front wheels. A "type C school bus" also includes a cutaway truck chassis or truck chassis with cab, with or without a left side door, and with a GVWR greater than 21,500 pounds. ³ A "type D school bus" is a body installed upon a chassis, with the engine mounted in the front, midship or rear, with a gross vehicle weight rating of more than 10,000, designed for carrying more than ten persons. The engine may be behind the windshield and beside the driver's seat; it may be at the rear of the bus, behind the rear wheels, or midship between the front and rear axles. The entrance door is ahead of the front wheels. A type D school bus has a maximum length of 45 feet. **Table 1: School Bus Replacement Program Awarded Bids** | Applicant | Bus Type | Bid Amount | |--|---------------------------|------------| | The Lion Electric Co. | Type A Without Chair Lift | \$271,389 | | A-Z Bus Sales, Inc. –
California (Micro Bird) | Type A With Chair Lift | \$293,424 | | The Lion Electric Co. | Type C Without Chair Lift | \$321,184 | | The Lion Electric Co. | Type C With Chair Lift | \$329,627 | | The Lion Electric Co. | Type D Without Chair Lift | \$332,009 | | The Lion Electric Co. | Type D With Chair Lift | \$339,370 | Source: CEC Once the manufacturers were selected, CEC staff was able to allocate funding based on bid price, using the rank list to determine which applicants would be awarded buses. From the initial rank list of buses, the CEC was able to fund 228 electric school buses, with an additional \$60,000 in infrastructure funding per bus. Recipients also had the option to procure their buses outside the CEC awarded manufacturer bid, as long as the recipients used their own established procurement procedures while adhering to all applicable state and local laws and terms and conditions of the grant agreement. # **School Bus Replacement Program Objectives** The School Bus Replacement Program is helping schools throughout the state transition from old, polluting diesel school buses to electric school buses, reducing exposure to harmful emissions and helping the state reach its climate and air quality goals. This program also supports the state's overall energy goals such as the Low Carbon Fuel Standard (LCFS) target for 2030 and the Senate Bill 32 (Pavley, Chapter 249, Statutes of 2016) target goal to reduce greenhouse gas emissions 40 percent below the 1990 level by 2030. The agreement objective is to purchase electric school buses to replace diesel buses that will be removed from service and scrapped and install or upgrade electric bus charging infrastructure at grant recipient transportation sites. # **CHAPTER 2: Project Details** # **Electric School Bus Funding** Baldwin Park Unified School District was awarded \$1,615,146.00 to replace five old diesel school buses with five all-electric school buses, as well as purchase and install the associated charging infrastructure. The district selected two Type A school buses and three Type C school buses without optional wheelchair lifts based on the following needs: - Total cost of bus (CEC share) - Quoted bus range and battery capacity (kWh) - Bus route profiles - Upgrade options available Baldwin Park Unified School District is responsible for transporting approximately 870 children per year, with an average route distance of 35 miles. Baldwin Park Unified School District has a fleet composed of 23 buses featuring a total of seven electric school buses, three diesel buses, one compressed natural gas bus, ten propane buses, and two gasoline buses. Baldwin Park Unified School District decided to procure electric school buses from Lion Electric and Blue Bird after the manufacturers were competitively awarded under the CEC's GFO-18-604 "Establish Bulk Purchase Pricing for Electric School Buses. All of the school buses had the following upgrade: Air conditioning units. These upgrades were necessary for the health and safety of students and drivers. The Type C buses also had a charging plug upgrade, which was necessary for the buses to use direct current fast chargers. The total cost for the new electric school buses was \$1,605,641.84. Of that total, 99.9 % percent was covered by the CEC. Figure 1 below shows one of the district's new electric school buses funded by the CEC. Figure 1: Baldwin Park Unified School District's Electric School Bus Source: Baldwin Park Unified School District. The replaced diesel buses must be scrapped and removed from service within 12 months from delivery of the new bus. Each district was required to show proof of scrappage, which included photographs of bus/engine destruction, vehicle identification