

Enhanced Agricultural and Industrial Fuel Substitution Module in FSSAT

Usman Muhammad August 18, 2025

Acronyms, Initialisms, and Abbreviations

AAEE – Additional Achievable Energy Efficiency

AAFS - Additional Achievable Fuel Substitution

Ag – Agricultural

AMI – Advanced Metering Infrastructure

ARCHES – Alliance for Renewable Clean Hydrogen Energy Systems

CARB – California Air Resource Board

CEC – California Energy Commission

CPUC – California Public Utilities Commission

Elec – Electricity

EIA - Energy Information Administration

FS – Fuel Substitution

FSSAT – Fuel Substitution Scenario Analysis Tool

GHG – Greenhouse gas

H₂ – Hydrogen gas

IEPR – Integrated Energy Policy Report

Ind - Industrial

NAICS – North American Industry Classification System

NPMS - National Pipeline Mapping System

MOU – Memorandum of Understanding

PiCS – Programs and Incremental Codes and Standards


SMR – Steam Methane Reforming

U.S. DoT – United States Department of Transportation

Background of FSSAT Ag & Industrial Module

- FSSAT has an Ag & Industrial module
- Not fully developed and used until the <u>2023</u>
 <u>Demand Scenarios Project</u>
- Development and Expansion in 2024-2025
 - ➤ Individual NAICS code industries
 - > Hydrogen fuel substitution potential
- New industrial load shapes using AMI data
- Not to be used in the 2025 IEPR

FSSAT Ag & Industrial Module Process

IEPR Ag & Ind Gas Baseline Demand Forecast

PiCS Additional Achievable Fuel Substitution Scenario

Reduces consumption of Ag & Ind gas

FSSAT Ag & Ind Fuel Substitution Module (Electricity or Hydrogen)

- Characterize and Split Ind thermal end uses
 - Process Heat-Low (electricity)
 - Process Heat-High (H₂)
 - Water Heating (electricity)
- Apply estimates from H₂ production & transport
- Calculate fuel substitution potential

PiCS Additional Achievable Energy Efficiency Scenario

Further reduces consumption of Ag & Ind gas

Hourly Outputs

Profiles based on NAICS codes

Annual Outputs

- Final demand forecasts
- Incremental electricity added from FS and onsite H₂ production
- Hydrogen demand
- Avoided gas consumption
- Net GHG emissions
- Cost of substitution

Overview of Agricultural Fuel Substitution

- Baseline Ag Demand for Electricity and Gas
 - Granularity: Forecast Zone, Gas Planning Area, Year, End Use, Energy Consumption
 - > Electric and gas options exist for each end use
 - HVAC
 - Water Heating
 - Miscellaneous
- Ag FSSAT currently limited to additional electrification of end uses
 - > Potential revisions in the future

Overview of Industrial Fuel Substitution

- Baseline Industrial Electricity and Gas Demand Forecast
 - ➤ Granularity: 46 NAICS Sub-sector Industries, forecast zone, planning area, Year, End Use, Energy Consumption
- Industrial End Uses: Motor, Process Cooling, Thermal, HVAC, Lighting, Elec/Cogen, Miscellaneous
 - Gas consumption is utilized in thermal applications for most NAICS industries
 - > Thus, FS is primarily focused on thermal end uses
- FSSAT Hydrogen Substitution
 - ➤ Industrial thermal end uses: Water Heating, Process Heat-Low, and Process Heat-High
 - Proportional assignments by NAICS code based on wide review of NAICS literature
 - Process Heat-High remains the toughest to electrify

Example FS Approach in the Industrial Sector

For each NAICS code and End-Use, apply defined scenario FSSAT penetration

Industry Applicability (NAICS)	End-Uses for Fuel Substitution	Type of Fuel Substitution
Generic	Non-Thermal End Use	Gas → Electricity
Generic	Process Heat-Low	Gas → Electricity
Generic	Water Heat	Gas → Electricity
Generic	Process Heat-High	Gas → H ₂
211, 212 (Oil & Gas Extraction)	Process Heat-High	Gas → H ₂
3272 (Glass)	Process Heat-High	Gas → H ₂
3273 (Cement)	Process Heat-High	Gas → H ₂

Modeling Localized Production or Pipeline Movement of Hydrogen

- No statewide hydrogen distribution system
- FS probability increases with proximity to H₂ production facilities
- User-defined time-series of hydrogen supply and transport method for each NAICS industry in each electric and gas planning area

Hydrogen User Inputs within FSSAT

Transport Methods	Hydrogen Production Methods
Onsite Production	Electrolysis – Grid – Standard
Pipeline	Electrolysis – Renewable
Trucking – Short Distance	Steam Methane Reforming – No
Trucking – Long Distance	Carbon Capture System

Thank You!

Questions? Comments?

Usman Muhammad
Advanced Electrification Analysis Branch
Energy Assessments Division
usman.muhammad@energy.ca.gov

Selected FSSAT Ag & Industrial Input Data Sources

FSSAT Ag & Industrial Inputs	Current Data Source	Future Data Source
Industrial Adoption Potential	Public-Facing CARB Mandatory GHG Reporting Regulation (MRR) Data	Same as current
Industrial Hydrogen Supply	Public-Facing CARB Mandatory GHG Reporting Regulation (MRR) Data	CEC-CARB MOU Mandatory GHG Reporting Regulation (MRR) Data
H ₂ Pipeline Capacity	National Pipeline Mapping System (NPMS)	Same as current
H ₂ Production Methods	<u>Energy Information Administration (EIA) -</u> <u>Production of Hydrogen</u>	Same as current
Hourly Industrial Load Shapes	ADM Associates (Circa 2017-2019)	CEC's AMI Generated Load Shapes