number, engine serial number, and method used to dismantle the engine and non-engine components. Figure 2 illustrates one of the acceptable methods of scrapping the chassis of a vehicle. As of February 03, 2020 all five of Baldwin Park Unified School District buses have been scrapped. Figure 2: Example of Acceptable Method to Dismantle Vehicle Chassis Source: Samson Auto Salvage. # **Infrastructure Funding** The CEC's Clean Transportation Program allocated \$14 million to the School Bus Replacement Program to fund electric school bus charging infrastructure. The CEC provided up to \$60,000 per awarded bus for purchase and installation of the associated infrastructure. This allocation enabled Baldwin Park Unified School District to install five Blink IQ200 chargers. The infrastructure was completed 1/11/2021 and began operating 1/12/2021. The CEC worked with electric utilities, both public and private, to assist in upgrading electrical infrastructure required to charge the awarded buses while emphasizing the need to plan for future electrical capacity needs. Electric vehicle supply equipment was required to be, at a minimum, a Level 2⁴ ENERGY STAR®-certified, networked charger capable of charging a vehicle at a minimum of 6.2 kilowatts (kW); however, the CEC recommended electric vehicle supply equipment capable of charging at 19.2 kW. These high capacity 19.2 kW chargers only require 6–8 hours of charging time to power a school bus battery from 0 to 100 percent, as indicated by the school bus manufacturers selected for the School Bus Replacement Program. Networked electric vehicle supply equipment provides recipients with the ability to set charging - ⁴ Level 2 Chargers operate between 208 and 240 Volts with output of anywhere between 3 kW and 19 kW of alternating current power. for buses to off-peak-demand hours, provide remote diagnostics, and allow remote start of connected vehicles. Baldwin Park Unified School District also used remaining funds from its infrastructure allocation to deploy three dual port solar-powered grid independent charging stations. Photovoltaic solar panels were required to be, at a minimum, connected to EV chargers and separately metered, if grid connected. The district purchased BEAM EV ARC 2020 charging stations that featured a 4.3 kW solar array and 43kWh battery storage, one of which is shown in Figure 3. The purpose of the infrastructure deployment was to quickly acquire additional charging capacity within the agreement term that could also provide backup power to the district's short 10-mile routes in the case of power outages. Since the BEAM EV ARC are grid independent, there was no permit, construction, or electric work required and therefore, the district was able to rapidly deploy them within 90 days of purchase order. During the agreement term, the BEAM EV ARCs provided backup power to 3 buses during a power outage on January 8, 2025. Figure 3: Electric Replacement Bus #17 with BEAM EV ARC Source: Baldwin Park Unified School District. ## **Obstacles, Delays, and Lessons Learned** Delivery delays related to the COVID-19 pandemic's supply chain disruption were the main challenge experienced by Baldwin Park Unified School District during its school bus replacement project. Originally, a purchase order for all five buses was made through a singular bus vendor. Although delivery delays affected all five electric school buses, the district opted to switch vendors for its two Type A buses in April 2022 due to prolonged delays and an uncertainty on the delivery timeline from the original vendor. The district's buses and chargers have required a few repairs that have affected operation. The Type C buses needed battery pack and inverter replacements, which fell under warranty. | a 6 to 8 week wait time. | |--------------------------| The charging infrastructure has required parts replacements, and the district has been quoted # CHAPTER 3: Workforce Training Funding In anticipation of the CEC's School Bus Replacement Program, in 2018 the CEC began to work with California school districts, county offices of education, and joint power authorities to understand the importance and role of school bus training for zero-emission school bus technology. Many school districts expressed the need for training of school bus maintenance and service technicians, as well as training for bus operators for battery-electric technology. In 2019, the CEC approved a \$1 million contract with Cerritos Community College to develop and implement the "Electric School Bus Training Project." Cerritos Community College developed the curriculum with the Southern California Regional Transit Training Consortium and college faculty throughout the state. Faculty from the colleges provided training in the school bus regions through a hybrid of in-person and online training. The training project included automotive instructor led training to maintenance and service technicians for 96 hours. It also included 12 hours of school bus operator training. The training content consisted of: - Electric Vehicle School Bus and Charging Infrastructure Familiarization. - Circuit Diagnostic with Digital Volt Ohm Meter. - Computerized Engine Management Systems. - Complexity of the Harness and Computer Functions in the Modern Chassis. - Programmable Logic Controller Input/Output Systems Diagnostics. - Network Systems Electronics Diagnosis and Repair - Electric Bus Driver Training Familiarization. Two Baldwin Park Unified School District technicians received free training on electric buses offered by the Electric School Bus Training Project and free training offered by A-Z Bus Sales. Workforce training is an important consideration when incorporating zero-emission school buses into a fleet. As with most new technologies, there is a learning curve and operational adjustments the fleet must make to maximize the benefits of the technology. Compared to conventional-fueled school buses, there are differences in zero-emission school bus maintenance and operation. For example, zero-emission school buses have fewer moving parts, do not have an exhaust system, or require oil changes, and the braking systems of these buses last longer. For these reasons, along with many more, electric school buses have proven to be a cost-effective solution. # CHAPTER 4: Data Collection #### 12-Month Data Collection A requirement of the School Bus Replacement Program was to collect 12 months of data and metrics on the usage of the new buses. These data points will be used to determine the financial, environmental, and health benefits of replacement school buses funded by the CEC. Listed below are the specific data points for the five electric buses funded by the School Bus Replacement Program. #### **Baldwin Park Unified School District - Bus #1** When placed into service over a 12-month period, Baldwin Park Unified School District's Bus #1 traveled 5,635 miles. The replaced diesel fuel bus had a miles-per-diesel-gallon average of six miles. The miles traveled over the reporting period equate to a total reduction of 939 gallons of diesel. The average cost of a gallon of diesel fuel was \$ 3.45 during the reporting period. This equals a diesel cost savings of \$2,155.00. The total replaced diesel maintenance cost of the scrapped bus was \$7,938.00. Over the 12-month period, the new electric school bus used 4059.5 kWh. The total cost for this electricity usage was \$1,085.00. Total maintenance cost for the new electric school bus amounted to \$3,535. #### **Baldwin Park Unified School District - Bus #16** When placed into service over a 12-month period, Baldwin Park Unified School District's Bus #16, shown in Figure 3, traveled 4553 miles. The replaced diesel fuel bus had a miles-per-diesel-gallon average of six miles. The miles traveled over the reporting period equate to a total reduction of 759 gallons of diesel. The average cost of a gallon of diesel fuel was \$3.45 during the reporting period. This equals a diesel cost savings of \$1,741.00. The total replaced diesel maintenance cost of the scrapped bus was \$6,701.00. Over the 12-month period, the new electric school bus used 3279 kWh. The total cost for this electricity usage was \$877.00. Total maintenance cost for the new electric school bus amounted to \$2,672. #### **Baldwin Park Unified School District - Bus #17** When placed into service over a 12-month period, Baldwin Park Unified School District's Bus #17 traveled 1,086 miles. The replaced diesel fuel bus had a miles-per-diesel-gallon average of six miles. The miles traveled over the reporting period equate to a total reduction of 181 gallons of diesel. The average cost of a gallon of diesel fuel was \$3.45 during the reporting period. This equals a diesel cost savings of \$434.50. The total replaced diesel maintenance cost of the scrapped bus was \$3,702. Over the 12-month period, the new electric school bus used 782 kWh. The total cost for this electricity usage was \$189.95. Total maintenance cost for the new electric school bus amounted to \$1,200. #### **Baldwin Park Unified School District - Bus #19** When placed into service over a 12-month period, Baldwin Park Unified School District's Bus #19 traveled 3926 miles. The replaced diesel fuel bus had a miles-per-diesel-gallon average of six miles. The miles traveled over the reporting period equate to a total reduction of 654 gallons of diesel. The average cost of a gallon of diesel fuel was \$ 3.45 during the reporting period. This equals a diesel cost savings of \$1,497.45. The total replaced diesel maintenance cost of the scrapped bus was \$ 7,518.00. Over the 12-month period, the new electric school bus used 2829 kWh. The total cost for this electricity usage was \$760.00. Total maintenance cost for the new electric school bus amounted to \$3,115. #### **Baldwin Park Unified School District - Bus #21** When placed into service over a 12-month period, Baldwin Park Unified School District's Bus #21 traveled 4,460 miles. The replaced diesel fuel bus had a miles-per-diesel-gallon average of six miles. The miles traveled over the reporting period equate to a total reduction of 743 gallons of diesel. The average cost of a gallon of diesel fuel was \$3.45 during the reporting period. This equals a diesel cost savings of \$1,704.50. The total replaced diesel maintenance cost of the scrapped bus was \$4,222.00. Over the 12-month period, the new electric school bus used 860kWh. The total cost for this electricity usage was \$3,210.56. Total maintenance cost for the new electric school bus amounted to \$2,684. The CEC's School Bus Replacement Program will help reduce tailpipe emissions of smogforming nitrogen oxides by 98,000 lbs. and toxic diesel soot by more than 2,500 lbs. Minimizing exposure to hazardous emissions reduces the risk to adolescent bus riders of developing respiratory diseases such as asthma and helps the state achieve emissions reductions goals. Figure 4: Electric Replacement Bus #16 Source: Baldwin Park Unified School District. # **CHAPTER 5:** Conclusion The School Bus Replacement Program was vital to the long-term success of transporting students to and from school. Not only is the program saving districts time and money, it is also helping reduce the total amount of emissions released into the environment. Baldwin Park Unified School District is dedicated to contributing to California's overall goals of decreasing greenhouse gas emissions and improving overall air quality. Baldwin Park Unified School District's next step is to replace three remaining diesel buses with three electric buses granted by EPA funding, for a school bus fleet comprised of a total of ten electric buses. ## **GLOSSARY** CALIFORNIA ENERGY COMMISSION (CEC) — The state agency established by the Warren-Alquist State Energy Resources Conservation and Development Act in 1974 (Public Resources Code, sections 25000 et seq.) responsible for energy policy. The CEC's seven major areas of responsibilities are: - 1. Planning and Policy Development - 2. Renewable Energy Growth - 3. Energy Efficiency - 4. Energy Innovation - 5. Cleaner Transportation - 6. Responsible Electricity Infrastructure - 7. Emergency Response KILOWATT (kW) — One thousand watts. A unit of measure of the amount of electricity needed to operate given equipment. On a hot summer afternoon, a typical home — with central air conditioning and other equipment in use — might have a demand of 4 kW each hour. KILOWATT-HOUR (kWh) — The most commonly used unit of measure telling the amount of electricity consumed over time, means 1 kilowatt of electricity supplied for 1 hour. In 1989, a typical California household consumed 534 kWh in an average month. LOW CARBON FUEL STANDARD (LCFS)—A set of standards designed to encourage the use of cleaner low-carbon fuels in California, encourage the production of those fuels, and therefore reduce greenhouse gas emissions. The LCFS standards are expressed in terms of the carbon intensity of gasoline and diesel fuel and their respective substitutes. The LCFS is a key part of a comprehensive set of programs in California that aim cut greenhouse gas emissions and other smog-forming and toxic air pollutants by improving vehicle technology, reducing fuel consumption, and increasing transportation mobility options. NITROGEN OXIDES (OXIDES OF NITROGEN, NOx)—A general term pertaining to compounds of nitric oxide (NO), nitrogen dioxide (NO2), and other oxides of nitrogen. Nitrogen oxides are typically created during combustion processes and are major contributors to smog formation and acid deposition. NO2 is a criteria air pollutant and may result in numerous adverse health effects. PARTICULATE MATTER (PM)—Unburned fuel particles that form smoke or soot and stick to lung tissue when inhaled. A chief component of exhaust emissions from heavy-duty diesel engines. SHORT TON—An imperial unit of mass equal to 2,000 pounds.